
A Voice-activated Syntax-directed Editor
for Manually Disabled Programmers

Thomas J. Hubbell
TAK Imaging

Fairhope, AL 36532
1-251-990-4408

thomas.hubbell
@takimaging.com

David D. Langan
Sch. of Computer & Info. Sciences

Univ. of South Alabama
Mobile, AL 36688
1-251-460-6390

dlangan@usouthal.edu

Thomas F. Hain
Sch. of Computer & Info. Sciences

Univ. of South Alabama
Mobile, AL 36688
1-251-460-6390

thain@usouthal.edu

ABSTRACT
This paper discusses a research project targeted at the design
and implementation of an interface intended to allow manually
disabled people to more easily perform the task of program-
ming. It proposes a Speech User Interface (SUI) targeted for
this task. Voice was selected as the means of input as an alter-
native to the keyboard and mouse. Traditional programming
IDEs tend to be character and line oriented. It is argued that this
orientation is not conducive to voice input, and so a syntax-
directed programming interface is proposed. To test the viabil-
ity of this combination of voice with a syntax-directed ap-
proach, an editor named VASDE (Voice-Activated Syntax-
Directed Editor) was implemented using ECLIPSE as the un-
derlying platform for development. This paper describes the
syntax-directed interface, VASDE, and some of the lessons
learned from initial usability studies.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: voice IO, graphical user interfaces,
interaction styles, input devices and strategies.

General Terms
Design, Experimentation, Human Factors, Languages.

Keywords
Speech user interface, syntax directed, programming by voice,
IDE.

1. INTRODUCTION
1.1 Motivation
With the point-and-click interface of a mouse-driven GUI sup-
plemented with a keyboard, it might appear that there would be
no remaining barriers to accessing modern computer applications.
However, for manually disabled users the keyboard/mouse inter-
face is largely or totally inaccessible. For users with such physical

disabilities as carpal tunnel syndrome, the hand and arm move-
ments required by such interfaces may be difficult, painful, or
impossible.

Programmers are among those computer users often affected by
such limiting disabilities. Due to their prolonged and heavy
computer usage, they are at risk for a family of ailments known
as repetitive strain injuries (RSI). RSI is defined as “a soft-
tissue disorder that results from the repetitive use of some part
of the body” [8]. Repetitive Strain Injuries, such as carpal tun-
nel syndrome, are serious conditions that can lead to numbness,
pain, and, in extreme cases, paralysis [8]. Although recent re-
search has shown that carpal tunnel syndrome is not directly
caused by prolonged computer usage, it is known that extended
computer use can exacerbate the symptoms of existing carpal
tunnel syndrome [16]. Furthermore, repeated computer use is
likely to cause other ailments, such as tendonitis [16], which
can lead to a painful computing experience.

1.2 Problems with Programming
by Dictation
One viable input method for users with hand/arm disabilities is
speech. Speech-recognition/dictation software packages are
available that can supplement such applications as email, or
word processors. However, most of these accessibility-enabled
applications take a pre-existing interface, and simply layer
voice support over it. This approach ignores the possibility that
an interface designed from the outset for voice input might be
constructed to look and feel more natural, and be more efficient.

The speech interface requirements for a programmer are differ-
ent from those of the user of a typical application. A dictation
interface to a word processing application makes use of a large
set of known words in the user’s spoken natural language, as
well as standard punctuation required for sentence structure. In
contrast, programming editors typically involve a limited num-
ber of programming language keywords (e.g., “if”, “else”,
“while”, etc), a variety of punctuation marks, and a relatively
wide variety of user-defined identifiers typically not found in
any natural language (e.g., “myPointer”, “getCount”). Thus, for
new identifiers it is necessary to resort to a “spelling interface”
of the voice recognition system.

Clearly, in order to make speech recognition a viable input
method for programmers, some approach other than pure dictation
must be used.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASSET’'06, October 22–25, 2006, Portland, Oregon, USA.
Copyright 2006 ACM 1-59593-290-9/06/0010...$5.00.

