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ABSTRACT 
The study of mathematics is all but precluded to most blind 
students because of the reliance on visual notations. The 
Lambda System is an attempt to overcome this barrier to access 
through the development of a linear mathematical notation 
which can be manipulated by a multimodal mathematical editor. 
This provides access through braille, synthetic speech and a 
visual display. Initial results from a longitudinal study with 
prospective users are encouraging.   

Categories and Subject Descriptors 
H.1.2 [User/Machine Systems]: Human factors, K.3.1 
[Computer Uses in Education], K.4.2 [Social Issues]: 
Assistive technologies for persons with disabilities. 

General Terms 
Human Factors. 

Keywords 
Mathematics education, blind students, synthetic speech, braille, 
MathML. 

1. INTRODUCTION 
Mathematics relies on visual notations. Whenever 
mathematicians communicate there is always a chalkboard or 
pencil and paper nearby, and there is also a need for written 
representations whenever an individual is performing 
mathematics. Thus, anyone who does not have access to written 
notations is at a serious disadvantage in the study of 
mathematics. This applies in particular to blind people. This 
paper reports the results of the Lambda Project which has 
attempted to provide non-visual alternatives through the use of 
information technology. 

2. BACKGROUND 
Before describing the technology developed within the Lambda 
Project, it is necessary to fill in and clarify a certain amount of 
background information regarding mathematics and access to 
materials for blind people. 

2.1 Mathematical notations 
There are a number of features of mathematics which make the 
use of visual notations both vital and appropriate. 
Correspondingly a variety of notations and representations have 
evolved. For instance, algebra is a means of representing many 
of the abstractions of mathematics. Meaning in mathematics is 
very precise and the notation reflects that; there is never 
redundancy in a mathematical expression and two syntactically 
similar expressions can have completely different meanings. At 
the same time the syntax of algebra has evolved such that it 
make good use of the medium – which amounts to a two-
dimensional planar representation. 
Take the following well-known equation as an example:  

a
acbbx

2
42 −±−

=  

Nothing can be omitted from that equation if it is to retain its 
meaning. Visually the following Equation (2) is very similar; 
mathematically it is completely different. (The fact that the 
horizontal bar of the square root symbol does not extend over 
the term 4ac means that it does not apply to that term). Any 
alternative notation (such as a non-visual one) must maintain 
these features. 

a
acbbx

2
42 −±−

=  

Notice also the compactness of the equations. That the right-
hand side is a fraction is immediately apparent and it is easy to 
recognize its numerator and denominator. The expression is also 
persistent. The mathematician can use the power of vision to 
extract the meaning that is pertinent to the current task. In trying 
to solve the equation (by substituting for a, b and c) the 
mathematician does not have to remember very much of the 
equation, because writing it down serves as a form of external 
memory[13]. 
There is an interesting discussion to be had as to what extent an 
external representation forms part of the mathematician’s 
cognitive model of the mathematics [8], and thus to what extent 
the absence of such a representation inhibits a person’s ability to 
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perform mathematics. However, that discussion is beyond the 
scope of this paper. What is clear is that blind people do not 
have access to the visual notations – with all their advantages. 
The question is to what extent alternative, non-visual notations 
can substitute. Given the power of vision, it seems certain that 
any alternative needs to make of as many alternative modalities 
as possible [3]. Hence an ICT-based approach, such as that 
embodied by the Lambda Project, is appropriate. 

2.2 Non-visual alternative modalities 
The best-known non-visual notation for blind people is braille. 
Braille mathematical notations exist and they are a vital part of 
the Lambda solution, but braille is not without its problems. 
Conventional braille consists of cells of up to six tactile dots, 
arranged in a 2 x 3 matrix, as in Figure 1. Six dots can represent 
26 = 64 distinct symbols, which is perfectly adequate to 
represent literary texts (essentially made up of 26 letters, 10 
digits and a small number of punctuation symbols). 

 

The 64 distinct braille cells are more than adequate to represent 
literary texts, but mathematics requires many more symbols. 
There are two approaches to extending the scope of braille (both 
of which are used in the Lambda System). The first is to use 
combinations of cells to represent a single mathematical symbol. 
As a simple example (in most braille codes), the digits 1, 2,..0 
are not represented by distinct braille cells. Rather the same 
cells as are used to represent the letters A, B,..J are used, 
preceded by a special number sign. Thus, 1 is #A, 2 is #B and so 
on. (See Figure 2).  

