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Abstract—We present FaceWarehouse, a database of 3D facial
expressions for visual computing applications. We use Kinect,
an off-the-shelf RGBD camera, to capture 150 individuals
aged 7–80 from various ethnic backgrounds. For each person,
we captured the RGBD data of her different expressions,
including the neutral expression and 19 other expressions
such as mouth-opening, smile, kiss, etc. For every RGBD
raw data record, a set of facial feature points on the color
image such as eye corners, mouth contour and the nose tip
are automatically localized, and manually adjusted if better
accuracy is required. We then deform a template facial mesh
to fit the depth data as closely as possible while matching
the feature points on the color image to their corresponding
points on the mesh. Starting from these fitted face meshes, we
construct a set of individual-specific expression blendshapes
for each person. These meshes with consistent topology are
assembled as a rank-three tensor to build a bilinear face
model with two attributes, identity and expression. Compared
with previous 3D facial databases, for every person in our
database, there is a much richer matching collection of
expressions, enabling depiction of most human facial actions.
We demonstrate the potential of FaceWarehouse for visual
computing with four applications: facial image manipulation,
face component transfer, real-time performance-based facial
image animation, and facial animation retargeting from video
to image.

Index Terms—face modeling, facial animation, face database,
mesh deformation, RGBD camera

I. Introduction

Face models are of great interest to many researchers
in computer vision and computer graphics. Different face
models are widely used in many applications, including
face replacement, face component transfer, image ma-
nipulation, face recognition, facial expression recognition
and expression analysis. In recent years, 3D face models
became popular in increasingly complex visual computing
applications due to the 3D nature of human faces, crucial
in solutions to problems caused by ambiguities and occlu-
sions. For instance, the latest approaches to face component
transfer [1], video face replacement [2], single-view hair
modeling [3] are all based on 3D face models.

There exist numerous excellent 3D face databases for var-
ious purposes. Blanz and Vetter’s 3D morphable model [4]
built on an example set of 200 3D face models describing
shapes and textures. They then derived a morphable face
model, applicable in 3D face reconstruction from a single
image. Vlasic et al. [5] presented a multilinear model

of 3D face meshes, which contains two separate face
models: a bilinear model containing 15 subjects with the
same ten facial expressions; a trilinear one containing 16
subjects with five visemes in five different expressions. The
multilinear face model can be linked to a face-tracking
algorithm to extract pose, expression and viseme parameters
from monocular video or film footage, and drive a detailed
3D textured face mesh for a different target identity. Yin
et al. [6] developed a 3D facial expression database, which
includes both prototypical 3D facial expression shapes and
2D facial textures of 100 subjects with seven universal
expressions (i.e., neutral, happiness, surprise, fear, sadness,
disgust and anger). The expression database can be used
in facial expression recognition and analysis. All of the
above face databases contain faces with different identities
and expressions, but their expression spaces are not diverse
enough for many applications in visual computing, such
as the real-time performance-based facial image animation
shown in this paper.

We introduce FaceWarehouse, a database of 3D facial
expression models for visual computing. With an off-the-
shelf RGBD depth camera, raw datasets from 150 indi-
viduals aged 7–80 from several ethnicities were captured.
For each person, we captured her neutral expression and
19 other expressions, such as mouth-open, smile, angry,
kiss, and eye-shut. For each RGBD raw data record, a set
of facial feature points on the color image such as eye
corners, mouth boundary and nose tip are automatically
localized, and manually adjusted if the automatic detection
is inaccurate. We then deform a template facial mesh to the
depth data as closely as possible while matching the feature
points on the color image to their corresponding locations
on the mesh. Starting from the 20 fitted meshes (one neutral
expression and 19 different expressions) of each person,
the individual-specific expression blendshapes of the person
are constructed. This blendshape model contains 46 action
units as described by Ekman’s Facial Action Coding System
(FACS) [7], which mimics the combined activation effects
of facial muscle groups. It provides a good compromise
between realism and control, and adequately describes most
expressions of the human face. Owing to the consistent
topology of the meshes in the data, we can subsequently
organize all the blendshapes of different persons as a rank-
three tensor, and construct a bilinear face model with two
attributes, identity and expression, through a tensor version
of singular value decomposition (SVD).
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FaceWarehouse can be used in a wide range of applications
in visual computing. In particular, the constructed bilinear
face model is used to estimate the identity and expression
parameters for faces in images and videos, based on which
four applications were developed in this paper. The first ap-
plication, facial image manipulation, allows users to change
geometric facial attributes, such as the size of mouth,
the length of face and ethnicity in a single face image.
The second application is face component transfer. Given
two images of the same person with different expressions,
we can transfer local components such as the mouth or
eyes from one image to the other, keeping the transferred
components compatible with the overall face shape and
other components to give the synthetic image a natural
look. The third is real-time performance-based facial image
animation, allowing a user to animate a face image of
a different person by performing in front of an RGBD
camera, all in real time. The final application is facial
animation retargeting from video to image. Given video
footage with a continuously changing face and a still face
image as input, we transfer the head motion and facial
expression in the video to the still face in the image.

