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Abstract

Cognitive assistive technologies that aid people
with dementia (such as Alzheimer’s disease) hold
the promise to provide such people with an in-
creased level of independence. However, to real-
ize this promise, such systems must account for
the specific needs and preferences of individuals.
We argue that this form of customization requires
a sequential, decision-theoretic model of interac-
tion. We describe both fully and partially observ-
able Markov decision process (POMDP) models of
a handwashing task, and show that, despite the po-
tential computational complexity, these can be ef-
fectively solved and produce policies that are eval-
uated as useful by professional caregivers.

1 Introduction
Dementia is a clinical syndrome characterized by the deteri-
oration of a person’s memory and cognitive function. It is
estimated that there are nearly 18 million older adults with
dementia worldwide, with this number expected to reach 35
million by 2050[1]. Alzheimer’s disease is the most common
form of dementia and accounts for more than half of demen-
tia diagnoses[3]. Home care offers tremendous advantages
for such individuals (e.g., economically, quality of life) over
placement in a long-term healthcare facility. However, sig-
nificant barriers often prevent home care from being a viable
option, including the physical and emotional burden placed
on family members and the cost of maintaining professional
care in the home.

A pressing need for people with advanced dementia arises
from the difficulty they have completingactivities of daily
living (ADLs). A caregiver generally must guide them, step
by step, through such routine activities as handwashing, toi-
leting, dressing, moving about, taking medication, etc. Cog-
nitive assistive technologies that help guideusers(i.e., care
recipients) through ADLs can relieve some of the stress of
home care on family members and care professionals. How-
ever, current monitoring and reminding devices cannot accu-
rately track user behavior at a step-by-step level, nor adapt
to specific users. Moreover, many devices require explicit
feedback (e.g., button presses), which cannot reasonably be
expected of people with moderate-to-severe dementia.

Our objective is to design and develop systems that ac-
tively monitor a user attempting a task and offer assistance in
the form of task guidance (e.g., prompts or reminders) when
it is most appropriate and in a form that will do the most
good. Such systems should tailor their guidance decisions
(w.r.t. both form and timing) to specific individuals and cir-
cumstances, based on what will work best for them. In this
work, we extend the prototype COACH system[12] in which
behavioral monitoring of ahandwashing taskis realized with
a vision system. We extend COACH by modeling the guid-
ance decision process in a decision-theoretic fashion, more
precisely, as apartially observable Markov decision process
(POMDP). There are several important factors that should in-
fluence guidance decisions that strongly suggest the use of
this model, including perceptual noise, the stochastic nature
of user behavior, the need to trade off various objective cri-
teria (e.g., task completion, caregiver burden, user frustration
and independence), and the need to tailor guidance to specific
individuals and circumstances.

Our key contributions are as follows. First, we develop a
POMDP model for a specific ADL (handwashing). While the
model itself is of value for handwashing, the generalform
of the model is appropriate for almost any ADL guidance
or intervention module. Second, we show that these models
exhibit considerable structure, allowing them to be specified
easily, and the underlying decision problem to be solved ap-
proximately by recent state-of-the-art algorithms. In particu-
lar, we obtain an exact solution for a fully observable MDP
simplification of the POMDP; and an approximate solution
is obtained for the POMDP despite its size and complexity.
Third, controlled evaluation of the MDP policy by profes-
sional caregivers demonstrates its significant value as an as-
sistive device. While MDP performance is not as good as that
of professional caregivers, it is more than adequate to serve as
the basis for a supplemental device which can relieve the bur-
den on caregivers or family members. Finally, in simulation,
we show that the approximate POMDP policy outperforms
the exact MDP policy. This suggests that accounting for par-
tial observability and user customization via the POMDP ap-
proach offers considerable benefits. These benefits are cur-
rently being quantified in clinical trials which will be reported
in a longer version of this paper.1

1Trials are not yet complete so cannot be reported here.