 

In 6-dot braille further multiple cells have to be used to 
represent the full range of mathematical symbols. So, for 
instance, in UK Mathematical braille [10], the basic operators +, 
– and x are each represented by a pair of cells and more 
complex (and obscure) symbols may require three or more cells. 
Thus, it takes 31 braille cells to represent Equation (1). 
The main problem with the extended versions of braille for 
mathematical use is that there is no one agreed notation. 
Essentially each country has its own version of mathematical 
braille. Even English-speaking countries which share the same 
(or almost the same) literary braille systems (such as the UK and 
the USA) have their own versions of mathematical braille. It is 
ironic that whereas mathematics is often seen as an international 
language, independent of spoken languages, when translated 
into braille that universality is lost. 
Computers have revolutionized the use of braille in two forms. 
Firstly, the computer can be used to generate braille texts. Any 
electronic document can be printed directly by a computer 

attached to a braille embosser printer. The software can take 
care of translating the text into braille. This includes not only 
the translation that would be required, for instance, to represent 
digits in the above example by pairs of cells, but also more 
complex translations into compressed ‘contracted’ braille codes. 
Printed braille is known as hard braille, by analogy with ‘hard 
copy’ printed text and is ‘printed’ by braille embossers. The 
second form of braille used with computers is ‘soft’ braille, used 
to represent information from a computer screen. A soft braille 
display consists of a set of cells of pins that can be raised and 
lowered under the computer’s control [17], thereby generating 
readable braille. As electro-mechanical devices, braille displays 
are expensive and so they are usually available as a single line 
of 40 or 80 cells. In other words, they represent a one-
dimensional display, not like the two dimensions of a screen or 
printed paper. 
The Lambda Project is sponsored by the European Commission 
and it is thus most important that it be as widely applicable 
across the European Union as possible. To that end a great deal 
of effort has been expended on making materials available in a 
wide variety of national braille codes, as explained further in 
Section 3. 
Another approach to the limited space of symbols in a six-dot 
notation, is to increase the number of dots in a braille cell to 
eight and this is also exploited in the Lambda system. Lambda is 
an acronym of Linear Access to Mathematics for Braille Device 
and Audio Synthesis and the word ‘linear’ is important. Braille 
is a linear notation. There has been an attempt to devise a two-
dimensional braille notation for mathematics (DotsPlus, [11]) 
but it can only generate hard copy output and cannot be 
displayed on a single braille line. Thus there is a need for a 
mathematical notation which is compact and linear, and that is 
the objective of the Lambda Code, which has been developed 
within the project. The Lambda Code is a new mathematical 
notation, based on 8-dot braille. Fortunately most braille 
displays do incorporate 8-dot cells. 
The Lambda Code uses single symbols (visual and braille) to 
represent each mathematical symbol. This means that the 
notation is linear, compact and easy to examine in auditory, 
tactile and visual forms. It is a universal code in that it is not tied 
to any one national braille code. 
Notice that the Lambda acronym also mentions audio synthesis. 
In other words, the Lambda approach is multimodal; braille is 
supplemented by a vocal representation of the mathematics. 
Again, speech is essentially a linear medium in time and so the 
same linearization of the material is necessary. Each Lambda 
Code symbol has a spoken representation. Screenreaders enable 
blind people to access computers. These transform the contents 
of the computer screen into either braille or speech – or both 
[14]. Using a mouse is out of the question, so blind users rely on 
keyboard alternatives [18]. The keyboard does not pose a 
substantial problem; touch-typing is a skill routinely taught to 
blind people.  

2.3 Conventional approaches to teaching 
mathematics 
Few blind students attain a high level of competence in 
mathematics (though there are some notable exceptions, [6]). 
This is at least partly due to the barriers to access to notations. 

Figure 1. The six dots of a conventional braille cell. 