The main contribution of this paper is an extensive face
expression database, which contains 150 persons with 47
different facial expressions for each person. To the best of
our knowledge, FaceWarehouse is the most comprehensive
3D facial expression database for visual computing to date,
providing data sorely needed in a multitude of applications
in both computer graphics and computer vision. We will
make it publicly available upon the publication of this
paper. In addition, we describe how to use the constructed
bilinear face model for face identity and expression esti-
mation in facial images and videos. The estimations are
accurate enough to support a wide range of applications
including animating still face images using real-time RGBD
data as well as video footage. We can generate visually
plausible facial animations for any portrait image, including
those shown in previous work.

In the rest of the paper, we first review some related work
in the areas of face model database acquisition and face
manipulation applications in Section II. In Section III, we
elaborate on the pipeline for the construction of FaceWare-
house. Section IV presents several applications showcasing
the potential of FaceWarehouse.

II. Related Work

In this section, we first discuss related work on 2D and 3D
face model databases. Some of them focused on neutral ex-
pression models, while others contain multiple expressions
for dynamical applications. We then discuss applications
involving face and head modeling, including face transfer,
reanimation, performance tracking in images and video.

Face model databases.As face databases are of great
value in face-related research areas in both modeling and
validation of methods, many researchers built their own

face database for specific applications. Some of these face
databases are composed only of 2D face images, while
others contain 3D shape information. Some of them contain
only one static expression (the neutral face), which is
mostly used in applications involving only static faces, e.g.
face recognition; while others also contain other expression-
s, which can be used in face motion-based applications,
e.g., face expression recognition and tracking, and face
reanimation in still images and video sequences. In the
following, we only review several representative existing
works, and refer readers to the comprehensive surveys by
Gross [8] and Ying et al. [6].

In computer vision, 2D face databases have been widely
used as training and/or validation data in face detection and
recognition and facial expression analyses. Yin et al.. [6]
mentioned that although some systems have been suc-
cessful, performance degradation remains when handling
expressions with large head pose rotation, occlusion and
lighting variations. To address the issue, they created a 3D
facial expression database. They used a 3D face imaging
system to acquire the 3D face surface geometry and surface
texture of each subject with seven emotion-related universal
expressions. Such a database with few expressions for each
person works fine for their face expression recognition and
analysis, but may fall short of the diversity required in some
applications of visual computing, such as those shown in
this paper.

Blanz and Vetter [4] model variations in facial attributes
using dense surface geometry and color data. They built
the morphable face modelto describe the procedure of
constructing a surface that represents the 3D face from a
single image. Furthermore, they supplied a set of controls
for intuitive manipulation of appearance attributes (thin/fat,
feminine/masculine).

Vlasic et al.. [5] proposed multilinear models in facial
expression tracking and transferring. They estimate a model
from a data set of three-dimensional face scans that vary
in expression, viseme, and identity. This multilinear model
decouples the variation into several modes (e.g., identity,
expression, viseme) and encodes them consistently. They
estimate the model from two geometric datasets: one with
15 identities each performing the same 10 expressions,
and the other with 16 identities, each with 5 visemes in
5 expressions (16× 5× 5). To construct their multilinear
models from datasets with missing data, they propose to
fill the missing combination (e.g., of identity, viseme and
expression) by an expectation-maximization approach.

