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Abstract

We propose a visual recognition system that is designed

for fine-grained visual categorization. The system is com-

posed of a machine and a human user. The user, who is un-

able to carry out the recognition task by himself, is interac-

tively asked to provide two heterogeneous forms of informa-

tion: clicking on object parts and answering binary ques-

tions. The machine intelligently selects the most informative

question to pose to the user in order to identify the object’s

class as quickly as possible. By leveraging computer vision

and analyzing the user responses, the overall amount of hu-

man effort required, measured in seconds, is minimized. We

demonstrate promising results on a challenging dataset of

uncropped images, achieving a significant average reduc-

tion in human effort over previous methods.

1. Introduction

Vision researchers have become increasingly interested
in recognition of parts [2, 8, 21], attributes [6, 11, 12], and
fine-grained categories (e.g. specific species of birds, flow-
ers, or insects) [1, 3, 14, 15]. Beyond traditionally studied
basic-level categories, these interests have led to progress
in transfer learning and learning from fewer training ex-
amples [7, 8, 10, 15, 21], larger scale computer vision al-
gorithms that share processing between tasks [15, 16], and
new methodologies for data collection and annotation [2, 4].

Parts, attributes, and fine-grained categories push the
limits of human expertise and are often inherently ambigu-
ous concepts. For example, perception of the precise lo-
cation of a particular part (such as a bird’s beak) can vary
from person to person, as does perception of whether or
not an object is shiny. Fine-grained categories are usually
recognized only by experts (e.g. the average person cannot
recognize a Myrtle Warbler), while one can recognize im-
mediately basic categories like cows and bottles.

We propose a key conceptual simplification: that humans
and computers alike should be treated as valuable but ulti-
mately imperfect sources of information. Humans are able

Q1: Click on the head 
(3.656 s) 

IMAGE CLASS: Sooty Albatross 

Ground Truth Part Locations 

Sooty Albatross? yes 

Bohemian Waxwing? no 

&ŽƌƐƚĞƌ Ɛ͛�dĞƌŶ͍�no 

Q2: Click on the body 
(3.033 s) 

Body 

Head 

Beak 
Wing 

Tail Breast 

Predicted Part Locations 

Q3: Is the bill black? 
yes (4.274 s) 

Black-footed Albatross? no 

Figure 1. Our system can query the user for input in the form of

binary attribute questions or part clicks. In this illustrative exam-

ple, the system provides an estimate for the pose and part locations

of the object at each stage. Given a user-clicked location of a part,

the probability distributions for locations of the other parts in each

pose will adjust accordingly. The rightmost column depicts the

maximum likelihood estimate for part locations.

to detect and broadly categorize objects, even when they
do not recognize them, as well as carry out simple mea-
surements such as telling color and shape; human errors
arise primarily because (1) people have limited experiences
and memory, and (2) people have subjective and percep-
tual differences. In contrast, computers can run identical
pieces of software and aggregate large databases of infor-
mation. They excel at memory-based problems like recog-
nizing movie posters but struggle at detecting and recog-
nizing objects that are non-textured, immersed in clutter, or
highly shape-deformable.

In order to achieve a unified treatment of humans and
computers, we introduce models and algorithms that ac-
count for errors and inaccuracies of vision algorithms (part
localization, attribute detection, and object classification)
and ambiguities in multiple forms of human feedback (per-
ception of part locations, attribute values, and class labels).
The strengths and weaknesses of humans and computers for

Verbal Cues for Object Recognition/Classification˚

˚Branson et al. 2010˚Sinop et al. 2007
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
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




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Runtime Standard ground truth Accurate ground truth
Global Average Global Average

Unary classifiers � 84.0 76.6 83.2± 1.5 80.6± 2.3
Grid CRF 1s 84.6 77.2 84.8± 1.5 82.4± 1.8
Robust Pn CRF 30s 84.9 77.5 86.5± 1.0 83.1± 1.5
Fully connected CRF 0.2s 86.0 78.3 88.2± 0.7 84.7± 0.7

Figure 3: Qualitative and quantitative results on the MSRC-21 dataset.

rameters. The unary potentials were learned on a separate training set that did not include the 94

accurately annotated images.

We also adopt the methodology proposed by Kohli et al. [9] for evaluating segmentation accuracy
around boundaries. Specifically, we count the relative number of misclassified pixels within a nar-
row band (“trimap”) surrounding actual object boundaries, obtained from the accurate ground truth
images. As shown in Figure 4, our algorithm outperforms previous work across all trimap widths.

