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Humans describe images in terms of nouns and adjectives while algorithms
operate on images represented as sets of pixels. Bridging this gap between
how we would like to access images versus their typical representation is
the goal of image parsing. In this paper we propose treating nouns as ob-
ject labels and adjectives as visual attributes. This allows us to formulate
the image parsing problem as one of jointly estimating per-pixel object and
attribute labels from a set of training images. We propose an efficient (in-
teractive time) solution to this problem. Using the extracted attribute labels
as handles, our system empowers a user to verbally refine the results. This
enables hands free parsing of an image into pixel-wise object/attribute la-
bels that correspond to human semantics. Verbally selecting objects of in-
terests enables a novel and natural interaction modality that can possibly be
used to interact with new generation devices (e.g., smart phones and Google
glasses). We demonstrate our system on a large number of real-world im-
ages with varying complexity and understand the tradeoffs compared to tra-
ditional mouse-based interactions using both a user study and large scale
quantitative evaluation.

Categories and Subject Descriptors: I.3.6 [Computer Graphics]: Method-
ology and Techniques—Interaction Techniques; I.4.8 [Image Processing
and Computer Vision]: Scene Analysis—Object Recognition

General Terms: image parsing, nature language control

Additional Key Words and Phrases: object class segmentation, semantic at-
tributes, multi-label CRF

1. INTRODUCTION

Humans perceive images in terms of language components of
nouns (e.g., bed, cupboard, desk) and adjectives (e.g., textured,
wooden). In contrast, pixels are nature representations for comput-
ers [Ferrari and Zisserman 2007]. Bridging this gap between our
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mental models and machine representations is the domain of image
parsing. This consists of two key components: image segmentation
and the assignment of verbal tags such as object names/attributes
to the segments. This is a difficult problem. While to date, there ex-
ist large numbers of automated image parsing techniques [Ladicky
et al. 2009; Shotton et al. 2009; Kulkarni et al. 2011; Tighe and
Lazebnik 2011; Krähenbühl and Koltun 2011], the methods often
require manual correction especially in real-world images. In this
paper, we propose an efficient approach that allows users to produce
high quality image parsing results by simply talking to the soft-
ware. This enables hands free parsing of an image into pixel-wise
object labels that are meaningful to both humans and computers.
The output could directly be consumed by new generation of de-
vices such as smart phones and Google glasses, which do not read-
ily accommodate mouse interaction. Such an interaction modality
not only enriches how we interaction with the images, but also pro-
vides important interaction ability for applications where non-touch
manipulation is crucial [Hospital 2008] or hands are busy in other
ways [Henderson 2008].

We face three technical challenges in developing verbal1 guided
scene parsing: (i) words are amorphous concepts that are difficult
to translate into pixel level meaning; (ii) how to control the overall
system using only verbal cues, and (iii) ensuring the system re-
sponds at interactive rates. To address the first problem, we treat
nouns as objects and adjectives as attributes. Using training data,
we obtain a pixel-wise hypothesis for each object and attribute, e.g.,
Figure 1(a). These are integrated through a novel, multi-label facto-
rial conditional random field (CRF) that jointly estimates both ob-
ject and attribute segmentation as seen in Figure 1(b). Not only does
this joint segmentation provide verbal handles to the underlying im-
age, the ability of object and attribute labels to reinforce each other
results in a better overall solution when compared to prior object-
only segmentation techniques [Ladicky et al. 2009; Krähenbühl and
Koltun 2011]. Our second problem of verbal control is also natu-
rally addressed by our joint object and attribute CRF. We use adjec-
tives in the users command as automatic attribute predictions and
the correlation between adjective/attributes and nouns/objects to
mutually reinforce each other. This allows the user to intuitively in-
corporate high level understanding of the current image and quickly
find discriminative visual attributes to improve scene parsing. This
can be seen in Figure 1(c) where given verbal inputs, such as ‘glass
picture’, our algorithm can re-weight the CRF’s for both glass and
picture to provide a good quality ‘picture’ segment boundary. Fi-
nally, we show our joint CRF formulation can be factorized for

1We use the term verbal as a short hand to indicate word-based, i.e., nouns,
adjectives, and verbs. We make this distinction as we focus on semantic im-
age parsing rather than speech recognition or natural language processing.
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Fig. 1. Given a source image downloaded from the Internet, our system generates multiple weak object/attributes cues (a). Using a novel multi-label CRF,
we generate per-pixel object and attribute labeling (b). Based on this output, additional verbal guidance: ‘Refine the cotton bed in center-middle’, ‘Refine
the white bed in center-middle’, ‘Refine the glass picture’, ‘Correct the wooden white cabinet in top-right to window’ allows re-weighting of CRF terms to
generate, at interactive rates, high quality scene parsing result (c). Best viewed in color.

efficient inference. This permits the use of efficient filtering based
techniques to perform inference at interactive speeds.