2 Cognitive Assistive Technologies & COACH

Assistive technology (AT) is increasingly used to offset the
impact of impairments resulting from injury, disease, and the
aging process and related disorders. Typically these technolo-
gies have focused on assisting users with mobility impair-
ments. Recent growth in the number of people with cogni-
tive disabilities, such as dementia, has resulted in consider-
able research being conducted into developingcognitive as-
sistive technologies (CATs)to address the difficulties that this
population faces. In broad terms, CATs attempt to compen-
sate for existing impairments by using devices, tools, or tech-
niques that either compensate for a person’s impaired cogni-
tive ability, or translate a problem into one that matches the
user’s strengths. To date, computerized CATs have been of
limited scope, especially in the use of AI techniques. Proto-
types of cognitive aids include handheld devices that remind a
person to complete basic ADLs (e.g., taking medication[8]).
However, most of these systems were not designed for older
adults, particularly those with moderate-to-severe dementia,
and would likely not be acceptable for this population.

Several intelligent systems that use AI and ubiquitous com-
puting techniques are currently being developed for the older
adult. These include the Aware Home Project[13], the As-
sisted Cognition Project[7] and the Nursebot Project[15].
These new projects are similar to the work described in
this paper in the sense that they attempt to incorporate AI
and a decision-theoretic approach to overcome the shortcom-
ings of current approaches. In particular, the Autominder
System[17], one aspect of the Nursebot Project, applies a
POMDP in the development of the planning and scheduling
aspect of the system[15]. These systems do not incorporate
advanced prompting techniques and algorithms, but rather are
being developed as scheduling and memory aids.

COACH, our first prototype of an intelligent environment
for older adults with dementia, monitors progress and pro-
vides assistance during handwashing. It uses computer vision
and simple AI techniques to learn to associate hand positions
(2D coordinates) with specific handwashing steps (e.g., turn-
ing on the water, using the soap), and to adjust its parameters
and cuing strategies[12]. COACH uses audio prompts for
each of the possible plan steps, with each step associated with
a general, a moderate, or aspecificprompt. For example, a
general prompt to turn on the water simply states “Please turn
on the water,” while a specific prompt uses the subject’s name
and elaborates on the the process (“. . . byplacing your hands
on the tap in front of you. . . ”). Clinical trials with 10 sub-
jects with moderate-to-severe dementia showed that the num-
ber of handwashing steps that the subjects were able to com-
plete without assistance from the caregiver increased overall
by approximately 25% when the device was used[10].

Although this prototype and its algorithms showed some
success, we have identified several remaining challenges.
Limitations include the assumption of full observability (i.e.,
that the environment and user context are fully represented by
the data provided), inability to tailor its prompting strategy to
specific users, and the reliance on deterministic hand-coded
rules to make decisions (w.r.t. when and how to provide as-
sistance). The ability to plan appropriate courses of action

automatically, deal with partial observability, and customize
behavior to specific users has led to the development of the
POMDP approach described here.

3 A POMDP Approach
The decision problem faced by COACH is fraught with un-
certainty, both with respect to the observability of the envi-
ronment, and the effects of system actions. Furthermore, our
goal is to satisfy a number of different objective criteria that
often conflict and cannot be achieved with certainty. For this
reason, a POMDP provides the best formal framework for
modeling the decision process. POMDPs allow one to model
imprecise information about the current environment state,
uncertainty in the effects of actions, and multiple, conflict-
ing objectives. Optimal policies will proffer courses of action
that balance the importance of specific objectives with their
odds of success; furthermore, they account for the long-term
impact of decisions, including thevalue of informationinher-
ent in an action, thereby allowing to the system to actively
learnabout certain environment or user characteristics.

Many domain characteristics associated with ADL guid-
ance (handwashing being just one example) strongly suggest
the use of a POMDP. These include:

• Sensing (e.g., vision in our system) is prone to noise,
hence environment variables must be estimated proba-
bilistically (e.g., the location of a user’s hands and body
must be estimated due to sensor noise or occlusion). As
a result, the task step the user is attempting to engage
must also be estimated.

• Successful completion of a task step given a specific
form of guidance is generally stochastic (e.g., a user may
react appropriately to an audio prompt only some per-
centage of the time).

• Conflicting objectives need to be traded off against one
another and their odds of success (e.g., maximizing the
odds of task completion, maximizing the number of
successful task steps without caregiver aid, minimizing
caregiver intervention, and minimizing user frustration).

• A given form of guidance may have different odds of
success for specific individuals, hence requiring cus-
tomization to specific individuals based on our current
estimates (e.g., a specific user may tend to get frustrated
with prompting that is too frequent).

