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Importance of Context in Image Processing

Context Models
@ Proposed in the past, but they do not work as well as expected
o WHY?
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Field of View (FOV)

Small FOV == Hinders the contextual information

fincal lengd = 35 mm
What vour eyves see What a camera sees
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Field of View (FOV)
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Panorama - 360° Horizontal and 180° Vertical

o Easily obtained by smartphones, special lenses, or image stitching
@ All objects are usually visible despite occlusion

o Enables the detection of the room layout and of the contextual
information

@ Panorama = Object Detection = Whole-room 3D Context
Model

Input: a single-view panorama Cutput: object detection Output: 30 reconstruction
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Panorama - 360° Horizontal and 180° Vertical

o Easily obtained by smartphones, special lenses, or image stitching
@ All objects are usually visible despite occlusion
e Enables the detection of the room layout and of the contextual
information

@ Panorama = Object Detection = Whole-room 3D Context
Model

Input: a single-view panorama Output: abject detection Output: 30 recomstruction

Manhattan world assumption: assumes the scene consists of 3D cuboids
aligned with the three principle directions

2Assume no floating objects
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PanoContext: A Whole-Room 3D Context Model

Algorithm
© Generate a set of hypotheses for room layout and objects

© Rank these whole-room hypotheses holistically to determine the
best hypothesis
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PanoContext: A Whole-Room 3D Context Model

1. Generate a set of whole-room hypotheses
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PanoContext: A Whole-Room 3D Context Model

1. Generate a set of whole-room hypotheses

Figure : Hough transform for vanishing point detection
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1. Generate a set of whole-room hypotheses
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PanoContext: A Whole-Room 3D Context Model

1. Generate a set of whole-room hypotheses

Crientation Map () O s better GO is bener Geometric Comext (CC)

Figure : Comparison of OM and GC. OM works better on the top half of

the image, while GC provides better normal estimation at the bottom
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PanoContext: A Whole-Room 3D Context Model

1. Generate a set of whole-room hypotheses
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PanoContext: A Whole-Room 3D Context Model

1. Generate a set of whole-room hypotheses

Line segments

Surface normal estimation

Consistency Score: 0.770 0.711 0.504
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PanoContext: A Whole-Room 3D Context Model

1. Generate a set of whole-room hypotheses

Line segments

Surface normal estimation

Consistency Score:
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PanoContext: A Whole-Room 3D Context Model

1. Generate a set of whole-room hypotheses

-_!_ ,_)-\ Room layout
()
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PanoContext: A Whole-Room 3D Context Model

1. Generate a set of whole-room hypotheses

Detection-hased

Sepmentation-hased

Fitted cuboid projection

Segmentation RANSAC fiting

Figure : Two ways to generate object hypotheses
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1. Generate a set of whole-room hypotheses
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PanoContext: A Whole-Room 3D Context Model

1. Generate a set of whole-room hypotheses

Object
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PanoContext: A Whole-Room 3D Context Model

1. Generate a set of whole-room hypotheses

3D cuboid feature Classifier Label likelihood
- Size bed m——m
. Aspectratio&Area ~— > =>  desk
- Distance to walls [ sofa
chair i
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emantic Label
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1. Generate a set of whole-room hypotheses

Alicia Clark PanoContext October 17, 2014 6 /11



PanoContext: A Whole-Room 3D Context Model

1. Generate a set of whole-room hypotheses
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PanoContext: A Whole-Room 3D Context Model

1. Generate a set of whole-room hypotheses
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PanoContext: A Whole-Room 3D Context Model

2. Determine the best whole-room hypotheses

@ Train a linear SVM model to rank the whole-room hypotheses
and choose the best hypothesis

@ Want the matching cost (difference between whole-room
hypothesis and its ground truth) to be as low as possible

maiching cost = (L.7H matching cosl = 1.34 matching cost = 134

maiching cost = (L84
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Summary: How does context help?

@ Helps to determine the size of objects

T T

DPM: Wrong relative size PanoContext
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Summary: How does context help?

@ Helps to determine the size of objects
@ Helps to determine the correct number of objects

DPM: Wrong number of objects Our detection
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Summary: How does context help?

@ Helps to determine the size of objects

@ Helps to determine the correct number of objects

@ Helps the determine the relative position of objects

DPM: Wrong relative position Our detection
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Summary: How does context help?
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Precision-recall comparison with DPM

IDPM: Deformable Part Model

2Felzenszwalb et. al: Discriminative training with partially labeled data
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Contributions

@ Context model is fully in 3D
@ First annotated panorama dataset
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Questions?
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