For evaluation, we created a system for parsing indoor scenes.
Training data was obtained from an augmented NYU v2 RGB im-
age dataset that contains 1449 indoor images. By splitting this data
into training and test sets, we performed empirical evaluation with
respect to the state of the art object segmentation algorithms. We
report a 6% improvement using our automated object/attribute seg-
mentation. Beyond these numbers, our algorithm provides critical
verbal handles for refinement and subsequent edits. This leads to a
very large (30%) improvement if verbal interaction is added. These
outputs also correspond more closely to human perception than
traditional automatic object segmentation and are more easily in-
tegrated into subsequent applications. This hypothesis is validated
by extensive evaluation results provided in the supplementary ma-
terial. Outside of the database, we find that our system generalizes
to other images of similar scene type. Thus our indoor scene pars-
ing system can work on images downloaded from the Internet using
for example, ‘bedroom’ as a search word.

While scene parsing is important in its own right, we believe
our system can enable novel human-computer scene interactions.
Specifically, by providing hands free selection mechanics to indi-
cate objects of interest to the computer, we can largely replace the
role traditionally filled by the mouse. This enables interesting im-
age editing modalities such as speech guided image manipulation
and can be integrated in smart phones and Google glasses, by mak-
ing commands such as ‘zoom in on the cupboard in the far right’
meaningful to the computer.

In summary, our main contributions are:

(1) a new interaction modality that enables language command to
guide image parsing;

(2) the development of a novel multi-label factorial CRF that can
integrate cues from multiple sources at interactive rates; and

(3) a demonstration of the potential of this approach to make con-
ventional mouse based tasks hands-free.

2. RELATED WORKS

Object class image segmentation and visual attributes. Assign-
ing an object label to each image pixel, known as object class im-
age segmentation or scene parsing, is one of computer vision’s

core problems. TextonBoost [Shotton et al. 2009], is a ground
breaking work for solving this problem. It simultaneously achieves
pixel level object class recognition and segmentation by jointly
modeling patterns of texture and their spatial layout. Several re-
finements of this method have been proposed, including con-
text information modeling [Rabinovich et al. 2007], joint factorial
CRF [Ladicky et al. 2010], dealing with partial labeling [Verbeek
and Triggs 2007], and efficient inference [Krähenbühl and Koltun
2011]. These methods deal only with noun like object labels, and
not adjectives. Further they require each pixel to take only one la-
bel. Visual attributes [Ferrari and Zisserman 2007], which describe
important semantic properties of objects, have been shown to be
an important factor for improving object recognition [Farhadi et al.
2009; Wang and Mori 2010], scene attributes classification [Patter-
son and Hays 2012], and even modeling of unseen objects [Lam-
pert et al. 2009]. So far the work on attributes has been limited to
determining the attributes of an image region contained in a rect-
angular bounding box. Recently, Tighe and Lazebnik [2011] have
addressed the problem of parsing image regions with multiple la-
bel sets. However, their inference formulation remain unaware of
object boundaries and the obtained object labeling usually spreads
the entire image. We would like to integrate both object and at-
tribute segmentation. This is a very difficult problem as, in contrast
to traditional segmentation in which only one label is predicted per
pixel, there now might be zero, one, or a set of labels predicted for
each pixel, e.g., a pixel might belong to wood, brown, cabinet, and
shiny. Our model is defined on pixels with fully connected graph
topology, which has been shown [Krähenbühl and Koltun 2011] to
be able to produce fine detailed boundaries.

Interactive image labeling. Interactive image labeling is an ac-
tive research field. This field has two distinct trends. The first in-
volves having some user defined scribbles or bounding box which
is used to assist the computer in cutting out the desired object
from image [Mortensen and Barrett 1995; Liu et al. 2009; Li et al.
2004; Blake et al. 2004; Rother et al. 2004; Lempitsky et al. 2009].
Gaussian mixture models (GMM) are often employed to model the
color distribution of foreground and background. Final results are
achieved via Graph Cut [Boykov and Jolly 2001]. While widely
used, these works do not extend naturally to verbal segmentation
as the more direct scribbles cannot be replaced with vague verbal
descriptions such as ‘glass’. The second interaction type involves
adding a human-in-the-loop [Branson et al. 2010; Wah et al. 2011].
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Such works focus on recognition of image objects rather than seg-
mentation. They resolve ambiguities by prompting the user for sim-
ple inputs. For example, if recognizing birds, they will seek user
guidance through questions such as ‘are the feather’s red?’ or ‘cir-
cle the beak’. Our work can be considered a verbal guided human-
in-the-loop semantic segmentation. However, our problem is more
difficult than the usual human-in-the-loop problems because of the
ambiguity of words (as opposed to binary answers to questions) and
the requirement for fine pixel wise labeling (as opposed to catego-
rization). This precludes usage of a simple tree structure for query-
ing and motivates our more sophisticated, interactive CRF model
to resolve the ambiguities.

