Depth Extraction from
Video Using Non-
parametric Sampling

Kevin Karsch Ce Liu Sing Bing Kang
University of Illinois Microsoft Research Microsoft Research
New England



Problem Statement

Given an 1mage/video, estimate distance from the camera

No parallax necessary Camera motion OK Scene motion OK



Problem Statement

Given an 1mage/video, estimate distance from the camera

No parallax necessary Camera motion OK Scene motion OK

Our estimated depth




Problem Statement

Given an 1image/video, estimate distance from the camera

No parallax necessary Camera motion OK Scene motion OK

Input Estimated depth




Problem Statement

Given an 1mage/video, estimate distance from the camera

No parallax necessary Camera motion OK Scene motion OK




L =

[Zhang et al. ’09]

Multiview reconstruction

Very accurate for videos
with moving camera

May fail for dynamic
scenes

Newcombe and Davidson ’10]

Furukawa and Ponce ’09]
[Zhang et al. ‘09]

' Related Work

—

[Liu et al. "10]

Parametric learning

Works well for single
images

No literature on extending
to video

Liu et al. ’10]
[Saxena et al. ‘09]
Hoiem et al. '05]




[Zhang et al. ’09] [Liu et al. *10]

Multiview reconstruction Parametric learning
o Very accurate for videos o Works well for single
with moving camera images
o May fail for dynamic o No literature on extending
scenes to video
Newcombe and Davidson ’10] Liu et al. ’10]
Furukawa and Ponce ’09] [Saxena et al. ‘09]
[Zhang et al. ‘09] [Hoiem et al. '05]
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Pixel level [Saxena et al. ‘05]
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RGBD Datasets

Ground Truth Sy o dd
depthmap AR Lo <

Laser rangefinder MSR-V3D
Outdoor scenes Indoor scenes
[Saxena et al.] (Ours)



SIFT Flow Refresher

o Optical flow using dense SIFT features
o Larger search window

o Modified smoothness constraints

o Scenes rearranged so semantics are matched

Warping
operator

[Liu et al. ‘08, ‘09]
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Inference

argmin E/(D) =  Enforce depth to match candidates
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o Both absolute and relative depth are transferred

o Regularize with smoothness and prior
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Evaluation: Make3D Dataset

Method

Depth MRF [Saxena et al. ’05

Make3D [Saxena et al. ’(9

0-MRF [Li et al. ’11]

Semantic Labels [Liu et al. ’10]
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Video Extension

Inferred depth
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770 : binary motion mask

Video Inference |\ :npotesized depin

of motion mask
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o Depth changes are gradual frame-to-frame

o Moving objects are usually on the ground
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770 : binary motion mask

Video Inference |\ :npotesized depin

of motion mask

argmin Evideo (D) _ C, T] : constant weights
D
E(D)+ Y ¢tV iowDily + 1 m| Di — M)y
: . (N J . J
1Epixels Y Y )
Single Smooth along Coerce moving
image direction of objects to be
objective optical flow “grounded”

o Depth changes are gradual frame-to-frame
o Moving objects are usually on the ground

- Motion mask = threshold flow-weighted, relative pixel differences
- Ce L1u’s optical flow http://people.csail.mit.edu/celiu/OpticalFlow




Input Inferred depth
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MSR-V3D evaluation

Input Kinect*  Ours Input Kinect*  Ours

*Naive hole filling applied to Kinect data (for visualization only)



Limitations




Application: 2D-to-3D

Input

Depth

Anaglyph
663 D’?




Thanks!

More results, code and dataset available at:
http://kevinkarsch.com/depthtransfer

Our 2D-to-3D Youtube 2D-to-3D