Figure 2. Braille representation of letters and numbers. 
Digits 1, 2,…0 are represented by the same cells as the 

letters A, B,…J preceded by a special number sign. 
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Where mathematics is taught braille is often the main medium 
of record and communication, usually generated by 
conventional braille typewriters (i.e. without the use of any 
ICT).  
Frequently teachers avoid the complexities of the formal 
mathematical braille codes by using simpler, self-defined 
encodings. Where necessary (particularly for examinations), 
these will be transcribed by the teacher into conventional print 
notation for access by sighted readers (i.e. examiners). The use 
of non-standard notations naturally limits the level of 
mathematics that can be studied, but that is not a problem for 
most students, who only want to attain a minimum qualification 
(in the UK, usually no further than the basic General Certificate 
of Secondary Education, or GCSE, normally taken at age 16). 
Those students who do want to study to school-leaving level 
(known in the UK as Advanced Level) or beyond will generally 
learn a standard maths braille code. An alternative approach is 
to use a word processor on text files containing mathematical 
material expressed in Latex [7]. The advantage of this approach 
is that conventional print rendering of the mathematics can be 
easily generated. The main disadvantage is that Latex is 
designed to facilitate the manipulation of the visual 
representation of the material not the mathematical meaning (i.e. 
it is a printer’s markup language). Other research on ways of 
making Latex mathematics more accessible can be found in 
[15], [9] and [4]. 

3. LAMBDA  
Having set out the background in terms of technology and 
current approaches to mathematical education, we can describe 
how the Lambda System attempts to address the problems. 
MathML [12] is an XML-based notation for representing 
mathematics. It is a comprehensive notation with a wide 
coverage of mathematical expression. There are two styles of 
representation: presentation and content. ‘Presentation elements 
describe mathematical notations’ visually oriented two-
dimensional structure.’1, whereas content elements are based on 
the mathematical semantics. 
While MathML is a comprehensive notation it is also complex 
and hierarchically structured. Lambda required a linear notation. 
The Lambda Code is based on MathML but is simpler and 
linear, yet is easy to translate back and forth between Lambda 
and MathML. Another advantage of using MathML is that 
translators already exist for conversion between it and other 
popular mathematical notations, notably Tex and Latex. 
The Lambda Code includes new symbols which make it 
possible to represent the mathematics in a linear form. The 
symbols can be rendered visually and in braille. An important 
aspect of the braille notation is that it is based on 8-dot braille 
cells. This means that nearly all of the Lambda symbols can be 
represented by a single cell and that there is a one-to-one 
correspondence between the braille cells and the visual symbols. 
Figure 3 shows how Equation (1) is rendered visually in 
Lambda Code. The Lambda symbols used are explained in 
Table 1, which also shows the braille representation. 

                                                                 
1 http://www.w3.org/TR/MathML2/chapter2.html#id.2.1.1 

 

That the Lambda braille code is new is both an advantage and a 
disadvantage. An advantage is its universality. Unlike existing 
mathematical brailles, it is international. On the other hand, it is 
another braille notation to be learned by the user. Naturally it 
has been designed to bear as much resemblance as possible to 
conventional codes to facilitate learning. At the same time, it is 
possible to translate from the Lambda code into conventional (6-
dot) braille for printing on an embosser. A great deal of effort 
has been expended within the project to the building of a 
database which embodies most of the major braille 
mathematical codes which can then be used as the basis of 
translation. This means that users can get hard copy of 
mathematical materials in the (6-dot) code with which they are 
familiar. 

Table 1. The Lambda Code symbols use in Figure 4, their 
braille and spoken representation 

 
 

Another very important component of the Lambda  System is 
the Editor (Figure 4). This uses the Lambda Code directly. The 
Lambda Code uses special symbols to represent mathematics. 
Those symbols can be rendered in print, speech or in 8-dot 
braille (via a screenreader2). For instance, Equation (1) would be 
rendered visually as in Figure 3. The spoken representation also 
relies on a simple one-to-one translation (See Table 1). The 
spoken representation is based on [1] and Figure 3 is spoken by 
Lambda as: 

                                                                 
2 Currently the Editor works only with the Jaws screenreader, 

but it is being developed to be compatible with other popular 
screenreaders. 