Semantic-based region selection. Manipulation in the semantic
space is a powerful tool and there are a number of approaches
that treat this as an image-retrieval problem through some user
annotation. An example is Photo Clip Art [Lalonde et al. 2007]
which allows users to directly insert new semantic objects into ex-
isting images, by retrieving a suitable objects from image based
object database. Chen et al.[2009] who further extended this work
to sketch based image composition by automatically extracting and
selecting suitable objects candidates from Internet images. Zhou
et al.[2010] proposed to reshape human image regions by fitting
an appropriate 3D human models. Zheng et al.[2012] partially re-
covered the 3D of man-made environments, enabling intuitive non-
local editing. However, none of these methods, attempt interac-
tive verbal guided image parsing which has the added difficulty of
an image containing multiple objects and verbal commands being
vague guidance cues.

Speech interface. Speech interfaces are deployed when mouse
based interactions are infeasible or cumbersome. Although re-
search on integrating speech interfaces into software started in the
1980s [Bolt 1980], it is only recently that such interfaces have
been widely deployed, (e.g. Apple’s Siri, PixelTone [2013] and
Google voice search). However, most speech interface research is
focused on natural language processing and to our knowledge there
has been no prior work addressing image region selection through
speech. The speech interface that most resembles our work is Pix-
elTone [2013], which allows users to attach object labels to scrib-
ble based segments. These labels allow subsequent voice reference.
Partly inspired by PixelTone, we have developed an entirely hands
free parsing of an image into pixel-wise object/attribute labels that
correspond to human semantics. This provides a verbal option for
selecting objects of interest and is potentially, a powerful additional
tool for speech interfaces.

3. SYSTEM DESIGN

Our goal is a voice based image parsing system that is simple, fast,
and most importantly, intuitive, i.e. allowing an interaction mode
similar to our everyday language. After the user loads an image, our
system automatically assigns an object class label (nouns) and sets
of attributes labels (adjectives) to each pixel. Using these results,
our system selects a subset of objects and attributes that are most
related to the image. These are shown in Figure 2. These coarse
segments provide the bridge between image pixels and verbal com-
mands. Given the various segments, the user can use his/her high
level knowledge about the image to strengthen or weaken various
object and attribute classes. For example, the initial results in Fig-
ure 2 might prompt the user to realize that the bed is missing from
the segmentation but the ‘cotton’ attribute is well defined. Thus,
the simple command ‘Refine the cotton bed in center-middle’ will
strengthen the association between cotton and bed, allowing a bet-

Fig. 2. User interface of our system (labeling thumbnail view).

ter segmentation of the bed. Note that the final object boundary
does not follow the original attribute segments because verbal infor-
mation is incorporated as soft cues which are interpreted by a CRF
within the context of the other information. Algorithm 1 presents
a high level summary of our verbal guided image parsing pipeline,
with details explained in the rest of this section.

Once objects have been semantically segmented, it becomes nat-
ural to manipulate them using verb-based commands such as move,
change, etc. As a demonstration of this concept, we encapsulate a
series of rule based image processing commands needed to execute
an action, allowing hands-free image manipulation (c.f. Section 5).

3.1 Mathematical Formulation

We formulate simultaneous semantic image segmentation for ob-
ject class and attributes as a multi-label CRF that encodes both ob-
ject and attribute classes, and their relations with each other. This
is a combinatorially large problem. If each pixel takes one of the
16 object labels and a subset of 8 different attribute labels, there
are (16× 28)640×480 possible solutions to consider for an image of
resolution 640 × 480. Direct optimization over such a huge num-
ber of variables is currently computational infeasible without some
choice of simplification. The problem becomes still more compli-
cated if correlation between attributes and objects are taken into

Algorithm 1 Verbal guided image parsing.
Input: an image and learned weak hypothesis (c.f. Figure 1).
Output: an object and a set of attributes labels for each pixel.
Initialize: object/attributes potentials for each pixel as weak hy-
pothesis values; find pairwise potentials by (3).
for Automatic inference iterations i = 1 to 5 do

Update potentials using (5) and (6) for all pixels simultane-
ously using efficient filtering technique;

end for
for each verbal input do

update potentials (c.f. Section 3.3) according to user input;
for Verbal interaction iterations i = 1 to 3 do

Update potentials using (5) and (6) as before;
end for

end for
Get results from potentials: at any stage, labels for each pixel
could be found by selecting the largest object potential, or com-
paring the positive and negative attributes potentials.
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Table I. List of annotations
Symbols Explanation (use RV to represent random variable)
O Set of object labels: O = {o1, o2, ..., oK}
A Set of attribute labels: A = {a1, a2, ..., aM}
Xi A RV for object label of pixel i ∈ {1, 2, ...,N}, Xi ∈ O
Yi,a A RV for attribute a ∈ A of pixel i, Yi,a ∈ {0, 1}
Yi A RV for a set of attributes {a : Yi,a = 1} of pixel i
Zi A RV Zi = (Xi, Yi) of pixel i
Z RVs of CRF: Z = {Z1, Z2, ..., ZN}

zi, xi, yi Configuration/assignment of RVs Zi,Xi, Yi
ψi Unary cost of CRF
ψij Pairwise cost of CRF