All of these databases contain face data with different
identities, and some even with different expressions. How-
ever, they may still be inadequate for facial expression
parameterization orrig. Due to their excellent performance,
facial rigs based on blendshape models are particularly
popular in expressing facial behaviors. Ekman’s Facial
Action Coding System [7] helps decompose facial behavior
into 46 basic action units. Li et al. [9] developed a method
for generating facial blendshape rigs from a set of example
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Fig. 1: The generation process of the individual-specific expression blendshapes for one person.

poses. Our database contains the full set of 46 expression
blendshapes which comprise the linear blendshape model
for each person

Face manipulation applications.Face manipulation is a
convenient tool for artists and animators to create new facial
images or animations from existing materials, and hence of
great research interest in computer animation. In the 2D
domain, Leyvand et al. [10] enhance theattractivenessof
human faces in frontal photographs. Given a face image as
the target, Bitouk et al. [11] find a most similar face in a
large 2D face database and use it to replace the face in the
target image to conceal the identity of the face. Joshi et
al. [12] improve the quality of personal photos by using a
person’s favorite photographs as examples.

Recently, 3D face models have become increasingly popu-
lar in complex face manipulation. Blanz et al. [13] reani-
mate the face in a still image or video by transferring mouth
movements and expression based on their 3D morphable
model [4] and a common expression representation. They
also exchange the face between images across large differ-
ences in viewpoint and illumination [14]. Given a photo of
person A, Shlizerman et al. [2] seek a photo of person B
with similar pose and expression from a large database of
images on the Internet. Yang et al. [1] derive an expression
flow and alignment flow from the 3D morphable model be-
tween source and target photos, capable of transferring face
components between the images naturally and seamlessly.
Shilizerman et al. [15] generate face animations from large
image collections. Dale et al. [16] replace the face in a
portrait video sequence through a 3D multilinear model [5].
We demonstrate that FaceWarehouse can provide a rich
collection of expression data to facilitate and improve these
applications.

III. FaceWarehouse

In this section, we describe our pipeline for construct-
ing FaceWarehouse and the techniques involved. We use
Microsoft’s Kinect System to capture the geometry and
texture information of various expressions of each subject.
We register the frames from different views of the same

expression to generate a smooth, low-noise depth map.
The depth maps, together with the RGB images, are used
to guide the deformation of a template mesh to generate
the expression meshes. Once we obtain all the expression
meshes of a single subject, we generate her individual-
specific expression blendshapes. Fig. 1 shows the entire
pipeline of processing one subject. Finally, the expression
blendshapes from all subjects constitute our face database.
As we have all the face models in a consistent topology, we
can build a bilinear face model with two attributes, identity
and expression.

A. Data capture

A Kinect system is used as our only capturing device,
capable of producing 640×480 2D images and depth maps
at 30 frames per second. With the low-cost small-size
acquisition device, we can capture a person’s face in a non-
intrusive way, as the person being captured is not required
to wear any physical markers or be staged in a controlled
environment.

For each person, we capture 20 different expressions: the
neutral expression and 19 other specific expressions. These
expressions are chosen to be common facial motions that
vary widely among different individuals. They contain
combinations of the facial muscle group action units in
FACS and some asymmetric patterns. Specifically, they
are mouth stretch, smile, brow lower, brow raiser, anger,
jaw left, jaw right, jaw forward, mouth left, mouth right,
dimpler, chin raiser, lip puckerer, lip funneler, sadness,lip
roll, grin, cheek blowing and eyes closed. We have a guide
face mesh for each specific expression,G0 for the neutral
expression, andG1,G2, . . . ,G19 for the other expressions.
The guide models are shown to each subject sequentially,
and the person is asked to imitate each expression and
rotate her head within a small angle range while keeping
the expression fixed, assisted by our staff when necessary.