Figure 3. Equation (1) as rendered in the Lambda Code. 
The Lambda symbols used are explained in Table 1. 
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x equals the fraction, numerator minus b plus or minus 
compound root b to the power of 2 minus 4 a c close compound 
root, denominator 2 a, end fraction 
Notice that the equation is represented in 20 8-dot Lambda code 
cells, in comparison with the 31 cells required in UK 
Mathematical braille. Given that most braille displays have just 
40 cells, such a reduction can be important. 
The braille and speech are accessible to the blind student and 
have a direct correspondence to the visual representation – 
which is intended mainly for the convenience of sighted 
teachers. Similarly with the addition of mathematical 
visualization software, MathPlayer3 it is possible to render the 
Lambda Code in conventional, two-dimensional notation. 
The Lambda Editor resembles a text editor, but has been 
designed specifically to work on mathematics expressed in the 
code. It is a wysiwyg GUI editor which runs under Microsoft 
Windows and can be used by blind people with the assistance of 
a screenreader. 
Figure 5 illustrates how Equation (1) might be solved in the 
Lambda editor for a = 1, b = 5, c = 6. Notice how lines in the 
solution are duplicated, giving a reference line and a working 
line.  

                                                                 
3 Available free-of-charge from 

http://www.dessci.com/en/products/mathplayer/download.htm 

 

 

 

Input can be generated from the keyboard but with additional 
facilities for the insertion of Lambda symbols. There are several 
alternative ways of generating the symbols, but the most 
accessible method for blind users is menu-based. The Insert 
menu is illustrated in Figure 6 and shows how symbols are 
grouped mathematically. Notice also that many of the menu 
entries have keyboard shortcuts (‘hot keys’). Given the large  
number of symbols, the keyboard sequences can be quite 
complex.  

Figure 4. The Lambda system. 

Figure 6. The menu mechanism for insertion of Lambda 
Symbols. The symbols are grouped according to their 

mathematical context. Note that the menu entries tend to 
be full names – which can be expressed unambiguously 
in speech, but that there are also a rich set of keyboard 

alternatives for expert users. 

 

Figure 5. Solving Equation 1 in the Lambda Editor, for 
a = 1, b = 5, c = 6. 
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Should the user not know which group is likely to contain the 
required symbol and hence be unable to find it in the menu, then 
he or she can select the Element List entry in the Insert menu. 
This leads to an alphabetical menu (Figure 7) which can also be 
searched textually. For instance, if the user wants to insert a 
greater-than sign, then starting to type ‘greater than’ into this 
menu will reduce it to a small number of selections (Figure 8).  
These features are all designed to ease input for blind users. 
Another feature assists in the closure of complex constructs. 
Typing Ctrl-k will cause the most deeply nested compound 
construct (e.g. a compound square root or fraction) to be closed. 
Similarly, some structures have two components (such as the 
numerator and denominator of a fraction). Typing Ctrl-i inserts 
the appropriate separator. 
As well as the Insert menu, there are graphical palettes from 
which the user can choose symbols to insert. This will only be 
accessible to sighted users, but is nevertheless considered 
important to support teachers using the system.  

 

 
Solving a mathematical equation usually involves writing down 
different versions of the equation each one (ideally) being a 
simplification of the previous one. The Lambda Editor is 

designed to facilitate such an incremental approach through the 
inclusion of a simple duplicate command. This creates two new 
copies of the current line, one which the student can edit and 
work on and one to which he or she can refer back as an aid to 
remembering the content of the current line.  
One powerful feature is a calculator function. Any expression in 
which all the operands are numbers (i.e. all the variables have 
been substituted by numerical values) can be calculated by the 
editor, so that the expression can easily be replaced by its value. 
This feature could be used in the example in Figure 5. The terms 
in fraction in the penultimate line (Û-6¯2Ý) are entirely 
numerical, so the value can be calculated for the user, using the 
calculator function. While this might seem to be giving the blind 
student an unfair advantage, in practice it can relieve them of a 
lot of mechanical effort that would be involved in remembering 
a (possibly complex) expression and evaluating it. 