ψOi (xi) Cost of Xi taking value xi ∈ O
ψAi,a(yi,a) Cost of Yi,a taking value yi,a ∈ {0, 1}
ψOAi,o,a Cost of conflicts between correlated attributes and objects
ψA
i,a,a′ Cost of correlated attributes taking distinct indicators
ψOij Cost of similar pixels with distinct object labels
ψAi,j,a Cost of similar pixels with distinct attribute labels

account. In this paper, we propose using a factorial CRF frame-
work [Sutton et al. 2004] to model correlation between objects and
attributes.

A multi-label CRF for dense segmentation of objects and at-
tributes can be defined over random variables Z , where each
Zi = (Xi, Yi) represents object and attributes labels of the cor-
responding image pixel i (c.f. Table I for a list of annotations).
Xi will take value from a set of object labels O. Rather than tak-
ing values directly in the set of attribute labels A, Yi take values
in the power-set of the attributes. E.g. for a pixel yi = {wood},
yi = {wood, painted, textured}, and yi = ∅ are all validate as-
signments. We denote by z a joint configuration of these random
variables, and I the observed image data. A fully connected multi-
label CRF model can be defined as the sum of unary and pairwise
cost terms:

E(z) =
∑
i

ψi(zi) +
∑
i<j

ψij(zi, zj), (1)

where i and j are pixel indices that range from 1 to N . The unary
cost term ψi(zi) measures the cost of assigning an object label and
a set of attributes label to pixel i, considering learned pixel clas-
sifiers for both objects and attributes, as well as learned object-
attribute and attribute-attribute correlations. The pairwise cost term
ψij(zi, zj) encourages similar and nearby pixels to take consistent
labels.

To optimize (1) we break it down into multi-class and binary
subproblems using factorial CRF framework [Sutton et al. 2004],
while modeling correlations between object and attributes. The
unary term can be further split as:

ψi(zi) = ψOi (xi) +
∑
a

ψAi,a(yi,a) +
∑
o,a

ψOAi,o,a(xi, yi,a)

+
∑
a6=a′

ψAi,a,a′(yi,a, yi,a′) (2)

where the cost of pixel i taking object label xi is ψOi (xi) =
−log(Pr(xi)), with probability derived from trained pixel classi-
fier (TextonBoost [Shotton et al. 2009]). For each of the M at-
tributes, we train independent binary TextonBoost classifier, and
set ψAi,a(yi,a) = −log(Pr(yi,a)) based on the output of this clas-
sifier. Finally, the terms ψOAi,o,a(xi, yi,a) and ψAi,a,a′(yi,a, yi,a′) are
the costs of correlated objects and attributes with distinct indica-

Wood
Painted
Cotton
Glass

Glossy
Plastic

Shiny
Textured

W
oo

d
P

ai
nt

ed
C

ot
to

n
G

la
ss

G
lo

ss
y

P
la

st
ic

S
hi

ny
Te

xt
ur

ed

U
nk

no
w

n
W

al
l

Fl
oo

r
P

ic
tu

re
C

ab
in

et
C

ha
ir

Ta
bl

e
W

in
do

w
C

ei
lin

g
La

m
p

C
ou

nt
er

B
ed

B
lin

ds
B

oo
ks

he
lf

C
ur

ta
in

M
on

ito
r

A
ttr

ib
ut

es

Attributes Objects

Fig. 3. Visualization of the ROA, RAA terms used to encode object-
attribute and attribute-attribute relationships.

tors. They are defined as:

ψOAi,o,a(xi, yi,a) = [[xi = o] 6= yi,a] · λOAROA(o, a)
ψAi,a,a′(yi,a, yi,a′) = [yi,a 6= yi,a′ ] · λARA(a, a′)

where Iverson bracket, [.], is 1 for a true condition and 0 oth-
erwise, ROA(o, a) and and RA(a, a′) are derived from learned
object-attribute and attribute-attribute correlations respectively.
Here ψOAi,o,a(xi, yi,a) and ψAi,a,a′(yi,a, yi,a′) penalize inconsistent
object-attributes and attribute-attribute labels by the cost of their
correlation value. These correlations are obtained from the φ coef-
ficient [Tsoumakas et al. 2009] learnt from the labeled dataset. A
visual representation of these correlations are given in Figure 3.