The advantages of the chosen Kinect system, such as low-
cost and mobility, come at the price of low quality in the
captured data plagued by severe noise. To reduce noise,
we aggregate multiple scans by using the Kinect Fusion
algorithm [17] to register the 3D information of a specific
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expression of a person from different views (captured in
the head rotation sequence), and generate a smooth, low-
noise depth map. Kinect Fusion works by fusing all the
depth data streamed from the camera into a single global
implicit surface model, which is then ray traced to generate
a smooth depth map for a chosen frame.

B. Expression mesh and individual-specific
blendshape generation

From smooth depth maps and corresponding color images,
we generate the associated expression meshes. For each ex-
pression data, we first use Active Shape Model (ASM) [18]
to locate 74 feature points on the color image, including the
face contour, eye corners, brow boundary, mouth boundary,
nose contour and tip. The automatically detected locations
may not be accurate in all cases, especially for those
expressions with relatively large deformation (e.g., mouth-
open and smile). We thus require a small amount of user
interaction to refine the positions of some feature points–
the user interaction is as simple as drag-and-dropping the
feature points on the image.

The 74 feature points are divided into two categories: the
mi internal feature points (i.e., features on eyes, brows,
nose and mouth, c.f. the green points in Fig. 3) located
inside the face region, and themc contour feature points
(the yellow points in Fig. 3). Given the correspondence
between the color image and the depth map, we can easily
get the corresponding 3D positions from the depth map
for internal feature points. We classify all contour feature
points in the image as 2D.

Neutral expression.We first generate the face mesh for the
neutral expression by using a two-step approach. Blanz and
Vetter’s morphable model is automatically fitted to produce
an initial matching mesh. Then a mesh deformation algo-
rithm is employed to refine this mesh for better matching
between the depth map and the feature points.

Blanz and Vetter’s morphable model performs Principal
Component Analysis (PCA) on 200 neutral face models.
Any face can be approximated as a linear combination
of the average face andl leading PCA vectors:V =
F̄ +∑l

i=1αiFi , where F̄ is the average face, andFi is the
i-th PCA vector. Our goal is to compute the coefficientsαi

to get the closest mesh in the PCA space. The energy to
be minimized for feature point matching is defined as

Ef ea=
mi

∑
j=1

∥

∥vi j − c j
∥

∥

2
+

mc

∑
k=1

∥

∥M pro jvck − sk
∥

∥

2
. (1)

The first term corresponds to internal feature matching.c j

is the 3D position of thej-th feature point, whilevi j is its
corresponding vertex on the meshV. The indices for these
internal feature points on the mesh are simply marked on
the average face in our implementation. The second term
is for contour feature matching.sk is a 2D feature point on
the color image,vck is its corresponding 3D feature vertex
on the meshV, andM pro j is the projection matrix of the

camera. We use the method described in [1] to determine
the indices of the contour feature points on the meshV: We
first project the face region ofV to the image to get the 2D
face mesh. Then we find its convex hull to get the points
along the contour of the mesh. Among these points, we find
the nearest one for each contour feature on the image, and
assign it as the corresponding feature point on the mesh.

The energy term for matching the depth map is defined as

Epos=
nd

∑
j=1

∥

∥

∥
vd j −p j

∥

∥

∥

2
, (2)

wherevd j is a mesh vertex,p j is the closest point tovd j in
the depth map, andnd is the number of the mesh vertices
that have valid correspondences in the depth map. Note
that not all mesh vertices are accounted for in this energy
term as some vertices are occluded and cannot get valid
positions from the depth map.

According to [4], another energy term is necessary to
regularize the PCA coefficientsαi , based on the estimated
probability distribution of a shape defined byαi ,

p(α)∼ exp[−
1
2 ∑(αi/σi)

2]. (3)

whereσ2
i is the eigenvalues of the face covariance matrix

from PCA. Let Λ = diag(1/σ2
1 ,1/σ2

2 , ...1/σ2
L), then the

Tikhonov regularization energy term is defined as

Ecoe f =
1
2

αT Λα. (4)

Putting the three energy terms together, the total energy is
defined as

E1 = ω1Ef ea+ω2Epos+ω3Ecoe f, (5)

whereω1, ω2 and ω3 balance the different energy terms.
We chooseω1 = 2,ω2 = 0.5 and ω3 = 1 in our database
construction. This energy can be minimized via a sequence
of least squares optimizations. The least squares step is
iterated 5 to 8 times in our construction. Note that between
consecutive iterations, the mesh vertices corresponding to
contour feature points in Eq. (1) and each mesh vertex’s
closest point in Eq. (2) need to be updated.

