Visualizing and Understanding Convolutional Networks

Authors: Matthew D. Zeiler and Rob Fergus New York University

Presenter: Hamid Izadinia

Vision seminar (Autumn 2014)

Contributions

- Impressive classification performance of CNN
- No clear understanding why
- Introduce network activation visualization
- Diagnostic the effect of each layer & setting
- Find an optimum architecture
- Occlusion experiments for spatial understanding

Hierarchical Convolution, Nonlinear operations (ReLU, max pooling)

Convolutional Neural Network

Deconvnet & Convnet

corners & edge/color conjunctions

similar textures

Object parts (dog face & bird legs)

Entire object with pose variation (dogs)

Object parts (dog face & bird legs)

Entire object with pose variation (dogs)

Notes

- Hierarchical representation of features
- Strong grouping within each feature map
- Larger invariance in higher layers (Layer 5)
- Selection of discriminative parts of images

Layer 2

Layer 4

Layer 5

Feature evolution during training

- Lower layers converge faster
- Higher layers start to converge later
- Sudden jump: different images result strong activation

Corresnondence analysis

	Mean Feature	Mean Feature		
	Sign Change	Sign Change		
Occlusion Location	Layer 5	Layer 7		
Right Eye	0.067 ± 0.007	0.069 ± 0.015		
Left Eye	0.069 ± 0.007	0.068 ± 0.013		
Nose	0.079 ± 0.017	0.069 ± 0.011		
Random	0.107 ± 0.017	0.073 ± 0.014		

feature layer (preserve correspondence)

higher layer

(discriminate different breeds of dog)

New architecture results

	Val	Val	Test	
Error %	Top-1	Top-5	Top-5	
Gunji et al. [12]	-	-	26.2	
DeCAF [7]	-	-	19.2	
Krizhevsky et al. [18], 1 convnet	40.7	18.2		
Krizhevsky et al. [18], 5 convnets	38.1	16.4	16.4	
Krizhevsky et al. *[18], 1 convnets	39.0	16.6		
Krizhevsky et al. *[18], 7 convnets	36.7	15.4	15.3	
Our replication of				
Krizhevsky et al., 1 convnet	40.5	18.1	——	
1 convnet as per Fig. 3	38.4	16.5		
5 convnets as per Fig. $3 - (a)$	36.7	15.3	15.3	
1 convnet as per Fig. 3 but with				
layers $3,4,5$: $512,1024,512$ maps – (b)	37.5	16.0	16.1	
6 convnets, (a) & (b) combined	36.0	14.7	14.8	
Howard [15]	-	-	13.5	
Clarifai [28]	-	-	11.7	

Classification error rate

Architecture changes

	Train	Val	Val	
Error %	Top-1	Top-1	Top-5	
Our replication of Krizhevsky et al. [18], 1 convnet	35.1	40.5	18.1	
Removed layers 3,4	41.8	45.4	22.1	
Removed layer 7	27.4	40.0	18.4	
Removed layers 6,7	27.4	44.8	22.4	
Removed layer 3,4,6,7	71.1	71.3	50.1	
Adjust layers 6,7: 2048 units	40.3	41.7	18.8	
Adjust layers 6,7: 8192 units	26.8	40.0	18.1	j
Our Model (as per Fig. 3)	33.1	38.4	16.5	
Adjust layers 6,7: 2048 units	38.2	40.2	17.6	
Adjust layers 6,7: 8192 units	22.0	38.8	17.0	inorogo oizo of
Adjust layers 3,4,5: 512,1024,512 maps	18.8	37.5	16.0	
Adjust layers 6,7: 8192 units and				convolution layers
Layers $3,4,5$: $512,1024,512$ maps	10.0	38.3	16.9]

Classification error rate