The pairwise cost term ψij(zi, zj) can be factorized as object
label consistent term and attributes label consistent terms:

ψij(zi, zj) = ψOij(xi, xj) +
∑
a

ψAi,j,a(yi,a, yj,a), (3)

where the pairwise term takes the form of Potts model [Potts 1952]:

ψOij(xi, xj) = [xi 6= xj ] · g(i, j)
ψAi,j,a(yi,a, yj,a) = [yi,a 6= yj,a] · g(i, j)

We define g(i, j) in terms of similarity between color vectors Ii, Ij
and position values pi, pj :

g(i, j) = w1 exp(−
|pi − pj |2

2θ2µ
− |Ii − Ij |

2

2θ2ν
)

+w2 exp(−
|pi − pj |2

2θ2γ
) (4)

All the parameters λOA, λA, w1, w2, θµ, θν , and θγ are learnt via
cross validation. The factorial multi-label CRF model with our ver-
bal guided interaction is illustrated in Figure 4.

3.2 Efficient Joint Inference with Factorized
Potentials

An important requirement of our system is that it is near real time,
to allow for continuous user interaction. Recently there has been
a breakthrough in the mean field solution of random fields, based
on recent advances in filtering based methods in computer graph-
ics [Adams et al. 2010; Krähenbühl and Koltun 2011]. Here we
briefly sketch how this inference can be extended to multi label
CRFs.

This involves finding a mean field approximation Q(z) of the
true distribution P ∝ exp(−E(z)), by minimizing the KL-
divergence D(Q||P ) among all distributions Q that can be ex-
pressed as a product of independent marginals,Q(z) =

∏
iQi(zi).
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Fig. 4. Verbal guided interactive object class and attributes segmentation
in a Factorial CRF framework.

Given the form of our factorial model, we can factorize Q further
into a product of marginals over multi-class object and binary at-
tribute variables. Hence we take Qi(zi) = QOi (xi)

∏
aQ

A
i,a(yi,a),

where QOi is a multi-class distribution over the object labels, and
QAi,a is a binary distribution over {0, 1}.

Given this factorization, we can express the required mean-field
updates (c.f. [Koller and Friedman 2009]) as:

QOi (xi = o) =
1

ZOi
exp{−ψOi (xi)

−
∑
i 6=j

QOj (xj = o)(−g(i, j))

−
∑

a∈A,b∈{0,1}

QAi,a(yi,a = b)ψOAi,o,a(o, b)} (5)

QAi,a(yi,a = b) =
1

ZAi,a
exp{−ψAi,a(yi,a)

−
∑
i 6=j

QAj,a(yj,a = b)(−g(i, j))

−
∑

a′ 6=a∈A,b′∈{0,1}

QAi,a′(yi,a′ = b′)ψAi,a,a′(b, b
′)

−
∑
o

QOi (xi = o)ψOAi,o,a(o, b)} (6)

where ZOi and ZAia are per-pixel object and attributes normalization
factors. As shown in (5) and (6), directly applying these updates for
all pixels requires expensive sum operations, whose computational
complexity is quadratic to the number of pixels. Given that our pair-
wise cost take Potts forms modulated by a linear combination of
Gaussian kernels as described in (4), simultaneously finding these
sums for all pixels can be achieved at a complexity linear to the
number of pixels using efficient filtering techniques [Adams et al.
2010; Krähenbühl and Koltun 2011].

3.3 Attributes/Verbal Interaction

We consider how attributes/verbal interactions can change our
unary potentials in (2). Consider the long hypothetical command
(in practice we seldom use such long commands) ‘Refine the
white textured cotton bed in center-middle’, The system under-
stands there should be a bed object in the ‘center middle’. The
‘cotton-textured’, ‘cotton-bed’ and ‘textured-bed’ correlation ma-

trices should be increased and there should be more weight given
to white pixels.

We enforce correlation cues by updating the correlation matrices
given in (2). Thus, R̃OAde = λ1 + λ2R

OA
de , R̃OAdf = λ1 + λ2R

OA
df

and R̃AAef = λ3 + λ4R
AA
ef where d is the bed object index, e the

cotton attribute index , f the textured attribute index, λi are tuning
parameters. and ˜ indicates the updated term.

Location and color information is incorporated by creating a re-
sponse map R (c.f. Section 3.4 for how to get color and spatial
response maps). We use these response maps to update the corre-
sponding object and attribute unary potentials, ψOi (xi), ψ

A
i,a(yi,a)

in (2). Specifically, we set

ψ̃Oi (xi) = ψOi (.)−
λ5

R(i)
, if xi = d (7)

where ψOi (xi) is unary for objects. Attribute unaries are updated
in a similar manner and share the same λ1 parameter. The λ1,..,5

parameters are manually set. After these unaries are reset, the in-
ference is re-computed to obtain the updated segmentation result.

3.4 Implementation Details

Speech parsing. We use the freely available Microsoft speech SDK
[2012] to convert a spoken command into text. Our paper’s focus
is not on natural language interpretation. Hence, we use a simple
speech grammar, with small number of fixed commands. Figure 5
illustrates the 7 commands currently supported.