After an initial mesh is computed, it is refined by a
Laplacian-based mesh deformation algorithm [19]. Similar
to the optimization process described above, the deforma-
tion algorithm tries to minimizeEf ea and Epos to match
the feature points and the depth map. A Laplacian energy
is used as the regularization term,

Elap =
n

∑
i=1

∥

∥

∥

∥

Lvi −
δi

|Lvi |
Lvi

∥

∥

∥

∥

2

, (6)

where L is the discrete Laplacian operator based on the
cotangent form introduced in [20],δi is the magnitude of
the original Laplacian coordinate before deformation, and
n is the vertex number of the mesh. The mesh deformation
energy is then computed as

E2 = ω ′
1Ef ea+ω ′

2Epos+ω ′
3Elap. (7)



5

Fig. 2: Two examples of neutral mesh fitting. From left
to right: input depth map; initial mesh produced by the
morphable model; refined mesh using mesh deformation;
error map of the initial mesh; error map of the refined mesh.
The root-mean-square (RMS) errors for the first example
are 1.19mm (initial) and 0.39mm (refined), and for the
second example: 1.49mm (initial) and 0.41mm (refined).

In our construction, we choseω ′
1 = 0.5, ω ′

2 = ω ′
3 = 1. This

energy can be minimized using the inexact Gauss-Newton
method as described in [19].

Mesh deformation helps fine-tune the initial guess. Fig. 2
show two examples of neutral mesh generation. From the
figure, we can see that the refined process in the second
step drastically reduces the mismatch, resulting in a better
matching face mesh.

Other expressions.Once we obtain the face meshS0 for
the neutral expression, we proceed to compute the face
meshesS1,S2, ...S19 for the other 19 expressions. We first
use the deformation transfer algorithm described in [21] to
generate the initial meshes for these expressions so that
the deformation fromS0 to Si (i = 1. . .19) mimics the
deformation from the guide modelG0 to Gi as much as
possible. The same mesh deformation algorithm described
above is then used to refine these initial meshes.

The mesh deformation algorithm uses all facial feature
points on the color images as additional position con-
straints. We found in our experiments that these constraints
not only greatly reduce the matching errors between the
image feature points and their corresponding mesh vertices
but also help avoid local minima in the deformation process
and improve the matching between the mesh and the depth
map, as demonstrated in Fig. 3.

Individual-specific expression blendshapes.From the
expression meshes generated for each person, we can
use the example-based facial rigging algorithm proposed
by Li et al. [9] to build a linear blendershape model
representing the facial expression space of this person.
The result is a neutral face plus 46 FACS blendshapes
B= {B0,B1, ...,B46} for each person, capable of replicating
most human expressions through linear interpolation of the
blendshapes. In other words, an expressionH of the person
can be expressed by a linear combination of the blend-
shapes:H = B0+∑46

i=1 αi(Bi −B0), whereαi is the weight
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(a) Without feature point constraints, the deformed mesh may not
match the captured data well, such as the mouth in this example.
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matching error, for both the feature points of color image and the
depth map.

Fig. 3: The effect of feature point constraints in mesh
deformation.

measuring how much the neutral faceB0 is deformed
toward Bi . The rigging algorithm begins with a generic
blendshape modelA = {A0,A1, ...,A46}, and employs an
optimization procedure to minimize the difference between
each expression meshSj and the linear combination ofBi

with the known weights for expressionj as well as the
difference between the relative deformation fromB0 to Bi

and that fromA0 to Ai . See [9] for details of the algorithm.