PASCAL VOC 2010. Due to the lack of a publicly available ground truth labeling for the test
set in the PASCAL VOC 2010, we use the training and validation data for all our experiments. We
randomly partitioned the images into 3 groups: 40% training, 15% validation, and 45% test set. Seg-
mentation accuracy was measured using the standard VOC measure [3]. The unary potentials were
learned on the training set and yielded an average classification accuracy of 27.6%. The parameters
for the Potts potentials in the fully connected CRF model were learned on the validation set. The

(a) Trimaps of different widths (b) Segmentation accuracy within trimap

Figure 4: Segmentation accuracy around object boundaries. (a) Visualization of the “trimap” measure. (b)
Percent of misclassified pixels within trimaps of different widths.
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Object/Attribute Model
Zi = (Xi, Yi)

Xi 2 O

Yi 2 P(A)
yi =

xi =

z = {Z1 = z1, Z2 = z2, ...ZN = zN}

Per-pixel labels:

Object label:

Attribute label:

e.g.: xi =cabinet chair

e.g.: yi =; {wood}
yi = {wood, painted, textured}

Joint configuration:

Image data: I 2 R3
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 A
i,a(yi,a) = � log(PrA(yi,a|Ii))

Pixel/object likelihood term: *

Pixel/attribute likelihood term: *

Object/attribute relationship term:

 

O
i (xi) = � log(PrO(xi|Ii))

Attribute/attribute relationship term:

* TextonBoost, Shotton et al., 2009
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Edge Term
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O
i,j(xi, xj) = 1[xi 6= xj ] · g(i, j)

 A
i (yi,a, yj,a) = 1[yi,a 6= yj,a] · g(i, j)

g(i, j) = w1 exp

✓
� |pi � pj |2

2✓2µ
� |Ii � Ij |2

2✓2⌫

◆
+ w2 exp

✓
� |pi � pj |2

2✓2�

◆

Neighboring object agreement term:

Neighboring attribute agreement term:

Gaussian similarity function: *

*Krahenbuhl and Koltun, 2011

appearance kernel smoothness kernel



Efficient joint inference

*Krahenbuhl and Koltun, 2011

Qi(zi) = Q

O
i (xi)

Y

a

Q

A
i,a(yi, a)

Minimize E(z) with mean field approximation of:

using Qi where:

Given Gaussian pairwise costs, by using efficient filtering techniques,* 
computing each Qi is O(n) instead of O(n2)! 

(Where n=#pixels)

P / exp(�E(z))
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(a) source image (b) white Rc (c) center-middle Rs

Fig. 6. Response maps of Rc and Rs for attributes ‘white’ and ‘center-
middle’ respectively.

positions (top, center, and bottom) and 3 horizontal positions (left,
middle, and right). Since the structure of our verbal commands and
the candidate keywords list are fixed, the grammar definition API
of Microsoft speech SDK allows us to robustly capture user speech
commands. For more sophisticated speech recognition and parsing,
we refer the user to use the method in [Laput et al. 2013].

Color Rc and spatial Rs attributes response map. Colors are
powerful attributes that can significantly improve performance of
object classification [van de Sande et al. 2010] and detection [Shah-
baz Khan et al. 2012]. To incorporate color into our system, we
create a color response map, with the value at ith pixel, Rc(i),
defined according to color distance of this pixel to user specified
color. We also utilize the location information present in the com-
mand to localize objects. Similar to color, the spatial response map
value at ith pixel, Rs(i), is defined as the exponent of the negative
distance from indicated position. Figure 6 illustrated an example of
color position attributes generation according to user speech. The
spatial and color response maps are combined into a final overall
map R(i) = Rs(i)Rc(i) that is used to update unaries in (7) Since
rough color and position names are typically quite inaccurate, we
average the initial response values within each region generated by
the unsupervised segmentation method [Felzenszwalb and Hutten-
locher 2004] for better robustness. These response maps are uni-
formly scaled to the same range as other object classes’ unary po-
tentials for comparable influence to the learned object unary poten-
tials.