Supported object classes (Obj) include the 16 keywords in our
training object class list (unknown, wall, floor, picture, cabinet,
chair, table, window, ceiling, lamp, counter, bed, blinds, book-
shelf, curtain and monitor). We also support 4 material attributes
(MA) keywords (wooden, cotton, glass, plastic) and 4 surface
attributes (SA) keywords (painted, textured, glossy, shiny). For
color attributes (CA), we support the 11 basic color names, sug-
gested by Linguistic study [Berlin and Kay 1991]. These colors
names/attributes include: black, blue, brown, grey, green, orange,
pink, purple, red, white and yellow. As also observed by [Laput
et al. 2013], humans are not good at describing precise locations but
can easily refer to some rough positions in the image. We currently
support 9 rough positional attributes (PA), by combining 3 vertical

Basic definitions:
MA, SA, CA, PA, are attributes keywords in Section 3.4.
Obj is an object class name keyword in Section 3.4.
ObjDes := [CA] [SA] [MA] Obj [in PA]
DeformType ∈ {‘lower’, ‘taller’, ‘smaller’, ‘larger’}
MoveType ∈ {‘down’, ‘up’, ‘left’, ‘right’}

Verbal commands for image parsing:
Refine the ObjDes.
Correct the ObjDes as Obj.

Verbal commands for manipulation:
Activate the ObjDes.
Make the ObjDes DeformType.
Move the ObjDes MoveType.
Repeat the ObjDes and move MoveType.
Change the ObjDes [from Material/Color] to Material/Color.

Fig. 5. Illustration of supported verbal commands for image parsing and
subsequent image manipulation (Section 5). The brackets ‘[]’ represent op-
tional words.
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(a) source image (b) white Rc (c) center-middle Rs

Fig. 6. Response maps of Rc and Rs for attributes ‘white’ and ‘center-
middle’ respectively.

positions (top, center, and bottom) and 3 horizontal positions (left,
middle, and right). Since the structure of our verbal commands and
the candidate keywords list are fixed, the grammar definition API
of Microsoft speech SDK allows us to robustly capture user speech
commands. For more sophisticated speech recognition and parsing,
we refer the user to use the method in [Laput et al. 2013].

Color Rc and spatial Rs attributes response map. Colors are
powerful attributes that can significantly improve performance of
object classification [van de Sande et al. 2010] and detection [Shah-
baz Khan et al. 2012]. To incorporate color into our system, we
create a color response map, with the value at ith pixel, Rc(i),
defined according to color distance of this pixel to user specified
color. We also utilize the location information present in the com-
mand to localize objects. Similar to color, the spatial response map
value at ith pixel, Rs(i), is defined as the exponent of the negative
distance from indicated position. Figure 6 illustrated an example of
color position attributes generation according to user speech. The
spatial and color response maps are combined into a final overall
map R(i) = Rs(i)Rc(i) that is used to update unaries in (7) Since
rough color and position names are typically quite inaccurate, we
average the initial response values within each region generated by
the unsupervised segmentation method [Felzenszwalb and Hutten-
locher 2004] for better robustness. These response maps are uni-
formly scaled to the same range as other object classes’ unary po-
tentials for comparable influence to the learned object unary poten-
tials.

Working set selection for efficient interaction. Most images con-
tain only a few of our object classes/ semantic attributes. After the
automatic joint object-attribute segmentation stage (takes about 0.5
seconds) we have an approximate idea of the objects and attributes
contained in the input image. This allows us to work with a small
subset of object classes and attributes during the interactive stage,
further increasing system efficiency (0.2 -0.3 seconds) and reduc-
ing user ambiguity. We choose this working subset by selecting
only those object classes and attributes that have some related pix-
els in automatic parsing results, or if the class was mentioned by the
user in the verbal commands. If users mention an object that does
not belongs to any trained object classes, we set the initial unaries
of this object class for each image pixel as the average unary of all
other classes. The system then interactively segments this object
class using the correlated attributes in the user command.

4. EVALUATIONS

aNYU Dataset (attributes augmented NYU). Since per-pixel
joint object and attributes segmentation is a new problem, there
are only a few existing benchmarks for evaluating it. As also noted
by [Tighe and Lazebnik 2011], although the CORE dataset [Farhadi
et al. 2010] contains object and attributes labels, each CORE image
only contains a single foreground object class, without background

Wall:

Painted

Chair:

Wooden

Floor: Wooden

Windows:

glass

Picture

Blinds

Table

Fig. 7. Example of ground truth labeling in aNYU dataset: original image
(left) and object class and attributes labeling (right).

annotations. Our focus being more complex complicated images,
the CORE dataset is not very suitable for evaluating our method.
In order to train our model and perform quantitative evaluation,
we augment the widely used NYU indoor V2 dataset [Silberman
et al. 2012], through additional labeling of semantic attributes. Fig-
ure 7 illustrates an example of ground truth labeling of this dataset.
We use the NYU images with ground truth object class labeling,
and split the dataset to 724 raining images and 725 testing images.
The list of object classes and attributes we use can be found in
Section 3.4. We only use the RGB images from the NYU dataset
although it provides depth images. Notice that each pixels in the
ground truth images are marked with an object class label and a set
of attributes labels (on average, 64.7% of them are non empty sets).