C. Blinear face model

We obtained the facial geometry of 150 persons and each
contains the same 47 facial expressions (1 neutral and 46
others) by using the procedure described in the previous
section. All these face meshes share the same topology
and thus the same number of vertices. Similar to [5], we
can assemble the dataset into a rank-three (3-mode)data
tensor T(11K vertices× 150 identities× 47 expressions).
The data tensor is arranged in an obvious fashion, so that
each slice with varying second factor and fixed third factor
contains face vectors with the same expression (for different
identities), and each slice with varying third factor and fixed
second factor contains the same identity (with different
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expressions).

We use theN-mode singular value decomposition (SVD)
to decompose the tensor. As most visual applications only
need to synthesize the entire face, we perform the decom-
position without factoring along the vertex mode (mode-1).
The N-mode SVD process is represented as

T ×2 UT
id ×3 UT

exp=C, (8)

whereT is the data tensor andC is called thecore tensor.
Uid and Uexp are orthonormal transform matrices, which
contain the left singular vectors of the 2nd mode (identity)
space and 3rd mode (expression) space respectively.N-
mode SVD helps “rotate” the data tensor and sort the
variance ofC in decreasing order for each mode. This
allows us to truncate the insignificant components ofC
and get a reduced model of the dataset to approximate the
original data tensor as

T ≃Cr ×2 Ǔid ×3 Ǔexp, (9)

whereCr is the reduced core tensor produced by keeping
the top-left corner of the original core tensor.Ǔid andǓexp

are the truncated matrices fromUid andUexp by removing
the trailing columns.

We callCr the bilinear face model for FaceWarehouse. With
Cr , any facial expression of any person can be approximated
by the tensor contraction

V =Cr ×2 wT
id ×3 wT

exp, (10)

where wid and wexp are the column vectors of identity
weights and expression weights, respectively.

Fig. 4 shows an example of fitting a face mesh using
different numbers of components in the core tensor. We
found that choosing 50 knobs for identity and 25 knobs
for expression provides satisfactory approximation results
in all of our applications.

IV. Applications
FaceWarehouse can be employed in various visual com-
puting applications. In this section, we show four example
applications: facial image manipulation, face component
transfer, real-time performance-based facial image anima-
tion, and facial animation retargeting from video to image.
Refer to the supplementary material for the video demo.

A. Facial image manipulation

In this application, the user can manipulate facial attributes,
such as the length of face, the size of mouth, the height
of nose and ethnicity, directly in the single input face
image. As we only have the two attributes of identity
and expression in FaceWarehouse, we first learn a linear
regression model that maps a set of user-specified facial
attributes to the identity attribute in the bilinear face model.
We then compute the identity and expression weights in our
bilinear face model for the input face image. The changes
to the user-defined attributes are mapped to the identity

20 30 40 50 60

15

20

25

30

Iden.

Expr.

Fig. 4: Fitting a facial expression mesh with our bilinear
model with different numbers of components. Top left is the
input mesh, and the following shows the fitting results using
different numbers of components in identity attribute and
expression attribute.

weights via the linear regression model, and then a new
3D face mesh is reconstructed based on these weights. This
new 3D face mesh is finally rendered with color textures
from the input image to generate a new face image with
the relevant features changed.

Facial feature analysis. To analyze facial attributes used
in natrual language (e.g., the width of mouth, the length of
face), we use the algorithm of multi-variate linear regres-
sion [22] to map these attributes to the identity attribute
in our bilinear face model. For every person captured in
FaceWarehouse, we have his (or her) identity weights (ak-
D vectorwid) and l user-specified attributes{ f1, f2, ..., fl}
which are calculated from the face geometry of this person.
We need to construct ak× (l +1) matrix M f ea mapping
these user-specified attributes to the identity weights,

M f ea[ f1, ..., fl ,1]
T = wid . (11)

We assemble the vectors of identity weights and the vectors
of user-defined attributes of all 150 persons into two matri-
ces, i.e.,W id (k×150) andF ((l +1)×150) respectively.
The mapping matrixM f ea can be solved as

M f ea= W idF+ (12)

where F+ is the left pseudoinverse ofF, i.e., F+ =
FT(FFT)−1.