Working set selection for efficient interaction. Most images con-
tain only a few of our object classes/ semantic attributes. After the
automatic joint object-attribute segmentation stage (takes about 0.5
seconds) we have an approximate idea of the objects and attributes
contained in the input image. This allows us to work with a small
subset of object classes and attributes during the interactive stage,
further increasing system efficiency (0.2 -0.3 seconds) and reduc-
ing user ambiguity. We choose this working subset by selecting
only those object classes and attributes that have some related pix-
els in automatic parsing results, or if the class was mentioned by the
user in the verbal commands. If users mention an object that does
not belongs to any trained object classes, we set the initial unaries
of this object class for each image pixel as the average unary of all
other classes. The system then interactively segments this object
class using the correlated attributes in the user command.

4. EVALUATIONS

aNYU Dataset (attributes augmented NYU). Since per-pixel
joint object and attributes segmentation is a new problem, there
are only a few existing benchmarks for evaluating it. As also noted
by [Tighe and Lazebnik 2011], although the CORE dataset [Farhadi
et al. 2010] contains object and attributes labels, each CORE image
only contains a single foreground object class, without background

Fig. 7. Example of ground truth labeling in aNYU dataset: original image
(left) and object class and attributes labeling (right).

annotations. Our focus being more complex complicated images,
the CORE dataset is not very suitable for evaluating our method.
In order to train our model and perform quantitative evaluation,
we augment the widely used NYU indoor V2 dataset [Silberman
et al. 2012], through additional labeling of semantic attributes. Fig-
ure 7 illustrates an example of ground truth labeling of this dataset.
We use the NYU images with ground truth object class labeling,
and split the dataset to 724 raining images and 725 testing images.
The list of object classes and attributes we use can be found in
Section 3.4. We only use the RGB images from the NYU dataset
although it provides depth images. Notice that each pixels in the
ground truth images are marked with an object class label and a set
of attributes labels (on average, 64.7% of them are non empty sets).

Quantitative evaluation for automatic segmentation. We con-
duct quantitative evaluation on aNYU dataset. Our approach con-
sists of automatic joint objects-attributes image parsing and verbal
guided image parsing. We compared our approach to the state-of-
the-art CRF approaches including Associative Hierarchical CRF
approach [Ladicky et al. 2009] and Dense CRF [Krähenbühl and
Koltun 2011]. Following [Krähenbühl and Koltun 2011], we adopt
a label accuracy measure for algorithm performance which is the
ratio between number of correctly labeled pixels and total number
of pixels. As shown in Table II, our approach significantly outper-
forms the other state-of-the-art techniques. We have an average ac-
curacy score of 56.6% compared to 50.7% for the previous state of
the art.

Quantitative evaluation for verbal guided segmentation. We
also performed numerical evaluation for our verbal guided inter-
action. For this, we choose a subset of 50 images whose collective
accuracy scores are reflective of the overall data set. After verbal
refinement, our accuracy rises to 80.6% as compared to the 50+%

of automated methods. From the results displayed in Figure 8, one

Table II. Quantitative results on aNYU dataset.
Methods H-CRF DenseCRF Our-auto Our-inter
Label accuracy 51.0% 50.7% 56.9% - -
Inference time 13.2s 0.13s 0.54s 0.21s
Has attributes NO NO YES YES

Qualitative results for all 725 testing images can be found in the supplementary. H-
CRF (Hierarchical conditional random field model) approach is implemented in a pub-
lic available library ALE. Dense-CRF represents the state-of-the-art CRF approach.
Our-auto stands for our pixel-wise joint objects attributes image parsing approach. Our-
inter means our verbal guided image parsing approach. All the experiments are carried
out on a computer with Intel Xeon(E) 3.10GHz CPU and 12 GB RAM. Note that all
methods in this table use the same features. Without the attributes terms, our CRF for-
mulation will be reduced to exactly the same model as DenseCRF, showing that our
JointCRF formulation benefits from the attributes components. Our-inter only consid-
ers the time used for updating the previous results given hints from user commands.
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positions (top, center, and bottom) and 3 horizontal positions (left,
middle, and right). Since the structure of our verbal commands and
the candidate keywords list are fixed, the grammar definition API
of Microsoft speech SDK allows us to robustly capture user speech
commands. For more sophisticated speech recognition and parsing,
we refer the user to use the method in [Laput et al. 2013].