Quantitative evaluation for automatic segmentation. We con-
duct quantitative evaluation on aNYU dataset. Our approach con-
sists of automatic joint objects-attributes image parsing and verbal
guided image parsing. We compared our approach to the state-of-
the-art CRF approaches including Associative Hierarchical CRF
approach [Ladicky et al. 2009] and Dense CRF [Krähenbühl and
Koltun 2011]. Following [Krähenbühl and Koltun 2011], we adopt
a label accuracy measure for algorithm performance which is the
ratio between number of correctly labeled pixels and total number
of pixels. As shown in Table II, our approach significantly outper-
forms the other state-of-the-art techniques. We have an average ac-
curacy score of 56.6% compared to 50.7% for the previous state of
the art.

Quantitative evaluation for verbal guided segmentation. We
also performed numerical evaluation for our verbal guided inter-
action. For this, we choose a subset of 50 images whose collective
accuracy scores are reflective of the overall data set. After verbal
refinement, our accuracy rises to 80.6% as compared to the 50+%
of automated methods. From the results displayed in Figure 8, one

Table II. Quantitative results on aNYU dataset.
Methods H-CRF DenseCRF Our-auto Our-inter
Label accuracy 51.0% 50.7% 56.9% - -
Inference time 13.2s 0.13s 0.54s 0.21s
Has attributes NO NO YES YES

Qualitative results for all 725 testing images can be found in the supplementary. H-
CRF (Hierarchical conditional random field model) approach is implemented in a pub-
lic available library ALE. Dense-CRF represents the state-of-the-art CRF approach.
Our-auto stands for our pixel-wise joint objects attributes image parsing approach. Our-
inter means our verbal guided image parsing approach. All the experiments are carried
out on a computer with Intel Xeon(E) 3.10GHz CPU and 12 GB RAM. Note that all
methods in this table use the same features. Without the attributes terms, our CRF for-
mulation will be reduced to exactly the same model as DenseCRF, showing that our
JointCRF formulation benefits from the attributes components. Our-inter only consid-
ers the time used for updating the previous results given hints from user commands.
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(a) source image (b) DenseCRF (c) our object class (d) our attributes (e) verbal refined (f) ground-truth

Fig. 8. Qualitative comparisons. Note that after verbal refinement, our algorithm provides results that correspond closely to human scene understanding. This
is also reflected in the numerical results tabulated in Table III. The last three images are from the Internet and lack ground truth. For the second and eight
image, there were no attribute combinations which would improve the result, hence there is no verbal refinement.
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Table III. Evaluation for verbal guided segmentation.
Methods DenseCRF Our-auto Our-inter
Label accuracy 52.1% 56.2% 80.6%

Here we show average statistics for interacting with a 50 images subset.

can see that these interactive improvements are not just numeri-
cal results but also produce object segmentations that accord more
to human intuition. In fact, many of the results appear similar to
ground truth images! All evaluated images are shown in the sup-
plementary material which bears out this trend.

Note that the final 3 images of Figure 8 (more in supplementary)
are not part of the dataset but are Internet images and thus have
no ground truth information. These images demonstrate our algo-
rithm’s ability to generalize training data for application to images
from a similar class (a system trained on indoor images will not
work on outdoor scenes) taken under un-controlled circumstances.

User study. Beyond large scale quantitative evaluation, we also test
the the plausibility of our new interaction modality by a user study.
Our user study comprised of 40 participants, mostly computer sci-
ence graduates. We study both the time efficiency and the user pref-
erence of the verbal interaction. Each user was given a one page
instruction script and 1 minute demo video to show how to use ver-
bal commands and mouse tools (line, brush, and fill tool as shown
in Figure 2) to interact with the system. After that, each user was
given 5 images and asked to improve the parsing results using dif-
ferent interaction modality: i) purely verbal, ii) purely mouse, iii)
both of them (in random order to reduce learning bias). Statistics
about average interaction time, label accuracy, and user preference
is shown in Table IV. In our experiments, participants used a small
number of (average 1.7) speech commands to roughly improve the
automatic parsing results and then use mouse interaction for further
refinements. In this desktop experiment setting, although average
preference of verbal interaction is not as good as mouse interac-
tion, it provides a viable alternative to mouse interaction and the
combination is preferred by most users. We believe that for new
generation of devices such as smart phones and Google glasses,
our verbal interaction will be even more useful as it is not easy to
perform traditional interactions on them.