205

1.3 Research Overview
The objective of this research was to create a programming editor
with the following characteristics:

1. Accessible to manually disabled programmers.
2. Intuitive to use, after a minimal initial training.
3. Efficient, in the sense of programmers being able to generate,

and edit, code quickly.
4. Effective, in the sense of reducing the probability of pro-

grammer-generated syntax errors.
The goal of this research was to evaluate whether a speech inter-
face coupled with a syntax-directed editing approach would pro-
vide a “natural” match in the domain of programming editors. It
was recognized that the well-defined grammar of programming
languages provides a limited number of input possibilities at any
given time. These possibilities can be in some way enumerated by
the editor, and selected vocally by the programmer. In many in-
stances the possibilities are singular, in which case the editor can
insert that text automatically. The combination of how the screen
presents the current choices to the programmer along with a para-
digm of how the speech is to be used forms a Speech User Inter-
face (SUI). Thus while investigating the use of speech in general,
we investigate the issue of refining the SUI to be as effective as
possible. To provide a usability testing environment for this SUI
concept, such a voice-activated syntax-directed editor (named
VASDE) was designed and implemented.

While objective 1 was paramount, it was felt conceivable that the
interface might be useful to the programmer population at large,
and that a multi-modal input interface—as long as it did not com-
promise accessibility for manually disabled programmers—may
be possible. Objective 2 was ensured by staying as close to stan-
dard interface conventions as possible, only deviating where some
advantage could be gained for the other objectives. Objective 3
would be supported by making every attempt at reducing the vo-
cal bandwidth (defined as the average number of spoken charac-
ters per program character). Both objectives 3 and 4 are supported
by the syntax-directed approach, since many lexical and syntacti-
cal elements can be automatically inserted, and because selection
(of syntax-directed elements) is less error prone, and requires
smaller vocal bandwidth than, for example, keyboard entry.

Section 2 discusses related research. Section 3 describes the
VASDE editor that was implemented based on the proposed inter-
face. Section 4 discusses the results and conclusions of the
VASDE usability study.

2. RELATED RESEARCH
Previous research related to the design of a voice-activated pro-
gramming interface can be categorized into four main groups: (a)
UI research examining effective ways of utilizing speech recogni-
tion, (b) research into syntax-directed editing approaches, (c)
prior research directly related to programming-by-voice (PBV)
issues, and (d) research regarding the practical implementation of
speech-recognition technology. Some results from each of these
are briefly discussed below.

2.1 SUI Research
In the general area of SUI research, Oviatt [14] presents research
focused on “constrained” (i.e., guided) versus “unconstrained”

(i.e., unguided) speech interfaces. Oviatt found that “a more struc-
tured interface reduced the number of words, length of utterances,
and amount of information integrated into a single utterance.”
Furthermore, they found that users preferred the constrained inter-
faces to the unconstrained ones by a factor of two to one. These
findings have a direct bearing on the interface design for a pro-
gramming editor, as a highly structured interface can reduce the
computational requirements of the speech-recognition engine and
can result in a generally more pleasant user experience.

2.2 Syntax-directed Editing
In the area of syntax-directed editing environments, Horwitz and
Teitelbaum [10] present a design for a language-independent
model of editing involving the representation of programs as at-
tributed abstract-syntax trees with an associated relational data-
base. Arefi [1] further expands upon the basic tree view by speci-
fying languages as directed, labeled graphs, which allowed for
quick updates to the program structure. Reiss [15], in his PECAN
system, explores a variety of different views of a program that
could be achieved with a syntax-directed editing paradigm.
Steindl [17] also explores the flexibility of the syntax-directed
approach in proposing data dependency views and links between
procedure calls and definitions. Biddle et al. [2] proposes an in-
teresting syntax-directed view in the “Dependency Visitor”,
which provides a tree view of a program organized by scope. In
the dependency tree, subtrees are major program elements such as
object variables, object methods, and method bodies. The leaves
of the tree are variable definitions or type indicators (for meth-
ods). Biddle et al. further proposes a selection mechanism that
relies on program units (such as the name of an object or the name
of a method), rather than arbitrary characters.
After the VASDE application had been nearly completed and this
research effort was coming to a close, a parallel effort was dis-
covered that exhibited many similarities to VASDE. The “Happy
Hands Java Speech Editor” [9] is a completely independent com-
mercial effort that co-evolved as VASDE was developed. It was
developed to solve the same problem as VASDE – to create an
effective programming-by-voice environment for Java developers.
While VASDE and Happy Hands both share a similar syntax-
directed, template-based SUI approach, these approaches are real-
ized in very different ways in the respective UIs. In comparison to
Happy Hands, VASDE’s approach is quite unique in the areas of
tree-based navigation and selection as well as the ability to create
new names by voice.