 
The editor has a function to compress and expand structures. By 
compressing a structure the user can hide details and get a 
higher-level overview of an expression. For instance, 
compressing the equation in Figure 3 results in the 
representation in Figure 9, which would be spoken as ‘x equals 
the fraction, numerator, denominator end fraction.’ This 
corresponds to the kind of overall impression that a sighted 
mathematician might get by glancing at an equation.  
Otherwise the editor works much as a text editor. Material can 
be selected (using a variety of methods) and be cut, copied and 
pasted. Find and Replace functions are also available. These do 
not require the entry of the search string via a separate dialogue, 
but rather the currently selected text is automatically the target 
string. Non-mathematical text can also be included, so that 
accompanying commentary can be included. Material can also 
be imported into the editor (Figure 4). Thus, textbooks and other 
materials (which might originally have been in a notation such 
as Latex) can be imported for the student to read and work on 
within the editor.  
In principle there is almost no limit to the flexibility of the 
editor, since it has a scripting facility built in, based on the 
Python language. This facility has been used to implement a 
number of additional commands in response to user feedback. 
These include Invert Fraction, Goto Next Denominator and 
Goto Previous Denominator. 

4. RELATIONSHIP TO OTHER 
WORK 
Lambda is not the first attempt to address these challenges using 
IT. Notably the Maths Project [16] had many of the same 
objectives and was also based on a combination of braille and 
sounds. There are a number of differences between the two 
approaches, however. These include: 

Figure 9. A compressed view of the equation in Figure 4 (and 
Equation 1). 

Figure 8. As the user types the letters ‘gr’ of ‘greater than’, 
the elements in the menu narrow down. 

Figure 7. The Element List menu. When first opened the 
menu contains all of the available symbols, but as the user 
types, the number of elements is cut down, as in Figure 7. 

 

x=Û¯Ý 
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Technology 
Both projects recognized the importance of using a well-
defined, standard representation. Maths used SGML, but 
by the time Lambda came into existence, the rather more 
appropriate MathML had been devised. 

Linearity 
The Maths Project attempted to use parallelism in sounds 
(speech and non-speech). This was not entirely successful 
in that testers tended not to use it [16] and the Lambda 
Project chose to concentrate on linearity. 

Braille codes 
The Maths Project sidestepped the problem of multiple 
mathematical braille codes by standardizing on one code 
(Eurobraille). The Lambda Project has put great effort 
into supporting multiple braille codes (in hard copy), 
although it has also introduced a new standard for soft 
display. 

Educational philosophy 
The Maths Project was based on the idea that it was 
providing an equivalent of paper and pencil, that there 
should be no mathematical knowledge built in to the 
system so that the student should perform all the 
mathematics. While the motivation was understandable, in 
practice ‘simple’ manipulations are so difficult in a non-
visual mode that it seems reasonable to provide some 
support. Thus, for example, the Lambda Editor calculator 
function will calculate the value of any expression in 
which all the operands are numerical4. 

5. EVALUATION 
There are a number of problems in attempting to evaluate any 
innovation such as Lambda. Specifically, the difficulties of 
studying mathematics for blind people have already been 
discussed. The result is that there are very few competent blind 
mathematicians – and hence few suitable test participants. 
Looking at it another way, since there is no existing comparable 
technology it is not possible to perform any kind of controlled 
test. As with most educational innovations, the ultimate 
objective is to improve the educational attainment of students. 
This makes evaluation very difficult because controlled testing 
is very difficult. If one runs a within-group study and measures 
the performance before and after the ‘treatment’, then how does 
one know that the same change would not have occurred if 
conventional educational approaches had been used? To use a 
cross-group study, one needs well-matched groups of 
participants. Finding any suitably qualified blind mathematics 
students is hard; finding two well matched groups is impossible.  
On the other hand, it has been suggested that the simplified 
notation of the Lambda Code would be of benefit to the more 
general teaching of mathematics – including sighted students. 
This might give the opportunity for more of a controlled 
evaluation. 
                                                                 
4 Naturally this function can be disabled as might be 

necessary in certain educational contexts, such as in some 
examinations. 