With M f ea, we can directly map the changes of the user-
specified attributes∆f to the changes of identity weights
∆wid , i.e., ∆wid = M f ea∆f. By adding∆wid to the identity
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Fig. 5: Facial image manipulation. We can edit the facial attributes in the still image. Left: the original image. Top row,
from left to right: more Caucasian-like, bigger mouth, wider nose, longer face. Bottom row, from left to right: higher
nose, smaller mouth, narrower nose, shorter face.

weights of the input face image, we can generate a new
face with related attributes changed appropriately.

Fitting 3D face mesh to image. To calculate a 3D face
mesh using our bilinear model that can match the face
image well, we first localize a set of facial feature points in
the image in the same way as we suggest in Section III-B.
Then we estimate the rigid transformation of the face model
as well as the identity and expression weights in the bilinear
face model to minimize the matching error between the
feature points on the image and the face mesh.

Following previous work [5], we assume that the camera
projection is weakly perspective. Every mesh vertexvk is
projected to the image space as

pk = sRvk+ t (13)

where the rigid transformation consists of a scaling factor
s, a 3D rotation matrixR and a translation vectort. The
mesh vertex positionvk can be computed from the bilinear
face model according to Eq. (10).

The matching error of the feature points on the image and
the mesh is defined as

Ek =
1
2
· ‖sR(Cr ×2 wT

id ×3 wT
exp)

(k)+ t − s(k)‖2, (14)

wheres(k) is the feature point positions on the image.

This energy can be easily minimized using the coordinate-
descent method as described in [5].

B. Face component transfer

This application performs face component copy-and-paste
to modify the expression in a facial image. It takes two
images of the same person as input: one is the target photo
that contains an undesirable expression and the other one
is the reference image that contains the desired expression,

such as smiling. As modifying expression causes global
changes in one’s face, if we directly copy the local com-
ponent from the reference image and paste/blend it to the
target, the transferred component may not be compatible
with the face contour or other components in the target
image. A better approach proposed by Yang et al. [1] is
to use 3D face models to guide the component transfer
process. We follow this approach and use our bilinear face
model to synthesize 3D face models matching the input
images.

As the two input images represent the same person, their
identity weights wT

id should be the same. We therefore
need to compute the unified identity weightswT

id and the
expression weights (wT

exp−1 andwT
exp−2) for the two images.

This can be done by minimizing the following energy

E joint
k =

1
2

2

∑
j=1

‖sjR j(Cr ×2 wT
id ×3 wT

exp− j)
(k)+ t j − s(k)j ‖2.

(15)

We first use the method described in the last section to
compute an initial estimation of the identity and expression
weights for each image separately. Then we fixwexp−1

and wexp−2 and compute the unified identity weightswT
id

by minimizing Eq. (15). Nextwexp−1 and wexp−2 are
solved again separately withwT

id fixed. The latter two steps
are performed iteratively until the fitting results converge.
In our experiments, three iterations produce satisfactory
results.

The two fitted face meshes can be reconstructed as

V1 =Cr ×2 wT
id ×3 wT

exp−1,

V2 =Cr ×2 wT
id ×3 wT

exp−2.
(16)

Following [1], we use the two face meshes to calculate
a 2D expression flow in the target image, which warps
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Target

Ref.

Fig. 6: Face component transfer. First column: two input images of the same person with different expressions. Second
column: fitted meshes. Third column: target image warped by the expression flow and the reference image warped by
the alignment flow. Fourth column: the transferred result byour method. Last column: the result produced by the 2D
copy-and-paste method.

(a) Reference (b) Target (c) Transfer

Fig. 7: An example of face component transfer with an
asymmetric expression.

the target face to match the desired expression. A 2D
alignment flow is also calculated from these two meshes to
warp the reference face to an appropriate size and position
for transferring. Finally we select a crop region from the
warped reference image and blend it to the warped target
image to generate the transferred result. Fig. 6 shows one
mouth-open example; our method produces a much more
realistic result than the 2D copy-and-paste method. Fig. 7
shows another example with an asymmetric expression.