2.3 Programming by Voice
In the area of programming-by-voice research, Johannsson [12]
presents the idea of using templates to limit the syntactical ele-
ments entered directly by the programmer. The VoiceCode pro-
ject [18][6][3][4] explores numerous approaches to programming
by voice in their attempt to modify an existing programming edi-
tor for use with voice.

2.4 Speech Recognition Technology
In research regarding the practical implementation of speech-
recognition technology, Sun Microsystems provides some general
guidelines for the implementation of speech technology [11] in
any application. These guidelines address key areas including
performance and the choice of a proper spoken command set.

206

3. VASDE (Voice-Activated Syntax-Directed
Editor)
3.1 Overview
VASDE is a voice-activated syntax-directed programming edi-
tor. Because this application was intended as a research tool
rather than a commercial IDE, a few simplifying design deci-
sions were made:

• The editor is bound specifically to the Java programming
language.

• Although Java is the target language, some fea-
tures/constructs were not included if their omission repre-
sented no loss of generality.

• All high-level tasks within the editor were designed to be
accessible by means of a speech interface. However, the cur-
rent implementation of VASDE does not address the task of
expression editing. We are currently exploring this aspect—
also based on a syntax-directed approach—and are address-
ing the lower-level issues that arise with expressions.

The Eclipse open source project is used as the underlying plat-
form for the VASDE implementation [5]. Eclipse was originally
conceived as a type of extensible IDE environment, although it
has since expanded its purview into numerous other areas.
Thus, it provides a set of libraries, frameworks, and applica-
tions.

The Eclipse project provides a full-featured Java programming
IDE known as the JDT. JDT contains a number of useful librar-
ies for dealing with Java programs, including abstract syntax
tree APIs, compiler abstractions, and the definition of a “Java
project”—a collection of the source and resource files which
comprise a Java application.

VASDE borrows heavily from this project in its infrastructure,
and, in fact, is designed as an application plug-in to the Eclipse
environment itself. The specific Eclipse items used within
VASDE are as follows:

• Basic application framework via the Eclipse Rich Client Plat-
form (RCP)

• User-Interface Widgets via the Standard Widget Toolkit
(SWT) and JFace libraries

• JDK infrastructure including:
o Java Project Management framework
o Java compilation, compilation error reporting, and error

correction suggestions
o Java Abstract Syntax Tree and support libraries

Another core component of VASDE is obtained from an exist-
ing technology. The Java Speech API (JSAPI) [11] provides the
interface between VASDE and the underlying speech recogni-
tion engine by providing a means for recognizing speech, and
triggering required actions. It also provides a means to specify a
“grammar” of speech commands that would be matched by the
speech engine. The specific implementation of this API is pro-
vided by a company named CloudGarden, whose JSAPI imple-
mentation is speech engine-neutral. Finally, because of its
widespread availability, the IBM ViaVoice engine was selected
for use with VASDE.

3.2 VASDE Details
The main infrastructure of VASDE was created by combining
relevant portions of Eclipse and the JSAPI together and augment-
ing the resulting constructs with program (the program being
edited) and application (VASDE itself) state management objects.
These infrastructure components provided the foundation for the
presentation of the user interface – the most important aspect of
VASDE for this research effort.

Figure 1 VASDE Main Application Interface.

There are four components to the user interface (seen in Figure 1):

1. The Application Framework provided by Eclipse
2. The Project Explorer view
3. The Method Editor view
4. The Compilation Errors view (a read-only display).
The Application Framework interface for VASDE refers to the
main application shell, consisting of the main window, the menu
bar, and the tool bar. The Application Framework actually hosts
the other UI components seen in Figure 1. In VASDE, each of the
hosted components is considered to be an Eclipse “view”. Al-
though the views combine with the framework to form a seamless
interface, each view is a separate component. Therefore, each
view has a separate user and speech interface. A small set of
voice-enabled elements have been added to Application Frame-
work itself, allowing the following actions:

• Open the Project dialog, which allows users to create a new
project or open an existing project.

• Open a dialog which allows editing of the build path that the
compiler uses for the currently loaded project.