Table IV. Comparison of different interaction modality.
Interaction modality Verbal Mouse Verbal + Mouse
Average interaction time (s) 6.9 28.1 11.7
Average label accuracy (%) 80.1 98.1 98.3
Average user preference (%) 12.5 17.5 70.0

Limitations. The limitations of our approach are two fold. Firstly,
our reliance on attribute handles can fail if there are no combina-
tion of attributes which can be used to improve the image parsing.
This can seen in the second and eighth image of Figure 8 where
we do not provide any verbal refined result due to lack of appropri-
ate attributes. Of the 78 images we tested (55 from dataset and 23
Internet images) only 10 (5 data-set and 5 Internet images) could
not be further refined using attributes. This represents a 13% failure
rate. Note that refinement failure does not imply overall failure and
the automatic results may still be quite reasonable as seen in Fig-
ure 8. Secondly, the vagueness of the language description prevents
our algorithm from giving 100% accuracy.

5. MANIPULATION APPLICATIONS

To demonstrate our verbal guided system’s applicability as a selec-
tion mechanism, we implemented a hands-free image manipulation
system. After scene parsing has properly segmented the desired ob-
ject, we translate the verbs into pre-packaged sets of image manipu-
lation commands. These commands include the in-painting [Barnes
et al. 2009] and alpha matting [Levin et al. 2008] needed for a seam-
less editing effect, as well as semantic specific considerations. The
list of commands supported by our system is given in Figure 5 and
results in Figure 9. The detailed effects are given below. Note that
our hands-free image manipulation is not always fully successful.
However, we believe our results are sufficient to demonstrate the
possibilities opened up by our verbal scene parsing system.

Re-Attributes. Attributes, such as color and surface properties
have a large impact on object appearance. Changing these attributes
is a typical image edit and naturally lends itself to verbal control.
Once the scene has been parsed, one can verbally specify the object
to re-attribute. As the computer has a pixel-wise knowledge of the
region the user is referring too, it can apply the appropriate image
processing operators to alter the region. Some examples are shown
in Figure 9. To change object color, we add the difference between
average color of this object and the user specified target color. For
material changing, we simply tile the target texture (e.g. wooded
texture) within the object mask. For more realistic results, we rec-
ommend to use texture transfer methods [Efros and Freeman 2001].
Note that in the current implementation, we ignore the surface nor-
mal as it is not our target contribution.

Object Deformation and Re-Arrangement. Once an object has
been accurately identified, our system supports move, size change
and repeat commands which duplicate the object in a new region
or changes its shape. In-painting is automatically carried out to re-
fill exposed regions. For greater robustness, we also define a sim-
ple, ‘gravity’ rule for the ‘cabinet’ and ‘table’ classes. This requires
small objects above these object segments (except stuffs like wall or
floor) to follow their motion. Note that without whole image scene
parsing, this ‘gravity’ rule is difficult to implement as there is a con-
cern that a back-ground wall is defined as a small object. Examples
of these move commands can be seen in Figure 9, with an example
of the ‘gravity’ constraint in Figure 9c, where the monitor follows
the cabinet’s motion.

Semantic Animation. Real word objects often have their semantic
functions. For example, a monitor could be used to display videos.
Since we can get the object region and know its semantic mean-
ing, a natural application would be animating this objects by a set
of user or predefined animations. Our system supports an ‘activate’
command. By way of example consider Figure 9, when user say-
ing ‘Activate the black shiny monitor in center-middle’, our system
automatically fits the monitor region with a rectangle shape, and
shows a video in an detected inner rectangle of the full monitor
boundary (typically related to screen area). This allows the mim-
icking real world function of the monitor class.

6. DISCUSSION

This paper presents a novel multi-label CRF formulation for effi-
cient, image parsing into per-pixel object and attribute labels. The
attribute labels act as verbal handles through which users can con-
trol the CRF, allowing verbal refinement of the image segmenta-
tion. Despite the vagueness of verbal descriptors, our system can
deliver fairly good image parsing results that correspond to hu-
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(a) Re-Attributes (material) (b) Re-Attributes (color)

(c) Object deformation (d) Semantic animation

(e) Re-Arrangement (move) (f) Re-Arrangement (repeat and move)

Fig. 9. Verbal guided image manipulation applications. The commands used are: (a) ‘Refine the white wall in bottom-left’ and ‘Change the floor to wooden’,
(b) ‘Change the yellow wooden cabinet in center-left to brown’, (c) ‘Refine the glossy monitor’ and ‘Make the wooden cabinet lower’, (d) ‘Activate the black
shiny monitor in center-middle’, (e) ‘Move the picture right’, (f) ‘Repeat the picture in top-left left’. See supplemental video for a live capture of the editing
process.

man intuition. Such hands free parsing of an image provides verbal
methods to select objects of interest that provides important new
iteration modality which enrich the way we interact with images.
Both user study and large scale quantitative evaluation verifies the
usefulness of our verbal parsing method. Our verbal interaction is
especially suitable for new generation devices such as smart phones
and Google glasses. To encourage research in this direction, we will
release source code and benchmark datasets.

Future work. Possible future directions might include extending
our method to video analysis and inclusion of stronger physics
based models. Interestingly our system can often segment objects
that are not in our initial training set by relying solely on their at-
tribute descriptions. In the future, we might like to carefully select
a canonical set of attributes to strengthen this functionality.
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