3.1 The POMDP Model
We now describe a specific POMDP model for the handwash-
ing ADL that captures the desiderata described above. We
also describe a fully observable counterpart of this model
that illustrates how MDPs can be applied. The core MDP
addresses stochasticity and multiple (long-term) objectives,
while the POMDP extension captures partial observability,
noise, and the ability to customize behavior to specific in-
dividuals by estimation of hidden user characteristics. We
take pains to describe several variants of each model. This
is because the efficacy study conducted using human care-
givers was based on an earlier version of the MDP. We wish
to evaluate our results using this baseline; but also describe
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Figure 1:Plan graph for handwashing ADL.

improvements to the model which will be used in upcoming
clinical trials.

A discrete-time POMDP consists of: a finite setS of
states; a finite setA of actions; a stochastic transition model
Pr : S×A → ∆(S), with Pr(s, a, t) denoting the probability
of moving from states to t when actiona is taken; a finite ob-
servation setZ; a stochastic observation model withPr(s, z)
denoting the probability of observationz in states; and a re-
ward function assigning rewardR(s, a, t) with state transition
s to t induced by actiona. Given a specific POMDP, our goal
is to find apolicy that maximizes the expected discounted
sum of rewards attained by the system. Since the system state
is not known with certainty, a policy maps eitherbelief states
(i.e., distributions overS) or action-observationhistoriesinto
choices of actions. We refer to[9] for a detailed overview of
POMDP concepts and algorithms.

State Variables
Our state space is characterized by four classes of variables:
those that capture the state of the environment; those that
summarize the ADL plan steps completed thus far; those
summarizing system behavior; and those reflecting certain
hidden aspects of the user’s personality or mental state.

Environment variablesrepresent the underlying physical
state of the environment; these areHL (hand location: at tap,
at soap, at towel, at sink, at water, away) andWO (water on:
boolean).2

Activity status variablescapture the ADL steps that the
user has completed. Figure 1 shows the legitimate sequences
of steps (any path from start to finish) that constitute success-
ful handwashing. There are4 activity status variables.PS ,
whose domain is the nodes (A-K) of the plan graph (L is
shown only for convenience), denotes the most recent step
the user has completed.MPS denotes themaximumplan
step completed, since a user may regress in the plan graph.
We use this to reward progress in the graph without reward-
ing duplication of steps (see reward description below);PSR
denotes that the current step has been repeated. Finally,Prg
indicates whether “progress” is being made within the current
plan step; for example, hands moving to sink position prior to

2Other relevant aspects of the environment (e.g., hands wet) can
be inferred from plan step as discussed below.

stepF is indicative of progress being made towards the com-
pletion of stepF despite the fact that the plan step hasn’t yet
been completed.

System behavior variablesprovide a summary of the sys-
tem history relevant to prediction of user responses to a
prompt. These are:NP or number of prompts issued for
the current plan step (with domain 0–3+);NW or number
of time steps waited since last prompt (0–4+);LP , the type
of last prompt (see description of prompting actions below);
PL, the specificity of the last prompt (see actions below); and
Rgr , the number of times the user has regressed in the plan
(0–3+), which is used as an (stochastic) indication of general
responsiveness of the user.

Finally, user variablesreflect aspects of the user’s mental
state that impact their response to prompts. Our current pro-
totype uses only one variable,Resp (general responsiveness),
taking valueslow and high, to provide a very crude char-
acterization of user type. However, more sophisticated user
modeling can be incorporated into the POMDP, using tran-
sition and observation models of precisely the same form as
those described below.3

Actions and Dynamics
The system has 20 actions, 18 of which comprise prompts for
six different plan tasks (water on/off, use soap, wet hands,
rinse hands, dry hands) at three levels of specificity (general,
moderate, specific). General prompts gently cue the user,
while specific prompts are designed to get the user’s attention
and provide a detailed description of the task. For example,
a prompt to use the soap might be worded as “use the soap
now” at a general specificity level, but might include refer-
ences to the color or location of the soap at a specific level,
such as “use the soap in the pink bottle on your left”. Us-
ing the patient’s name is another strategy that is effective for
specific prompting. The wording of the prompts was cho-
sen based on prior experience, and was fixed for the duration
of the experiments we describe here.4 The other two actions
are the “null” action and “call caregiver.” The latter action
ends the process and is presumed to result in successful task
completion. This is an important aspect of our system, since
our aim is to develop assistive technologies that supplement
rather than replace human caregivers. Our goal is to relieve
stress and burden on caregivers by increasing the odds of suc-
cessful “independent” task completion and reducing the need
for constant (human) monitoring. However, in the efficacy
study presented here, we remove this action temporarily to
ensure the integrity of our evaluations (as described below).
In the ongoing clinical trials, it plays a central role.