• Exit the program.
The Project Explorer view (the leftmost component pictured in
Figure 1) and the Method Editor view (the top-right component
pictured in Figure 1) are both tree-viewer interfaces that share a
nearly identical speech interaction paradigm. Both views high-
light the syntax-directed nature of VASDE. Elements within these
tree views correspond to meaningful syntactic elements in the
program. Therefore, editing, viewing, and navigation of a pro-
gram takes place by means of some syntactic element of the Java
program—not a syntactically meaningless unit such as a line of

207

text. While the organization and selection of syntactic units takes
place directly within these tree views, editing an individual syn-
tactic unit is accomplished by means of a series of dialogs. These
template-based dialogs generate the fixed elements (parentheses,
braces, colons, keywords, etc.) of the syntactic unit, while requir-
ing the programmer to enter only the elements that are specific to
the current unit.

The Project Explorer enables exploration of top-level items within
the currently open project, as selected by the Open Project dialog.
Top-level items for a VASDE project include classes, interfaces,
class fields, class/interface method signatures, constructor signa-
tures, imports, and inner classes/interfaces. From this view, each
of these items can be created and edited by invoking a specific
dialog for each construct. Additionally, items can be deleted from
within this view. Finally, fields, methods, imports, and inner
classes/interfaces can be cut, copied, and pasted from one
class/interface to another.

While the Project Explorer handles the organization of the pro-
gram from the class level down to the method level, editing and
navigation within individual method and constructor bodies is
accomplished by means of the Method Editor. Here, the meaning-
ful syntactic units are, for example, assignment statements, vari-
able declarations, for loops, if statements, and method invocation
statements. These items correspond to nodes that are included in
the Eclipse definition of a Java abstract syntax tree.

The speech-enabled command sets of these two views have two
general forms:

1. command + label
2. command + labelX “through” labelY
The command element is any of the defined actions, while the
label is a short, unique identifier that is dynamically assigned. The
first form is used to apply a single command to a single labeled
node, while the second form is used to apply a single command to
a sequential group of labeled nodes. Most of the commands are
applicable to any node types, though some types recognize addi-
tional context-sensitive commands. The set of commands includes
the following (in all but a few cases, both general forms are appli-
cable):

• “select”
• “expand”
• “contract”
• “add” node type—applies only to Project Explorer
• “insert” node type (“before” | “after”)—applies only to

Method Editor
• “delete”
• “copy”
• “cut”
• “paste”—applies only to Project Explorer
• “paste into”—applies only to Project Explorer
• “paste” (before | after)”—applies only to Method Editor
• “edit”
• “edit (method | constructor) signature”—applies only to Pro-

ject Explorer; used to invoke the Method Editor
Particular commands are only applicable to a specific view since
the order of nodes does not matter in the Project Explorer view
(where only hierarchy is significant), but is relevant in the
Method Editor view (dealing with programming statements).

Editing or creating individual nodes with either of these two
views is accomplished by means of node-type specific dialogs
(generically termed node-type dialogs). These node-type dialogs
collectively form a part of the SUI being proposed here. While
each node-type dialog is unique, they have been designed so that
a common SUI interaction paradigm is used, providing an or-
thogonality which aids in the learning and retention by a VASDE
user.

3.2.1 Example Node-type Dialogs

Figure 2 Create/Edit Method Signature Dialog.

Figure 2 depicts the node-type dialog used to create or edit a
method signature. Standard GUI elements are used in the same
manner as in standard Windows applications. The major differ-
ence is that the primary mode of interaction with these elements is
via speech rather than via a mouse or keyboard. This approach
keeps the user in a familiar environment, and provides familiar
visual feedback. Some of the important elements in this dialog
that are common to other dialogs are:

• The button labels are also “speakable” commands.
• Items in a group of check boxes (the Modifier group) are la-

beled with a unique character, and are selected and deselected
by speaking “select label” and “deselect label”, respectively.

• Items in a group of radio buttons (the Type group) are also
labeled with a unique character (distinct from other groups).
Items are selected with the “select label” command.

• Items in a list (the Throws and Formal Parameters lists) are
labeled with a number. If a list item is to be selected from a dia-
log containing a single list, this is accomplished using the “se-
lect label” command form. In the Figure 2 dialog there are mul-
tiple lists with items that must be edited within subdialogs.
Therefore, there are special commands (listed on the buttons)
which are applied to a given list’s items. In Figure 2 the Add,
Edit and Delete Exceptions buttons are examples of such com-
mands.

