3D Shape Regression for Real-time Facial Animation

Chen Cao, Yanlin Weng, Stephen Lin, Kun Zhou

FaceWarehouse: a 3D facial Expression Database for Visual Computing

Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, Kun Zhou

Zhejiang University MSRA

Presented by Shu Liang

(Black-on-white slides are Shu's)

Facial Animation

- Facial animation is widely used in films & games
- Performance-based facial animation

Avatar 2009

© 21st Century Fox

L.A. Noire 2011
© Team Bondi

Related Work

• Performance-based Facial Animation

Related Work

• Performance-based Facial Animation

Related Work

• Performance-based Facial Animation

Consumer RGBD Camera

[Weise et al. 2011]

[Bouaziz et al. 2013]

[Li et al. 2013]

Our Goal

• Real-time facial animation for average users

Our Goal

- Real-time facial animation for ordinary users
 - Single web camera
 - Robust
 - Fast motions
 - Large rotations
 - Exaggerated expressions
 - General environments
 - Indoors and outdoors
 - High performance
 - Mobile devices

• One-time Preprocess

• Runtime computation

3D Face Shape Regression: Preprocess

- Data Collection
 - Image capturing & labeling
 - Blendshapes generation
 - Shape reconstruction
 - Training data generation
- Training

Preprocess: Image Capturing & Labeling

Captured Images

[Cao et al. 2012] + Manual Adjustment Labeled 2D Feature Points

Preprocess: Blendshapes Generation

[Cao et al. 2013]

150 identities × 47 expressions

Fitting

User-specific Blendshapes

FaceWarehouse

- RGBD images of 150 individuals captured by Kinect
- Aged 7-80 from various ethnic backgrounds
- Different expressions, one neutral and 19 other expressions.

Mesh deformation

Neutral expression

Other expressions

Sumner et. al 2006]

[Huang et. al 2006]

 S_0 , S_1 , S_2 ... S_{19} for 20 expressions.

- Individual-specific expression blendshapes
 - Example-based facial rigging algorithm:

An expression H of the person can be:

$$H = B_0 + \sum_{i=1}^{46} \alpha_i (B_i - B_0) \ \{ \mathsf{B_{1}}, \mathsf{B_{2}}, ... \mathsf{B_{46}} \}$$
 46 FACS blendshapes

- Begins with a generic blendshape model $A = \{A_0, A_1, ..., A_{46}\}$
- Optimized by minimizing the difference between S_j and linear combination of B_i with known weight for expression j, the difference between the deformation from B_0 to B_i and that from A_0 to A_i .

Bilinear face model

A rank-three data tensor T. (11K vertices × 150 identities × 47 expressions)
Used N-mode SVD to decompose the tensor.

$$V = C_r \times_2 \mathbf{w}_{id}^T \times_3 \mathbf{w}_{exp}^T,$$

Preprocess: 3D Shape Reconstruction

Preprocess: Training Data Generation

• Data Augmentation

Translations $\{\mathbf{M}_{ja}, 1 \leq j \leq m \}$

 $(I_i,\mathbf{M}_{2a},S_{i2})$

 $(I_i,\mathbf{M}_m^a,S_{im})$

Preprocess: Training Data Generation

Training Set Construction

3D Shape

Space

 $(I_{i},\mathbf{M}_{ja},S_{ij})$

Find $G \cdot H$ guessed shapes

Training Data

- Appearance vector
- Primitive regressor: fern

• Summary: two-level boosted regressor

• Appearance vector

• Primitive regressor

$$\delta Sb = \frac{1}{1 + \beta/|\Omega_b|} \frac{1}{|\Omega_b|} \frac{1}{|\Omega_b|}$$

$$Sic = Sic + \delta Sb, i \in \Omega b$$

• Summary: two-level boosted regression

Level One

Tracked Mesh

3D Facial Shape

Video Stream

Digital Avatar

3D Face Shape Regression: Runtime

- Initialization: first frame
- Following frames
 - Find guessed shapes
 - Two-level boosted regression

Runtime: Initialization

• First frame

Face Detection
[Viola and Jones 2001]

2D Feature Alignment [Cao et al. 2012]

3D Shape Recovery

Runtime: Following Frames

Find guessed shape

Runtime: Following Frames

• Two-level boosted regression

Tracking & Animation

Similar to [Weise et al. 2011]

Evaluation: Regressed shape vs. Kinect 3D vs. 2D vs. Optical Flow

Figure 8: Comparison of depth from 3D shape regression and ground truth from Kinect.

RMSE	< 3 pixels	< 4.5 pixels	< 6 pixels
3D Regression	73.3%	80.8%	100%
2D Regression	50.8%	64.2%	72.5%
Optical Flow	20.8%	24.2%	41.7%

Table 1: Percentages of frames with RMSE less than given thresholds for the tested video sequence.

Live Demo

• <u>Demo</u>

Evaluation: Regressed shape vs. Kinect

Evaluation: 3D vs. 2D vs. Optical Flow

Our 3D Regression

2D Regression

Optical Flow Based

More Results: Outdoor

Our System on Mobile Device

Timings

- Preprocess: 45 mins
 - Capture: 10 mins
 - User interaction: 25 mins
 - Training: 10 mins
- Runtime: less than 15 ms
 - Regression: 5 ms
 - Tracking & Animation: 8 ms

Limitations

- Much training data
 - 60 head poses and facial expressions
- Dramatic lighting changes

Summary

- 3D facial performance capture from 2D video
 - Regression-based approach
 - Robust: fast motions, large rotations, exaggerated expressions
 - General environments: indoors and outdoors
 - High performance: real-time

- Future work
 - Handle lighting variations
 - Reduce training data

Acknowledgement

- Face capture: Marion Blatt, Steffen Toborg
- Anonymous reviewers
- Funding
 - NSFC (No.61003145 and No.61272305)
 - 973 program of China (No.2009CV320801)
- FaceWarehouse Data: http://gaps-zju.org/facewarehouse/

Thank you!

Preprocess: Camera Calibration

Blendshape Generations:

$$E =$$

 $i=1 \ k=1$

$$\mathbf{Q} = \begin{pmatrix} f & 0 & u_0 \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\left\| \prod_{i} \left(\mathbf{M}_{i} \left(\mathbf{C}_{r} \times_{2} \mathbf{w}_{id}^{T} \times_{3} \mathbf{w}_{exp,i}^{T} \right)^{(v_{k})} - \mathbf{u}_{i}^{(k)} \right) \right\|^{2}$$

Why not directly use previous shape?

• Error accumulation

Why not directly regress parameters?

- Expression coefficients in [0:1]
- Animation prior
 - Temporal coherence
- Rigid transformation & expression coefficients
 - Different spaces