Color Rc and spatial Rs attributes response map. Colors are
powerful attributes that can significantly improve performance of
object classification [van de Sande et al. 2010] and detection [Shah-
baz Khan et al. 2012]. To incorporate color into our system, we
create a color response map, with the value at ith pixel, Rc(i),
defined according to color distance of this pixel to user specified
color. We also utilize the location information present in the com-
mand to localize objects. Similar to color, the spatial response map
value at ith pixel, Rs(i), is defined as the exponent of the negative
distance from indicated position. Figure 6 illustrated an example of
color position attributes generation according to user speech. The
spatial and color response maps are combined into a final overall
map R(i) = Rs(i)Rc(i) that is used to update unaries in (7) Since
rough color and position names are typically quite inaccurate, we
average the initial response values within each region generated by
the unsupervised segmentation method [Felzenszwalb and Hutten-
locher 2004] for better robustness. These response maps are uni-
formly scaled to the same range as other object classes’ unary po-
tentials for comparable influence to the learned object unary poten-
tials.

Working set selection for efficient interaction. Most images con-
tain only a few of our object classes/ semantic attributes. After the
automatic joint object-attribute segmentation stage (takes about 0.5
seconds) we have an approximate idea of the objects and attributes
contained in the input image. This allows us to work with a small
subset of object classes and attributes during the interactive stage,
further increasing system efficiency (0.2 -0.3 seconds) and reduc-
ing user ambiguity. We choose this working subset by selecting
only those object classes and attributes that have some related pix-
els in automatic parsing results, or if the class was mentioned by the
user in the verbal commands. If users mention an object that does
not belongs to any trained object classes, we set the initial unaries
of this object class for each image pixel as the average unary of all
other classes. The system then interactively segments this object
class using the correlated attributes in the user command.

4. EVALUATIONS

aNYU Dataset (attributes augmented NYU). Since per-pixel
joint object and attributes segmentation is a new problem, there
are only a few existing benchmarks for evaluating it. As also noted
by [Tighe and Lazebnik 2011], although the CORE dataset [Farhadi
et al. 2010] contains object and attributes labels, each CORE image
only contains a single foreground object class, without background

Fig. 7. Example of ground truth labeling in aNYU dataset: original image
(left) and object class and attributes labeling (right).

annotations. Our focus being more complex complicated images,
the CORE dataset is not very suitable for evaluating our method.
In order to train our model and perform quantitative evaluation,
we augment the widely used NYU indoor V2 dataset [Silberman
et al. 2012], through additional labeling of semantic attributes. Fig-
ure 7 illustrates an example of ground truth labeling of this dataset.
We use the NYU images with ground truth object class labeling,
and split the dataset to 724 raining images and 725 testing images.
The list of object classes and attributes we use can be found in
Section 3.4. We only use the RGB images from the NYU dataset
although it provides depth images. Notice that each pixels in the
ground truth images are marked with an object class label and a set
of attributes labels (on average, 64.7% of them are non empty sets).

Quantitative evaluation for automatic segmentation. We con-
duct quantitative evaluation on aNYU dataset. Our approach con-
sists of automatic joint objects-attributes image parsing and verbal
guided image parsing. We compared our approach to the state-of-
the-art CRF approaches including Associative Hierarchical CRF
approach [Ladicky et al. 2009] and Dense CRF [Krähenbühl and
Koltun 2011]. Following [Krähenbühl and Koltun 2011], we adopt
a label accuracy measure for algorithm performance which is the
ratio between number of correctly labeled pixels and total number
of pixels. As shown in Table II, our approach significantly outper-
forms the other state-of-the-art techniques. We have an average ac-
curacy score of 56.6% compared to 50.7% for the previous state of
the art.

Quantitative evaluation for verbal guided segmentation. We
also performed numerical evaluation for our verbal guided inter-
action. For this, we choose a subset of 50 images whose collective
accuracy scores are reflective of the overall data set. After verbal
refinement, our accuracy rises to 80.6% as compared to the 50+%

of automated methods. From the results displayed in Figure 8, one

Table II. Quantitative results on aNYU dataset.
Methods H-CRF DenseCRF Our-auto Our-inter
Label accuracy 51.0% 50.7% 56.9% - -
Inference time 13.2s 0.13s 0.54s 0.21s
Has attributes NO NO YES YES