• A Name control is used to enter new names.
• Items on dialogs that must be filled in with Java expressions

(other than new names) are entered by the keyboard on the cur-
rent limited version of VASDE, and are indicated on the dialog
by a standard text box.

The Name control allows users to create new identifier names for
projects, classes, methods, fields, and variables, and is one of the
few places that employs the dictation grammar of the recognizer.
The operation is as follows:

208

• The user speaks “Start”. This invokes a dictation-result listener;
activates the Back, Erase, and Stop buttons; and deactivates the
Start button.

• The user can now speak any word to begin creating a name, as
long as the spoken word is not one of the other recognized dia-
log commands

• If the user speaks several words, they will be concatenated into
a single word (e.g., “MyProject” or “HelloWorld”). The capi-
talization rules used in this concatenated word are context-
dependent: lowerCamelCase is used for methods, fields, and
variables, and UpperCamelCase is used for project, class, and
interface names.

• If there is a mistake either by the user or by the recognizer, the
user can speak “back” to erase just the last word spoken or
“erase” to erase the entire word and start over.

• When the name has been entered to the user’s desire, the user
must speak “stop” to deactivate the naming control and dicta-
tion listener.

3.2.2 Example For-Loop Dialogs

Figure 3 For Loop Dialog.

Figure 3 depicts the For-Loop dialog. This dialog is typical of the
dialogs used as part of the Method Editor. Code “templates” such
as this generate much of the “boilerplate” code – like keywords,
parentheses, and semicolons – and only permit the user to edit the
“changeable” parts of the template. In the case of the “For-Loop”,
only the “OK” and “Cancel” push buttons have equivalent voice
commands. The three text boxes must be populated with Java
expressions and, therefore, must currently be filled by using the
mouse/keyboard interface. Ongoing research is extending
VASDE to include a voice activated expression editor. The re-
mainder of the Java syntax depicted in the dialog is automatically
generated. Each of the supported Java structure types has its own
unique dialog that allows the creation and editing of that structure.

By means of the speech-enabled node-type dialogs in conjunction
with the two speech-enabled tree views discussed above, a Java
programmer is able to create and edit a completely functional
Java program in an environment that is voice-driven.

3.3 Usability Study
A small pilot evaluation was conducted to gather user feedback
on the completeness, usability, and appropriateness of the
VASDE interface for the task of Java programming. A small pool
of evaluators was chosen from the ranks of university students
and professional programmers. Although the user group that
could benefit the most from the VASDE interface is programmers
with manual disabilities, it was difficult to find many such users;
however, one of the evaluators used did have a severe manual
disability.

For each subject, the evaluation process began with training the
speech recognition engine. The evaluator was then provided with
a tutorial that introduced the major functions of VASDE. After
the tutorial was completed, each evaluator was given a sequence
of individual tasks that involved transcribing and editing a Java
program (provided as standard Java source text) in the VASDE
application. Finally, each evaluator was given a questionnaire that
was used to provide feedback on VASDE.

The survey instrument had 20 questions: 16 were 5-point Likert
scale questions, 3 were yes/no questions, and a final question
provided space for general open-ended comments. Additionally,
each question provided space for open-ended comments. Eight
questions addressed the completeness of the interface. Eleven
addressed the appropriateness of the interface to the task of Java
programming. Of these eleven, five addressed the subcategory of
usability of the interface, and the rest were aimed at determining
the evaluator’s satisfaction with the overall interface. An attempt
was made to gauge how appropriate they felt that the interface
was for the task of editing Java programs. This addressed both the
syntax-directed and the speech-enabled aspects. The results of this
survey are presented below.

3.3.1 Results
3.3.1.1 Questionnaire Results
Two sources of feedback used were (1) the questionnaire filled
out by each evaluator, and (2) direct observation of the evaluators
during the given tasks.