C. Real-time performance-based facial image
animation

In this application, a still face image is animated in real time
by the facial performance of an arbitrary user (see Fig. 8).
Again, we first use the algorithm described in Section IV-A
to compute the identity and expression weights to produce
a 3D face mesh matching the feature points in the input
image. We then generate the individual-specific expression
blendshapes for this face mesh using the bilinear face mod-
el. Finally, we implement the Kinect-based facial animation
system to capture the user’s facial expressions expressed as
blendshape coefficients, which are then transferred to the
individual face model fitted for the image.

Assuming that the identity weights computed from the face
image arewid , we can construct the expression blendshapes

Fig. 8: Using a Kinect camera to track a user’s facial
expressions, which are then transferred to a still facial
image, all in real time. This application allows a user
to create an image avatar from a single facial image of
another person.

for the person of identitywid as follows

Bi =Cr ×2 wid ×3 (Ǔexpdi), 0≤ i ≤ 47, (17)

where Ǔexp is the truncated transform matrix for the ex-
pression mode as described in Section III-C, anddi is the
expression weight vector with value 1 for thei-th element
and 0 for other elements.

The generated expression blendshapes, which we callimage
blendshapes, can then be used to generate new expressions
of the same identity by setting different coefficientsβi for
these blendshapes:V = B0+∑46

i=1 βi(Bi −B0).

We then use a real-time performance-based facial animation
system [23] to capture the dynamic expressions of an
arbitrary user, who has another set of expression blend-
shapes (U = {U0,U1, ...,U46}) constructed by the system
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Fig. 9: Facial animation retargeting from video to image.

during preprocessing. The system is able to track the rigid
transformation of the user’s head and the facial expressions
expressed in the format of blendshapes coefficientsβi ,
which are then easily transferred to image blendshapes
B to synthesize facial animations that mimic the user’s
performance.

To render the image animations in a realistic manner, the
hair and teeth need to be processed in a proper way. We
use a single-view hair modeling technique [3] to reconstruct
a strand-based 3D hair model, which is then transformed
together with the face mesh and rendered into the image.
The teeth are handled using the algorithm described in [23].
Starting from a generic teeth model, we deform it to match
the 3D face model. During animation, the motion of the
teeth is easy to simulate: the upper jaw teeth are connected
and moved with the upper part of the face while the lower
jaw teeth are connected and moved with the tip of the chin.

D. Facial animation retargeting from video to
image

The final application takes a video clip containing a contin-
uously changing face as input, extracts the coefficients of
expression blendshapes in all frames and retargets them to
a still face image (see Fig. 9). It needs to estimate the face
identity and construct the expression blendshapes for both
the face video and face image. The expression coefficients
fitted for the face video are then transferred to the face
image.

The face identity and expression of the image can be
estimated using the algorithm described in Section IV-A.
For the video, we need to fit a unified face identity for
all frames using a simple extension of the joint fitting
algorithm described in Section IV-B. We first locate the
facial feature points on all frames, and then extend the
joint fitting algorithm to multiple frames to account for the
matching errors in all frames. After the face identities of
the video and image are fixed, we use the method described
in Section IV-C to construct their expression blendshapes.

V. Conclusion and Future Work

We introduce FaceWarehouse, a 3D facial expression
database for visual computing applications. The database
contains the facial geometry and texture of 150 subjects,
each with 20 expressions. This raw dataset is used to con-
struct 47 expression blendshapes for each person, capable
of representing most expressions of human faces. All these
blendshapes are then assembled into a rank-three tensor,
which is decomposed to build a bilinear face model. This
bilinear face model can be used to accurately estimate face
identities and expressions for facial images and videos. We
demonstrate its relevance in a wide range of applications,
such as facial image manipulation, face component transfer,
real-time performance-based facial image animation, and
facial animation retargeting from video to image. We expect
many other applications to benefit from FaceWarehouse
in the future, such as face tracking in motion capture,
expression recognition and analysis.

Due to the low precision in depth information provided by
the current Kinect system, our face data do not contain
detailed facial geometries such as wrinkles. In the future,it
is possible to employ capturing techniques for high-quality
facial geometry (e.g., [24], [25], [26]) to acquire data with
finer details.
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Fig. 10: Several expressions of five persons captured in FaceWarehouse. For each expression, we showed the color image,
the depth map and the reconstructed mesh.
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