Transition probabilities describe the stochastic state
changes induced by each action. These are specified bydy-
namic Bayesian networks(DBNs) over the state variables,

3Other user variables might characterize auditory and visual abil-
ity, overall dementia level, general level of independence, tendency
to frustration, etc. We have solved instances of the POMDP with
additional user variables, but do not report these here, since they do
not correspond to the MDP used in our efficacy study.

4Our current work includes clinical trials to assess the effective-
ness of different wordings and prompting strategies. Visual prompts,
played through a one-way mirror are being explored as well.



with the conditional probability tables (CPTs) represented by
algebraic decision diagrams (ADDs)[6]. The considerable
structure in the domain leads to a very compact specification
of the dynamics. The precise parameters of the model were
produced using a handcrafted prior reflecting our experience
with patients in earlier clinical trials using the hand-coded
prompting system and our interactions with caregivers.5

Space prevents a complete description of the dynamics, but
we mention some of the key intuitions underlying the model.
The probability of the user taking a specific “user action”
such as turning on the water—corresponding to a state change
in an environment variable (i.e.,WO becoming true)—tends
to be higher at appropriate plan steps, but the probability de-
pends on the precise prompting history. For example, the
longer the system waits for a response (modeled byNW ),
the less likely it is that the user will complete the current plan
step independently (i.e., without prompting). Furthermore,
the more “unsuccessful” prompting has been for the current
step (modeled byPL andNP ), the less likely it is that the
patient will complete the step at all. Such “response” proba-
bilities vary formulaicly withResp andRgr . Higher values
of Rgr are indicative of lower likelihood of eventual success,
while success is more probable whenResp is high than when
it is low .6

Activity status variables are updated deterministically as
a function of environment variables (note that environment
variables are themselves only partially observable) in the
obvious way. PS may move back and forth through the
plan graph (since the user can regress, e.g., by re-wetting
their hands), butMPS records the maximal step in the plan
reached at any point, and never regresses. System variables
are updated deterministically as well (e.g., number of prompts
NP is updated with each prompt for the current step, but reset
to zero when the plan step changes). Finally, the user variable
Resp is static, and does not change value over time (though
ourestimatesof its value does).7

Rewards
Rewards are associated with various state transitions and
costs with specific actions. A large reward is given for full
task completion (+300) and smaller rewards (+3) are associ-
ated with the (first) achievement of each plan step to encour-
age/reward even partial success (MPS is used to ensure re-
wards are not repeated). Action costs are also incorporated
to ensure that prompting only occurs when needed. Each
prompt is given a small negative reward, with the more time-
consuming specific prompts penalized slightly more than
simpler general prompts (the costs are -4, -5 and -7). The
cost of calling the caregiver should be set so that this action
only occurs if the predicted odds of completion are too low,

5Some versions of our model (see Section 5) include updates of
this prior using data produced by coding 21 hours of video capturing
600 trials of human caregivers interacting with patients.

6The influence ofResp on user response is estimated based on
the authors’ previous clinical experience. Planned clinical evalua-
tion of the POMDP policy will be used to assess this more precisely.

7This is true for the time scales we currently consider, but certain
aspects of a user’s state, such as level of dementia, general respon-
siveness, etc., can change (e.g., deteriorate) over longer periods.

water

Figure 3:Possible hand locations.

or predicted costs of completion too high.
The design of the reward function is based on brief interac-

tions with caregivers, earlier clinical trials with patients using
hand-coded COACH, and evaluation of numerous versions of
MDP (rather than POMDP) policies. While the rewards seem
reasonable, fine-tuning of the reward function is an ongoing
research project (see Section 5).

Observations
The handwashing task has two observables: thereported flow
of water (on/off), and thereported locationof the user’s
hand(s). The POMDP is designed to be integrated with a
computer vision system that estimates hand position (and wa-
ter flow indirectly) based on skin color[11]. The vision sys-
tem reports estimated hand position (x, y-coordinates) which
is translated into one of six possible regions (see Fig. 3).