 Category E1 E2 E3 E4 E5 Me-
dian

 Completeness
C1 Overall Completeness 4 4 4 2 3 4.00
C2 Program Creation 4 5 4 4 4 4.00
C3 Add/Edit Class/Interface 4 5 5 4 4 4.00
C4 Add/Edit Class Field 4 5 4 4 4 4.00
C5 Add/Edit

Method/Constructor
4 5 5 4 4 4.00

C6 Add/Edit Method Body
Code Structures

4 5 4 4 4 4.00

C7 Code Navigation 4 5 3 3 4 4.00
C8 Program Compilation 5 4 5 3 3 4.00
 Usability
U1 Overall Usability 3 4 4 4 3 4.00
U2 Efficiency 4 4 5 3 3 4.00
U3 Attractiveness 5 5 5 4 3 5.00
U4 Responsiveness 3 3 5 4 3 3.00
U5 Intuitiveness 4 4 5 5 4 4.00
 Appropriateness
A1 Syntax-directed approach

NOT viable for editing
2 1 1 2 2 2.00

A2 Syntax-directed approach
LESS appropriate than tradi-

3 2 2 3 4 3.00

209

tional editor with added
speech recognizer

A3 Limitations of speech recog-
nizer make interface too
frustrating to use

3 2 1 3 4 3.00

A4 Interface impedes user Y N N N N N/A
A5 Speech commands are ap-

propriate
Y Y Y B Y N/A

A6 Comfortable with editor for
everyday use

N Y Y Y N N/A

Legend:
1 – Strongly Disagree
2 – Disagree
3 – Neutral
4 – Agree
5 – Strongly Agree

Y – Yes
N – No
B – Both yes and no

For each of the Likert questions, the median answer was equal to,
or higher than, the median achievable score (3 on a scale of 1 =
least favorable, to 5 = most favorable). Although all of the scores
were favorable for VASDE, the scores were higher for the catego-
ries of completeness and usability than for the general appropri-
ateness of the interface.

While all of the feedback gained through the evaluations was
valuable, it is likely that the most can be learned by concentrating
on the areas where VASDE scored the lowest. Only three of the
questions asked scored just at 3 on the Likert scale. These ques-
tions were:

1. Is the syntax-directed, voice-driven approach less appropriate
than the combination of a traditional editor with an added
speech recognizer? (A2 in table)

2. Do the limitations of the speech recognizer make the interface
too frustrating to use? (A3 in table)

3. Rate the interface’s responsiveness on a scale of 1 to 5 (U4 in
table).

In the case of the first question, two reasons for the lower scores
are immediately evident. Firstly, the strictly syntax-directed envi-
ronment introduces a major interface paradigm shift for a pro-
grammer with even minimal experience with “standard” pro-
gramming tools. Secondly, the very fact that the interface is
tightly constrained could seem too inflexible to programmers who
often enjoy the customization and personalization that many pro-
gramming environments support.

The second and third questions may be the most important ones
of the evaluation. In many ways, the entire design approach of
VASDE is meant to make the speech recognition system as
useful as possible. This question asks whether the VASDE in-
terface has done enough in this area to overcome these limita-
tions. The feedback indicates that there is still room for im-
provement. The fundamental cause of some of the low evalua-
tions was however related to performance issues of the underly-
ing speech engine. Thus, it is felt that the approach used in the
VASDE system was “valid”, but that a broader acceptance of
the approach may first require improvements in those underly-
ing support levels.

Although these three particular areas mentioned above reflected the
most negative feedback from the questionnaire, the majority of the
user feedback was quite positive. In fact, for all areas of interface
completeness and all areas of interface usability save responsive-
ness, the median scores were 4 and above (on a scale of 1 to 5).

3.3.1.2 Observation results
In addition to direct user feedback, observations during the
evaluation process also yielded fruit. A major observation was
that the speech recognition engine still produced many errors,
despite approximately one hour of voice training. Recognition
errors also seemed to be greatly influenced by the “speed” of an
evaluator’s natural speech. Additionally, the engine even ap-
peared to be sensitive to even slight changes in the speaker’s
voice, as observed for one particular evaluator whose cold con-
stantly affected the tone of his voice during the evaluation.

The most frequent recognition error that was observed was a mis-
recognition. This occurred quite frequently when evaluators were
using dialogs with character labels (for example, the “New
Method” or “New Class” dialogs). In such cases, single characters
were often mistaken for one another (e.g., ‘A’ and ‘K’; ‘D’, ‘E’,
and ‘P’).

A final observation from the evaluation process is that the evalua-
tors did not seem to retain all of the speech commands after the
tutorial session. Therefore, they resorted to consulting the User’s
Guide with some frequency during the non-tutorial tasks.