Qualitative results for all 725 testing images can be found in the supplementary. H-
CRF (Hierarchical conditional random field model) approach is implemented in a pub-
lic available library ALE. Dense-CRF represents the state-of-the-art CRF approach.
Our-auto stands for our pixel-wise joint objects attributes image parsing approach. Our-
inter means our verbal guided image parsing approach. All the experiments are carried
out on a computer with Intel Xeon(E) 3.10GHz CPU and 12 GB RAM. Note that all
methods in this table use the same features. Without the attributes terms, our CRF for-
mulation will be reduced to exactly the same model as DenseCRF, showing that our
JointCRF formulation benefits from the attributes components. Our-inter only consid-
ers the time used for updating the previous results given hints from user commands.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month 2013.
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Fig. 6. Response maps of Rc and Rs for attributes ‘white’ and ‘center-
middle’ respectively.

positions (top, center, and bottom) and 3 horizontal positions (left,
middle, and right). Since the structure of our verbal commands and
the candidate keywords list are fixed, the grammar definition API
of Microsoft speech SDK allows us to robustly capture user speech
commands. For more sophisticated speech recognition and parsing,
we refer the user to use the method in [Laput et al. 2013].

Color Rc and spatial Rs attributes response map. Colors are
powerful attributes that can significantly improve performance of
object classification [van de Sande et al. 2010] and detection [Shah-
baz Khan et al. 2012]. To incorporate color into our system, we
create a color response map, with the value at ith pixel, Rc(i),
defined according to color distance of this pixel to user specified
color. We also utilize the location information present in the com-
mand to localize objects. Similar to color, the spatial response map
value at ith pixel, Rs(i), is defined as the exponent of the negative
distance from indicated position. Figure 6 illustrated an example of
color position attributes generation according to user speech. The
spatial and color response maps are combined into a final overall
map R(i) = Rs(i)Rc(i) that is used to update unaries in (7) Since
rough color and position names are typically quite inaccurate, we
average the initial response values within each region generated by
the unsupervised segmentation method [Felzenszwalb and Hutten-
locher 2004] for better robustness. These response maps are uni-
formly scaled to the same range as other object classes’ unary po-
tentials for comparable influence to the learned object unary poten-
tials.

Working set selection for efficient interaction. Most images con-
tain only a few of our object classes/ semantic attributes. After the
automatic joint object-attribute segmentation stage (takes about 0.5
seconds) we have an approximate idea of the objects and attributes
contained in the input image. This allows us to work with a small
subset of object classes and attributes during the interactive stage,
further increasing system efficiency (0.2 -0.3 seconds) and reduc-
ing user ambiguity. We choose this working subset by selecting
only those object classes and attributes that have some related pix-
els in automatic parsing results, or if the class was mentioned by the
user in the verbal commands. If users mention an object that does
not belongs to any trained object classes, we set the initial unaries
of this object class for each image pixel as the average unary of all
other classes. The system then interactively segments this object
class using the correlated attributes in the user command.

4. EVALUATIONS

aNYU Dataset (attributes augmented NYU). Since per-pixel
joint object and attributes segmentation is a new problem, there
are only a few existing benchmarks for evaluating it. As also noted
by [Tighe and Lazebnik 2011], although the CORE dataset [Farhadi
et al. 2010] contains object and attributes labels, each CORE image
only contains a single foreground object class, without background

Fig. 7. Example of ground truth labeling in aNYU dataset: original image
(left) and object class and attributes labeling (right).

annotations. Our focus being more complex complicated images,
the CORE dataset is not very suitable for evaluating our method.
In order to train our model and perform quantitative evaluation,
we augment the widely used NYU indoor V2 dataset [Silberman
et al. 2012], through additional labeling of semantic attributes. Fig-
ure 7 illustrates an example of ground truth labeling of this dataset.
We use the NYU images with ground truth object class labeling,
and split the dataset to 724 raining images and 725 testing images.
The list of object classes and attributes we use can be found in
Section 3.4. We only use the RGB images from the NYU dataset
although it provides depth images. Notice that each pixels in the
ground truth images are marked with an object class label and a set
of attributes labels (on average, 64.7% of them are non empty sets).

Quantitative evaluation for automatic segmentation. We con-
duct quantitative evaluation on aNYU dataset. Our approach con-
sists of automatic joint objects-attributes image parsing and verbal
guided image parsing. We compared our approach to the state-of-
the-art CRF approaches including Associative Hierarchical CRF
approach [Ladicky et al. 2009] and Dense CRF [Krähenbühl and
Koltun 2011]. Following [Krähenbühl and Koltun 2011], we adopt
a label accuracy measure for algorithm performance which is the
ratio between number of correctly labeled pixels and total number
of pixels. As shown in Table II, our approach significantly outper-
forms the other state-of-the-art techniques. We have an average ac-
curacy score of 56.6% compared to 50.7% for the previous state of
the art.