We assume25% noise in the observation function that de-
tects hand position (i.e., the correct hand position is detected
with probability 0.75, while each incorrect position is de-
tected with probability0.05. Similarly water flow is detected
correctly with probability0.75. These probabilities are esti-
mated based on our prior experience, but a detailed empirical
study is needed to assess these accurately.

3.2 A Fully Observable Model
The POMDP model can be made fully observable with two
simple changes. First, if we remove the hidden variableResp,
a key source of partial observability disappears, though we
sacrifice the ability to customize behavior to specific individ-
uals.8 Second, if we assume the tracking system computes
hand position and water flow without error, the system be-
comes fully observable. The assumption of perfect observ-
ability is not unreasonable if we use a switch sensor on the
tap and additional cameras to disambiguate obscured views
and reduce the inherent noise in image processing.

3.3 Computational Results
To study the feasibility of the model, we solved both the
MDP and POMDP formulations of the handwashing ADL.
The cost of calling the caregiver in both trials was set very
high (−1000), to ensure that this action was never taken,

8Customization based on other fully observable attributes, such
as hearing and visual ability, is still possible in an MDP.
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Figure 2:Example sequence during a trial in which prompts were selected by the MDP policy. Prompts were read by a human caregiver.
The plan steps are those from Figure 1. The user turns the water on and off independently (at 6 and 160 seconds, respectively), but must be
prompted for all other steps. The user regresses at 71 seconds by putting more soap on his hands, which the system recognizes and thus gives
a second prompt to rinse hands.

as required by the evaluation procedure we describe in Sec-
tion 4. The version of the fully observable MDP we solved
has 12 variables (25,090,560 states) and 20 actions, rendering
explicit state-based approaches impossible. However, due to
the DBN structure, we were able to solve this problem exactly
using the SPUDD algorithm[6]. An optimal policy was pro-
duced in 64 minutes, and was represented using an ADD with
3, 284 internal nodes and18 leaves. The optimal value func-
tion was an ADD having139, 443 internal nodes and106, 328
leaves. We discuss evaluation of this policy below.

The POMDP model has one additional variable, hence a
state space of size 50,181,120, the same action space, and 12
observations. It is far beyond the reach of any exact solu-
tion techniques or model-based approximation methods. As
a result, we developed a new approximation algorithm which
exploits the structure in the system dynamics and rewards
(as represented by our ADDs).Perseus-ADDconsists of the
Perseus algorithm[18], a randomized point-based version of
value iteration, reconstructed to take advantage of ADD struc-
ture [16]. The algorithm results in a policy of 36 state-value
functions (α-vectors), computed in 42.7 hours.

The relative quality of the MDP and POMDP policies
demonstrates the importance of accounting for noise and user
characteristics. While the POMDP policy is approximate, we
evaluated it in simulation from the starting state, using 500 tri-
als of 60 steps, withResp uniformly distributed in the initial
belief state, and the specific value ofResp drawn randomly
for each trial. The average value obtained by the POMDP
policy is 100.1 over 60 steps. The value of the optimal pol-
icy for the fully observable MDP (ignoringResp) is 134.2
(which provides an upper bound on the value of the unknown
optimal POMDP solution). However, this MDP value cannot
be realized in the partially observable environment. So we
implemented the MDP policy in this environment by com-
puting the most likely state at each stage of the simulation
and applying the corresponding MDP policy choice. In sim-
ulation, this attains an average value of 95.6 over 60 steps.
We see that the MDP model provides a reasonable approx-
imation for this POMDP despite its limitations. However,
the full POMDP policy (despite only being solved approxi-
mately) outperforms the MDP policy by a significant margin.
The value of POMDP modeling is apparent when one consid-
ers that the computational overhead in solving the policy is
borne offline—once computed, the optimal policy is applied
in real-time without any significant computation. All that
is required online is simple belief-state updating, the critical
component in allowing the policy to choose different prompt-

ing strategies for different users as beliefs about these users
evolve.

It is also interesting to note the customization of the
POMDP policy based on its estimate of theRespvariable.
When a patient tends to be slow to respond to prompts,
it is better to wait several time steps before repeating the
prompt. For instance, when a patient has reached plan step
G and was prompted to dry her hands two time steps ago, the
POMDP policy repeats the prompt when the probability of
Resp = high is sufficiently high, but waits when it is low.
Similarly, when plan stepJ is reached and the patient was
prompted to turn off the water two time steps ago, the prompt
is repeated only when responsiveness is believed to be high.
In contrast, the MDP policy doesn’t have the ability to esti-
mate the level of responsiveness since it is not directly ob-
servable. As a result, in both cases it repeats the prompt at
the risk of annoying a slower, less responsive patient.