4. Conclusions
4.1 The technology
The behavior exhibited by the underlying support for VASDE
(i.e., the speech engine and JSAPI code) was somewhat disap-
pointing. Evaluators were in some cases frustrated by both per-
formance and accuracy problems. Although performance was an
issue, the promise of faster computers in the future can help to
mitigate the effects of a slow recognition process. From evalua-
tion comments and observations, the most glaring source of frus-
tration is the lack of recognition accuracy.
The recognition accuracy might be increased in three identified
ways. The first suggested approach is simply increasing the en-
gine training time (training was limited to 40-60 minutes for these
evaluations). The second possible approach to improved recogni-
tion could be to include extensive training on the command-words
used by VASDE. Such training should reduce the misrecognitions
based on the command words used. The third suggestion is to
alter the actual speech commands themselves. A design decision
was made to use very concise label names in the command + label
spoken command form. Labels were usually a single number, a
single character, or a combination of a character plus a number.
While this approach was easy for the user to learn, it also pre-
sented many possibilities for misrecognition. For example, the
“select A” command was quite frequently misrecognized as “se-
lect K”. Observation of the evaluation process showed that com-
mands which featured more words (for instance, “insert method
declaration after B 1”) were rarely misrecognized. It is likely that
the longer commands provide more context for the speech recog-
nition engine and can lead to greater accuracy. Unfortunately,
longer commands are likely to be harder to remember by users.

210

One performance observation made during the evaluation process
was that at times there was a time lag when user-spoken input was
being ignored. This occurred most noticeably when a program
context shift called for a change in the grammar. In such cases the
programmer, unaware of the dead-time, would begin speaking
prematurely and would have to repeat his commands. The rem-
edy, used in subsequent changes to the VASDE implementation
model, was to provide the user with a red-green light icon indicat-
ing when speech input was being accepted. This remedy proved to
be successful [7].

4.2 The Interface
The frustrations experienced by testers based on the current
weaknesses found in the lower levels of this project (i.e., the
speech recognition engine and the JSAPI interface) make it
somewhat difficult to isolate their attitudes about the interface
itself. However, the survey taken seems to indicate that the
evaluators looked favorably upon the completeness and the us-
ability of the VASDE application despite these weaknesses.
In addition to the questionnaire described above, all evaluators
were given an opportunity freely to provide feedback on VASDE.
As it relates to one of the major goals of this research effort, some
of the most valuable feedback involves the unique comments of
the single evaluator with a severe manual disability. In general,
the comments of this evaluator were very positive. His main sug-
gestion was that there should be less typing (although he ac-
knowledged that the addition of an expression editor would alle-
viate this concern). His most telling comment was that, even with
the numerous recognition errors that occurred this interface was
much faster for him than if he had had to enter items by hand.
Therefore, he considered it “much better than having to type” and
intimated that an interface like VASDE would make him much
more productive for everyday programming work.

4.3 Future directions
The research efforts undertaken in the development of this voice-
activated editor suggest many opportunities for future research.
VASDE only implements a portion of a total voice-activated pro-
gramming solution. The first obvious extension to this research
would be the design and implementation of a voice-activated Java
expression editor. This research is currently underway.
Of course, VASDE could also be enhanced with more IDE-level
features such as enhanced project management, a run-time debug-
ging environment, integrated help, GUI building, and support for
other programming languages besides Java. If all such extensions
were adequately voice-enabled, the combination of all these fea-
tures plus VASDE would result in a fully capable voice-enabled
IDE.
Another area of future research suggested by VASDE is the ex-
ploration of which voice commands are most appropriate for a
given interface. Specifically, such research could explore what
characteristics of voice commands result in the best rate of recog-
nition (and lowest rate of misrecognition) balanced with the high-
est rates of user retention and appropriateness to the given task.
Another area under investigation for improving the overall suc-
cess of VASDE is to implement the concept of synonym sets.
These sets would be based on individual user input testing. For
example, when a given programmer speaks the word “clear” the
speech engine might routinely be hearing the word as “Claire”.
Thus, for that particular user treating “Claire” and “clear” as

synonyms would reduce the number of cases of misrecognized
keywords. This concept would of course require a more extensive
training period.
The code used to implement VASDE is available from the au-
thors.

5. References
[1] Arefi, Farah, Charles E. Hughes , and David A. Workman.

“Automatically Generating Visual Syntax-Directed Editors.”
Communications of the ACM, Vol. 33, No. 3. ACM Press.
New York, NY. 349-360. 1990.