Quantitative evaluation for verbal guided segmentation. We
also performed numerical evaluation for our verbal guided inter-
action. For this, we choose a subset of 50 images whose collective
accuracy scores are reflective of the overall data set. After verbal
refinement, our accuracy rises to 80.6% as compared to the 50+%

of automated methods. From the results displayed in Figure 8, one

Table II. Quantitative results on aNYU dataset.
Methods H-CRF DenseCRF Our-auto Our-inter
Label accuracy 51.0% 50.7% 56.9% - -
Inference time 13.2s 0.13s 0.54s 0.21s
Has attributes NO NO YES YES

Qualitative results for all 725 testing images can be found in the supplementary. H-
CRF (Hierarchical conditional random field model) approach is implemented in a pub-
lic available library ALE. Dense-CRF represents the state-of-the-art CRF approach.
Our-auto stands for our pixel-wise joint objects attributes image parsing approach. Our-
inter means our verbal guided image parsing approach. All the experiments are carried
out on a computer with Intel Xeon(E) 3.10GHz CPU and 12 GB RAM. Note that all
methods in this table use the same features. Without the attributes terms, our CRF for-
mulation will be reduced to exactly the same model as DenseCRF, showing that our
JointCRF formulation benefits from the attributes components. Our-inter only consid-
ers the time used for updating the previous results given hints from user commands.
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Table III. Evaluation for verbal guided segmentation.
Methods DenseCRF Our-auto Our-inter
Label accuracy 52.1% 56.2% 80.6%

Here we show average statistics for interacting with a 50 images subset.

can see that these interactive improvements are not just numeri-
cal results but also produce object segmentations that accord more
to human intuition. In fact, many of the results appear similar to
ground truth images! All evaluated images are shown in the sup-
plementary material which bears out this trend.

Note that the final 3 images of Figure 8 (more in supplementary)
are not part of the dataset but are Internet images and thus have
no ground truth information. These images demonstrate our algo-
rithm’s ability to generalize training data for application to images
from a similar class (a system trained on indoor images will not
work on outdoor scenes) taken under un-controlled circumstances.

User study. Beyond large scale quantitative evaluation, we also test
the the plausibility of our new interaction modality by a user study.
Our user study comprised of 40 participants, mostly computer sci-
ence graduates. We study both the time efficiency and the user pref-
erence of the verbal interaction. Each user was given a one page
instruction script and 1 minute demo video to show how to use ver-
bal commands and mouse tools (line, brush, and fill tool as shown
in Figure 2) to interact with the system. After that, each user was
given 5 images and asked to improve the parsing results using dif-
ferent interaction modality: i) purely verbal, ii) purely mouse, iii)
both of them (in random order to reduce learning bias). Statistics
about average interaction time, label accuracy, and user preference
is shown in Table IV. In our experiments, participants used a small
number of (average 1.7) speech commands to roughly improve the
automatic parsing results and then use mouse interaction for further
refinements. In this desktop experiment setting, although average
preference of verbal interaction is not as good as mouse interac-
tion, it provides a viable alternative to mouse interaction and the
combination is preferred by most users. We believe that for new
generation of devices such as smart phones and Google glasses,
our verbal interaction will be even more useful as it is not easy to
perform traditional interactions on them.

Table IV. Comparison of different interaction modality.
Interaction modality Verbal Mouse Verbal + Mouse
Average interaction time (s) 6.9 28.1 11.7
Average label accuracy (%) 80.1 98.1 98.3
Average user preference (%) 12.5 17.5 70.0

Limitations. The limitations of our approach are two fold. Firstly,
our reliance on attribute handles can fail if there are no combina-
tion of attributes which can be used to improve the image parsing.
This can seen in the second and eighth image of Figure 8 where
we do not provide any verbal refined result due to lack of appropri-
ate attributes. Of the 78 images we tested (55 from dataset and 23

Internet images) only 10 (5 data-set and 5 Internet images) could
not be further refined using attributes. This represents a 13% failure
rate. Note that refinement failure does not imply overall failure and
the automatic results may still be quite reasonable as seen in Fig-
ure 8. Secondly, the vagueness of the language description prevents
our algorithm from giving 100% accuracy.