4 Caregiver Evaluation
While the evaluation of the MDP and POMDP policies in
simulation is useful, the true value of the system can ulti-
mately only be gauged in clinical trials. Clinical trials with
Alzheimer’s patients are currently underway to test our re-
sults. These trials are based on improved versions of the mod-
els (see Section 5). Results of these trials will be reported in
a longer version of this paper.

Before undertaking clinical trials, anefficacy studyof the
MDP policy was undertaken to confirm its plausibility be-
fore applying it to dementia patients. In this study, an ac-
tor with considerable experience with dementia patients sim-
ulated the behavior of a user in the handwashing ADL dur-
ing 33 trials, each of which was videotaped. This simulated
patient was guided using either the prompting strategy given
by the MDP policy, or by a professional caregiver with over
30 years experience. During the caregiver trials, the caregiver
acted naturally, prompting using her own strategy. During the
MDP trials, the same professional caregiver read (verbatim)
the prompts provided by the MDP policy, in order to prevent
verbal distinction between caregiver and MDP trials. TheHL
andWOvariables (describing the location of the actor’s hands
and whether the water was on) were manually annotated by
a researcher during the trials, thus fulfilling the perfect ob-
servability assumption of the MDP (note that using the vision
system would not have allowed accurate implementation of
the MDP policy). The videos were then viewed by 30 pro-
fessional caregivers (different from the prompter), who eval-
uated the performance of the prompting in each trial. These



evaluators were unaware that the prompts in some trials were
selected by a computer (this is why thecall caregiveraction
could not be used).

Fig. 2 depicts snapshots of one of the MDP-guided scenar-
ios used in the efficacy study. In this case, the handwashing
subject is able to complete the steps of turning on the water
(stepB) and turning the water off (stepK) independently.
The subject ignores the prompt given to him att = 71s to dry
his hands and regresses in the activity to stepD by applying
soap instead. The planning system copes with this by identi-
fying the regression, and prompting him to rinse his hands a
second time. The majority of the time the prompting screen
remained blank, as portrayed att = 6s andt = 55s, allowing
the subject time to attempt each step on his own.

Six of the 33 scenarios (three MDP and three human) were
chosen for evaluation by 30 professional caregivers.9 Each
evaluator rated the strategy employed in each of the six sce-
narios, using a five-point Likert scale, on five criteria:Iden-
tification (the prompt(s) given appropriately identified the
next task);Detail (level of prompt detail appropriate);Time
(an appropriate amount of time to attempt task provided be-
fore being prompted);Repetitions(number of prompt repe-
titions was appropriate); andOverall Effectiveness(patient
was guided effectively). Free-form comments were also pro-
vided.10 Quantitative results (see Fig. 4) clearly indicate (re-
sults are statistically significant) that the professional care-
giver outperforms the MDP policy in all evaluated aspects.
Indeed, we had no expectation that the MDP policy would
perform as well. Of course, our goals are much more modest;
we intend the system to supplement human caregivers, not
replace them. Furthermore, the standard of an experienced
professional caregiver sets the bar quite high.

Despite this, we were quite encouraged by the performance
of the MDP. The average rating of the MDP was higher
than that of the human professional in 28 of 150 (18.7%)
evaluator-aspect pairs. Furthermore, qualitative comments
indicate that the evaluators viewed the MDP policy as ade-
quate (and we believe the evaluators to be rather critical given
the average rating of the human caregiver); and none sus-
pected the prompting to be computerized. These facts suggest
the MDP prototype can serve as the basis for a supplemental
assistive device. Finally, many of the critical comments made
of the MDP policy reflected issues that could easily be reme-
died (and do not reflect a weakness in the MDP approach per
se). For instance, many evaluators felt that turning the water
on before asking a patient to use soap, or turning the water off
before drying hands, provides a natural cue as to what the next
activity step is (different transition priors or further data for
training the transition model could readily reflect this). Sug-
gestions were also made regarding the language construction
of prompts, the use of positive feedback and a friendly voice,
and checking water temperature before allowing the patient
to immerse his/her hands. None of these require modification
of the current MDP model.