[2] Biddle, Robert, Ewan Tempero, and Glen Wallace. “Smarter
Cut-and-Paste for Programming Text Editors”. Proceedings
of the 2nd Australasian Conference on User Interface. IEEE
Computer Society Press. Queensland, Australia. 56-63. 2001.

[3] Désilets, Alain. “Context Sensitive Magic Words for Pro-
gramming by Voice”. Proceedings of the 1st VoiceCode De-
sign Session. Boston, MA. 2000. 21 August 2002.
<http://voicecode.iit.nrc.ca/VoiceCode/VCode1stMeeting/Al
ain_Desilets/ CSMWs/index.htm >

[4] Désilets, Alain. “Miscellaneous Techniques for Program-
ming-by-Voice”. Proceedings of the 1st VoiceCode Design
Session. Boston, MA. 2000. 21 August 2002.
<http://voicecode.iit.nrc.ca/VoiceCode/VCode1stMeeting/Al
ain_Desilets/ misc_techniques/index.htm>

[5] “Eclipse.org Main Page”. 5 March 2005. The Eclipse Foun-
dation.< http://www.eclipse.org>

[6] Epstein, Jonathan. “Programming by Voice Using Continu-
ous and Discrete Methods”. Proceedings of the 1st Voice-
Code Design Session. Boston, MA. 2000. 21 August 2002.
<http://voicecode.iit.nrc.ca/VoiceCode/VCode1stMeeting/Jo
nathan_Epstein/index.htm>

[7] Froeseth, Julie. “A Model for Voice-Activated Visual GUI
Editors”, Masters thesis, University of South Alabama, De-
cember 2005.

[8] Heintzelman, Matt and Phil Pfeiffer. “Machines, statues, and
people: strategies for promoting RSI awareness in computing
curricula”. Proceedings of the twenty-eighth SIGCSE techni-
cal symposium on Computer science education. San Jose,
CA. 296-300. 1997.

[9] Hennessy, Sean. "Computer Code Voice Transcription". 6
January 2005. 7 March 2005. <http://www.h-
dm.com/resources/HappyHands_Java/hh_paper_short_techni
cal.html>

[10] Horwitz, Susan and Tim Teitelbaum. “Generating Editing
Environments Based on Relations and Attributes.” ACM
Transactions on Programming Languages and Systems. New
York, NY. 557-608, 1986.

[11] “Java Speech API Programmer’s Guide”. Version 1.0. 26
October 1998. Sun Microsystems, Inc.<
http://java.sun.com/products/java-
media/speech/forDevelopers/jsapi-guide/>

[12] Johansson, Eric. “Speech Driven Coding”. 10 March 1998.
21 August 2002. <
http://www.connact.com/~esj/voice_coding/voicecoding2.PP
T>

211

[13] “Lost-worktime Injuries and Illnesses: Characteristics and
Resulting Time Away from Work, 2000”. Bureau of Labor
Statistics. 10 April 2002. 12 October 2002.
<http://www.bls.gov/news.release/osh2.nr0.htm>

[14] Oviatt, Sharon L., Philip R. Cohen, and Michelle Wang.
“Toward Interface Design for Human Language Technology:
Modality and Structure as Determinants of Linguistic Com-
plexity.” Speech Communication, 15 (3-4). European Speech
Communication Association. 283-300. 1994.

[15] Reiss, Steven P. “Pecan: Program Development Systems
That Support Multiple Views.” Proceedings of the 7th Inter-
national Conference on Software Engineering. Orlando, FL.
324-333. 1984.

[16] Shmerling, Robert. “Harvard Commentary: Computer Use
and Carpal Tunnel Syndrome”. InteliHealth. 27 August
2001. 12 October 2002.
<http://www.intelihealth.com/IH/ihtIH/WSIHW000/20813/2
0888/332014.html?d=dmtJHNewsArchive>

[17] Steindl, Christoph. “Benefits of a Data Flow-Aware Pro-
gramming Environment”. Proceedings of the ACM SIG-
PLAN-SIGSOFT Workshop on Program Analysis for Soft-
ware Tools and Engineering. ACM Press. Toulouse, France.
105-109. 1999.

[18] VoiceCode White Paper. National Research Council of Can-
ada. 23 February 2005.
<http://voicecode.iit.nrc.ca/VoiceCode/public/wiki.cgi?Voic
eCode_white_paper>

212

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