5. MANIPULATION APPLICATIONS
To demonstrate our verbal guided system’s applicability as a selec-
tion mechanism, we implemented a hands-free image manipulation
system. After scene parsing has properly segmented the desired ob-
ject, we translate the verbs into pre-packaged sets of image manipu-
lation commands. These commands include the in-painting [Barnes
et al. 2009] and alpha matting [Levin et al. 2008] needed for a seam-
less editing effect, as well as semantic specific considerations. The
list of commands supported by our system is given in Figure 5 and
results in Figure 9. The detailed effects are given below. Note that
our hands-free image manipulation is not always fully successful.
However, we believe our results are sufficient to demonstrate the
possibilities opened up by our verbal scene parsing system.

Re-Attributes. Attributes, such as color and surface properties
have a large impact on object appearance. Changing these attributes
is a typical image edit and naturally lends itself to verbal control.
Once the scene has been parsed, one can verbally specify the object
to re-attribute. As the computer has a pixel-wise knowledge of the
region the user is referring too, it can apply the appropriate image
processing operators to alter the region. Some examples are shown
in Figure 9. To change object color, we add the difference between
average color of this object and the user specified target color. For
material changing, we simply tile the target texture (e.g. wooded
texture) within the object mask. For more realistic results, we rec-
ommend to use texture transfer methods [Efros and Freeman 2001].
Note that in the current implementation, we ignore the surface nor-
mal as it is not our target contribution.

Object Deformation and Re-Arrangement. Once an object has
been accurately identified, our system supports move, size change
and repeat commands which duplicate the object in a new region
or changes its shape. In-painting is automatically carried out to re-
fill exposed regions. For greater robustness, we also define a sim-
ple, ‘gravity’ rule for the ‘cabinet’ and ‘table’ classes. This requires
small objects above these object segments (except stuffs like wall or
floor) to follow their motion. Note that without whole image scene
parsing, this ‘gravity’ rule is difficult to implement as there is a con-
cern that a back-ground wall is defined as a small object. Examples
of these move commands can be seen in Figure 9, with an example
of the ‘gravity’ constraint in Figure 9c, where the monitor follows
the cabinet’s motion.

Semantic Animation. Real word objects often have their semantic
functions. For example, a monitor could be used to display videos.
Since we can get the object region and know its semantic mean-
ing, a natural application would be animating this objects by a set
of user or predefined animations. Our system supports an ‘activate’
command. By way of example consider Figure 9, when user say-
ing ‘Activate the black shiny monitor in center-middle’, our system
automatically fits the monitor region with a rectangle shape, and
shows a video in an detected inner rectangle of the full monitor
boundary (typically related to screen area). This allows the mim-
icking real world function of the monitor class.

6. DISCUSSION
This paper presents a novel multi-label CRF formulation for effi-
cient, image parsing into per-pixel object and attribute labels. The
attribute labels act as verbal handles through which users can con-
trol the CRF, allowing verbal refinement of the image segmenta-
tion. Despite the vagueness of verbal descriptors, our system can
deliver fairly good image parsing results that correspond to hu-
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Table III. Evaluation for verbal guided segmentation.
Methods DenseCRF Our-auto Our-inter
Label accuracy 52.1% 56.2% 80.6%

Here we show average statistics for interacting with a 50 images subset.

can see that these interactive improvements are not just numeri-
cal results but also produce object segmentations that accord more
to human intuition. In fact, many of the results appear similar to
ground truth images! All evaluated images are shown in the sup-
plementary material which bears out this trend.

Note that the final 3 images of Figure 8 (more in supplementary)
are not part of the dataset but are Internet images and thus have
no ground truth information. These images demonstrate our algo-
rithm’s ability to generalize training data for application to images
from a similar class (a system trained on indoor images will not
work on outdoor scenes) taken under un-controlled circumstances.

User study. Beyond large scale quantitative evaluation, we also test
the the plausibility of our new interaction modality by a user study.
Our user study comprised of 40 participants, mostly computer sci-
ence graduates. We study both the time efficiency and the user pref-
erence of the verbal interaction. Each user was given a one page
instruction script and 1 minute demo video to show how to use ver-
bal commands and mouse tools (line, brush, and fill tool as shown
in Figure 2) to interact with the system. After that, each user was
given 5 images and asked to improve the parsing results using dif-
ferent interaction modality: i) purely verbal, ii) purely mouse, iii)
both of them (in random order to reduce learning bias). Statistics
about average interaction time, label accuracy, and user preference
is shown in Table IV. In our experiments, participants used a small
number of (average 1.7) speech commands to roughly improve the
automatic parsing results and then use mouse interaction for further
refinements. In this desktop experiment setting, although average
preference of verbal interaction is not as good as mouse interac-
tion, it provides a viable alternative to mouse interaction and the
combination is preferred by most users. We believe that for new
generation of devices such as smart phones and Google glasses,
our verbal interaction will be even more useful as it is not easy to
perform traditional interactions on them.