9Selection criteria were based on scenario length (no more than
3 minutes) and the actor’s head being not visible in scene

10A detailed technical report on experimental methodology and
results is available elsewhere[2].

Figure 4:Caregiver ratings of MDP effectiveness for 5 criteria.

Addressing certain evaluator criticisms would require
some modifications of the model (or fine-tuning of parame-
ters). These include: using prompts that are tailored to the
abilities of the user; giving the patient enough time for step
completion; and incorporating visual cues (something that we
have developed and tested independently). Finally, in some
situations, the patient asked the caregiver a question, such as
“where’s the soap?”. With no dialog model or speech sen-
sors, the MDP cannot react to this (which evaluators viewed
negatively). However, POMDP models of spoken dialog[19]
could be used for this purpose in the future.

5 Further Model Validation & Improvement
The efficacy study supports the value of the POMDP ap-
proach. Although the study was based on a handcrafted MDP
model, the policy evaluated by caregivers showed promise as
a valuable means of relieving caregiver burden. Since the
POMDP policy outperforms this MDP policy in simulation,
we expect the POMDP model to offer additional value in a
realistic settings. Ultimately, the value of the POMDP ap-
proach must be verified in a clinical setting. Clinical trials
are currently underway in which both the MDP and POMDP
approaches are being compared to human caregivers in guid-
ing Alzheimer’s patients through handwashing. The POMDP
policy being evaluated is, in fact, somewhat different than the
one reported here; we focus on the direct comparison of the
POMDP described above with the MDP since it is a direct ex-
tension of the MDP (and thus differences in performance are
largely due only to the power of the model to handle noise
and user characteristics). The model used in the current clin-
ical trials is significantly enhanced in several ways: a more
realistic reward/cost function; a more realistic model the in-
fluence of level of responsiveness and response delays on step
completion; model parameters estimated from video data of
human caregivers; and a simplified and improved plan graph
reflecting suggestions of the MDP policy-evaluators.

Our experience to date suggests a number of important av-
enues for model improvement. A difficult task is construct-
ing reasonable reward models; while transition models can
be constructed from data, rewards cannot. One future aim is
to validate the reward model indirectly by having caregivers
critique the policies directly. While caregivers often have dif-



ficulty quantifying the utility of, say, partial versus complete
task success, or the cost of prompting, they often “recognize
a good policy when they see it.” Using precise caregiver pol-
icy critique, we will re-engineer the reward function so that
the resulting optimal policy is consistent with the suggestions
(reminiscent of revealed preference in economics orinverse
reinforcement learning[14]).

Another important direction is learning model structure
and user behaviors from sequence data, rather than impos-
ing our own structure on tasks. Preliminary work along these
lines is reported in[5]. Finally, generalizing the model to
more directly account for continuous nature of both time,
states (e.g., hand position) and observations in this domain
is of critical importance for more accurate modeling and use-
ful prompting. Preliminary results dealing with continuous
observations in a simplified version of our domain, using a
new algorithm for solving continuous observation POMDPs,
are reported in[4].

6 Concluding Remarks
We have proposed a decision-theoretic view of ADL assis-
tance for people with dementia, arguing that POMDPs pro-
vide an ideal model for such problems. While we developed
this model for a specific ADL, the modeling principles em-
bodied in our approach are broadly applicable. Despite the
size and complexity of the model, we have demonstrated that
the MDP and POMDP solution algorithms can successfully
be used to solve these problems, thus producing (approxi-
mately) sequentially optimal policies for ADL prompting.

Considerable future work is required to apply the system
in practice. Clinical trials are currently in progress to help
evaluate the effectiveness of the model and to help improve
it. Of particular interest are ways to to improve the (admit-
tedly simple) user model. Sessions with caregivers are also
planned to help refine our reward function. We are currently
exploring many of the interesting technical issues associated
with revising MDP and POMDP models (especially reward
functions) based on policy critique. We are also working to-
ward applying POMDP models to other ADLs, such as toi-
leting, and general living patterns. Modeling these different
tasks in a consistent, decision-theoretic fashion will eventu-
ally lead to hierarchies of POMDP CAT systems throughout
a home or care facility, all working towards the same goal.
The ability of these POMDPs to monitoruser variables, such
asResp, means that changes in a patient’s state of health can
be assessed automatically over different time scales.
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