In these terms, it would be difficult to generate any quantitative 
evidence of the efficacy of the Lambda System. Instead it was 
decided to stage a number of Lambda Information Days, in the 
different countries represented in the Lambda consortium. 
Students, their parents and teachers are invited to attend the day. 
There each student is given an individual introduction to the use 
of the Editor and then encouraged to explore it and its 
capabilities. Feedback is obtained through observation and 
questionnaires. At the end of the day they are given a copy of 
the software and encouraged to use it at home and school. One 
month later, the participant is contacted by telephone and asked 
to provide further feedback. 
Evaluation started in 2004, as soon as a prototype of the 
software was available. As such, the evaluation is an integral 
part of the iterative development of an ever-improving product. 
Many enhancements have incorporated in successive versions of 
the software. The project has been extended to the end of 2006 
and evaluations are still continuing. Nevertheless, some initial 
observations and conclusions have already been drawn. By the 
end of the project further data will be available and a more full 
account of the evaluation will be published. 
It is apparent that the Lambda Editor is well used by students 
who are already comfortable with using the PC. Those who are 
not, really need to master the appropriate computer skills so that 
they can concentrate on the mathematics when using Lambda. 
Similarly, users who are already accustomed to using computer 
braille displays seem to have little difficulty in using and 
learning the 8-dot Lambda Code. It was noted above that the 
keyboard shortcut key sequences can be quite convoluted. 
Nevertheless, it has been observed that this is the preferred 
method of entry for many users once they have gained some 
experience. Evidently they find the overhead of remembering 
the sequences less of an effort than that required to go through 
the sequence of actions to make menu selections [5, 19]. The 
facility to easily close and delimit components of expressions 
(i.e. the Ctrl-k and Ctrl-i commands) is universally found to be 
useful. 
None of the testers has (yet) used the Editor through speech 
alone. This might be seen as providing support for the choice of 
such a multimodal approach, except that many testers preferred 
not to use speech at all, to rely on the braille alone and to switch 
the speech off. It is thought that this might be partly due to the 
environment in which they were working in which participants 
feared that sound might disturb others working around them. In 
such cases, they were encouraged to try the speech when they 
were working in a private environment, at home. Braille clearly 
has the advantage of conveying spatial information and it seems 
that users are able to build up a good representation of the two 
dimensions of a page, even through a single line of braille. 
It has been interesting to observe some of the tactics and 
techniques that users have developed in using the editor. These 
are generally shortcuts through which information can be picked 
up quickly or ways of rapidly navigating the cursor to the 
required position. 
One technique is the use of space characters for highlighting. In 
conventional braille it is often convenient to place spaces around 
a symbol of interest. When that item is to be re-located, the 
finger can quickly scan to the blank space. Accordingly spacing 
is maintained in the Lambda Editor and spaces have no syntactic 
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meaning. This also facilitates another tactic that has been 
observed. The Duplicate command is used frequently. When 
working on the second line, users often like to maintain the 
vertical alignment of symbols. That way they can quickly switch 
between the two lines and compare corresponding terms. In 
order to achieve this, students will use the spacebar as a means 
of deleting material, effectively over-writing it with spaces. (See 
the fifth line of the solution in Figure 5). 
The Editor treats the screen like a sheet of paper, in that text can 
be placed anywhere on it. For instance, a new entry may be 
placed to the right of an existing line or at the bottom of a page 
with blank space from the existing lines. These features allow 
different students to apply different techniques. Some prefer to 
start each calculation on a new line, others prefer to build to the 
right of the existing line and yet others like to open new 
windows. They can then work in a way analogous to their 
sighted peers, with one ‘best’ page and another for rough work. 

6. CONCLUSIONS 
While the image of mathematics is poor and most adults seem 
almost proud of how little of it they learned in school (at least in 
the UK)5 in truth anyone who is denied access to the subject is 
severely disadvantaged. To not have at least a basic 
qualification (GCSE) in the subject is a severe limitation and a 
higher level of qualification is a prerequisite to many other areas 
of education and employment. There have been a number of 
prominent mathematicians who were blind [6] but it is clear that 
they have been exceptional and have had to struggle to get over 
the problem of just accessing – and creating and manipulating 
mathematical material. The Lambda Project represents a new 
approach to the problem. It is based upon what is 
mathematically necessary but adapted to the abilities of blind 
people. 
The positive reception of Lambda augers well for the future in 
which the availability of the system may have a significant 
effect on the education of blind people. 
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