Table IV. Comparison of different interaction modality.
Interaction modality Verbal Mouse Verbal + Mouse
Average interaction time (s) 6.9 28.1 11.7
Average label accuracy (%) 80.1 98.1 98.3
Average user preference (%) 12.5 17.5 70.0

Limitations. The limitations of our approach are two fold. Firstly,
our reliance on attribute handles can fail if there are no combina-
tion of attributes which can be used to improve the image parsing.
This can seen in the second and eighth image of Figure 8 where
we do not provide any verbal refined result due to lack of appropri-
ate attributes. Of the 78 images we tested (55 from dataset and 23

Internet images) only 10 (5 data-set and 5 Internet images) could
not be further refined using attributes. This represents a 13% failure
rate. Note that refinement failure does not imply overall failure and
the automatic results may still be quite reasonable as seen in Fig-
ure 8. Secondly, the vagueness of the language description prevents
our algorithm from giving 100% accuracy.

5. MANIPULATION APPLICATIONS
To demonstrate our verbal guided system’s applicability as a selec-
tion mechanism, we implemented a hands-free image manipulation
system. After scene parsing has properly segmented the desired ob-
ject, we translate the verbs into pre-packaged sets of image manipu-
lation commands. These commands include the in-painting [Barnes
et al. 2009] and alpha matting [Levin et al. 2008] needed for a seam-
less editing effect, as well as semantic specific considerations. The
list of commands supported by our system is given in Figure 5 and
results in Figure 9. The detailed effects are given below. Note that
our hands-free image manipulation is not always fully successful.
However, we believe our results are sufficient to demonstrate the
possibilities opened up by our verbal scene parsing system.

Re-Attributes. Attributes, such as color and surface properties
have a large impact on object appearance. Changing these attributes
is a typical image edit and naturally lends itself to verbal control.
Once the scene has been parsed, one can verbally specify the object
to re-attribute. As the computer has a pixel-wise knowledge of the
region the user is referring too, it can apply the appropriate image
processing operators to alter the region. Some examples are shown
in Figure 9. To change object color, we add the difference between
average color of this object and the user specified target color. For
material changing, we simply tile the target texture (e.g. wooded
texture) within the object mask. For more realistic results, we rec-
ommend to use texture transfer methods [Efros and Freeman 2001].
Note that in the current implementation, we ignore the surface nor-
mal as it is not our target contribution.

Object Deformation and Re-Arrangement. Once an object has
been accurately identified, our system supports move, size change
and repeat commands which duplicate the object in a new region
or changes its shape. In-painting is automatically carried out to re-
fill exposed regions. For greater robustness, we also define a sim-
ple, ‘gravity’ rule for the ‘cabinet’ and ‘table’ classes. This requires
small objects above these object segments (except stuffs like wall or
floor) to follow their motion. Note that without whole image scene
parsing, this ‘gravity’ rule is difficult to implement as there is a con-
cern that a back-ground wall is defined as a small object. Examples
of these move commands can be seen in Figure 9, with an example
of the ‘gravity’ constraint in Figure 9c, where the monitor follows
the cabinet’s motion.

Semantic Animation. Real word objects often have their semantic
functions. For example, a monitor could be used to display videos.
Since we can get the object region and know its semantic mean-
ing, a natural application would be animating this objects by a set
of user or predefined animations. Our system supports an ‘activate’
command. By way of example consider Figure 9, when user say-
ing ‘Activate the black shiny monitor in center-middle’, our system
automatically fits the monitor region with a rectangle shape, and
shows a video in an detected inner rectangle of the full monitor
boundary (typically related to screen area). This allows the mim-
icking real world function of the monitor class.

6. DISCUSSION
This paper presents a novel multi-label CRF formulation for effi-
cient, image parsing into per-pixel object and attribute labels. The
attribute labels act as verbal handles through which users can con-
trol the CRF, allowing verbal refinement of the image segmenta-
tion. Despite the vagueness of verbal descriptors, our system can
deliver fairly good image parsing results that correspond to hu-
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