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Abstract

In this paper, we propose a method to detect changes in
the geometry of a city using panoramic images captured by
a car driving around the city. We designed our approach
to account for all the challenges involved in a large scale
application of change detection, such as, inaccuracies in
the input geometry, errors in the geo-location data of the
images, as well as, the limited amount of information due to
sparse imagery.

We evaluated our approach on an area of 6 square kilo-
meters inside a city, using 3420 images downloaded from
Google StreetView. These images besides being publicly
available, are also a good example of panoramic images
captured with a driving vehicle, and hence demonstrating
all the possible challenges resulting from such an acquisi-
tion. We also quantitatively compared the performance of
our approach with respect to a ground truth, as well as to
prior work. This evaluation shows that our approach out-
performs the current state of the art.

1. Introduction
Motivated by the vast number of services benefiting from

3D visualizations of urban scenarios, a lot of work has taken

place in the recent past, to obtain accurate 3D reconstruc-

tions of cities. Many efficient techniques have been pro-

posed to obtain such models from imagery and/or range

measurements captured from groundbased vehicles [2], as

well as aerial platforms [5]. In fact, most city administra-

tions already maintain such information for cadastral appli-

cations such as city planning, real estate evaluation and so

on.

However, cities are dynamic in nature, evolving over

time, with new buildings being constructed and old ones

taken down [6]. As these changes occur, any previous re-

constructions do not comply with the current state of the

city and need to be updated accordingly. A naive way to

update these reconstructions is to again collect data all over

the city, and rebuild the 3D model from scratch. Clearly,

capturing such high quality data with laser scanners or with

Figure 1. Changes detected on the cadastral 3D model of a city us-

ing panoramic images. The detected changes are marked in blue,

while the locations of the input images are represented as green

points. Green markers indicate some of the changed locations rec-

ognized using our approach. For the corresponding images please

refer to Figure 5.

high resolution cameras on the scale of a city is not feasible

on a frequent basis.

Recent works like [15] proposed to efficiently perform

this update task by first localizing in the environment the

areas where geometric changes have occurred, and then by

running the high quality data collection selectively only on

those locations where significant changes have been de-

tected. Their work showed convincing results on multiple

urban scenarios detecting changes from images.

However, the evaluated locations were all spatially con-

strained, and while some suggestions were presented to

make the approach scalable to large environments, it needs

to be adapted significantly to address the different chal-

lenges involved in a city scale application of change detec-

tion. Namely,

• Inaccuracies in the cadastral 3D model: Cadas-

tral information, maintained by city administrations, is

typically encoded as 3D mesh models representing the

main constructions in the city. Since their main ap-
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plication is planning and monitoring, their accuracy is

reasonably high. However, their level of detail is quite

basic with simple bounding boxes, approximating the

buildings shapes, augmented sometimes with features,

like roofs and chimneys.

A large scale change detection algorithm therefore,

needs to differentiate between real changes in the ge-

ometry and changes induced by inaccuracies in these

cadastral 3D models.

In the envisioned scenario of a city scale change detec-

tion application and model update, images depicting the

current state of the city are captured as panoramic images,

from cars driving around the city. Several commercial sys-

tems have been deployed to capture such kind of imagery,

such as Google StreetView and Microsoft StreetSide. The

data acquired with such systems however, presents two big

challenges when used in the context of change detection,

namely:

• Inaccuracy in the geo-location information: The

geo-location information tagging these images is typi-

cally provided by GPS and IMU units mounted on the

car. However, the data recorded with such devices is

typically noisy, and while the position and orientation

inaccuracies may be tolerable for applications such as

street navigation, they are definitely not for the purpose

of change detection.

• Sparsely captured imagery: Since the acquired im-

ages are not just representing a few streets in an urban

environment, but actually entire cities, the spatial cap-

turing rate of these images might not be very dense.

Therefore a building well visible in one image, will be

only partially visible in a nearby image.

A large scale change detection algorithm needs to be

able to cope with such sparse imagery.

In this paper, we propose a method to detect changes in

the geometry of a city. While our formulation builds on

the work of [15], we explicitly address the challenges in-

volved in a large scale application of change detection. In

particular, we use cadastral 3D models provided by the city

administration and panoramic images captured all over the

city. For our experiments we used the Google StreetView

images which, besides being publicly available, are also a

good example of panoramic images captured with a driving

vehicle on the scale of a city.

2. Related Work
There has been a lot of work in the field of change de-

tection mostly focusing on comparing images of a scene

captured at an earlier time instant with images captured

later [12]. Such a comparison is usually sensitive to changes

in illumination and weather conditions across the old and

the new images. To partially overcome these issues [10]

proposed to learn, from the old images, a probabilistic ap-

pearance model of the 3D scene. This is then used for com-

parison with the new images. As an alternative, [3] pro-

posed to detect changes based on the appearance and disap-

pearance of 3D lines in the scene.

All of these methods however, focus on detecting general

changes in the appearance of a scene. These changes may

or may not correspond to changes in the geometry. On the

other hand, [15] proposed a method to detect only the geo-

metric changes occurring in an environment. Their method

is based on the assumption that if a pair of images repre-

sents a 3D model exactly, then these images must project

consistently one into the other. Viceversa, if this projection

reveals inconsistencies then the geometry represented in the

images is different from the original one.

In this paper, we extend their approach to account for the

challenges involved in a city scale application of a change

detection algorithm, as mentioned in the introduction.

3. Change Detection
Given a cadastral 3D model of a city and a set of

panoramic images depicting its current state, the goal of the

proposed algorithm is to detect geometric changes that may

have occurred between the time the 3D model was built and

the time the new images were captured.

We perform this task following an approach similar to

the one proposed in [15]. For the reader’s convenience, we

briefly recall, in this section, the major concepts presented

in [15], namely, the inconsistency map and the used proba-

bilistic framework.

For each pair of images Is and It observing a location in

the environment, the geometry of the environment is used

to project the source image Is into the point of view of the

target image It. The resulting image projection, denoted

as It←s, is then compared with the original target image It
to obtain a pixel-wise map of inconsistencies between the

geometry and the images Is and It. This map is referred

to as the inconsistency map, and is denoted with the symbol

Mt←s. Formally, Mt←s = |It←s−It|, where | · | represents

the pixel-wise absolute differences between It←s and It.
In principle, if the two images Is and It are consistent

with the geometry, then the resulting inconsistency map

Mt←s is zero everywhere. Viceversa, in case of a change,

some of its values might differ from zero. In order to local-

ize the occurred changes in the city, the entire city is dis-

cretized into a grid of uniformly sized voxels, precisely of

size 1m3 each.

The goal of the change detection algorithm is to estimate

a binary labeling L = {li}i for each voxel i in this grid, in-

dicating the presence, or the absence, of a change inside that

voxel (with li = 1 and li = 0, respectively). An estimate
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for this labeling can be obtained by maximizing the poste-

rior probability of L given the input images I = {Ik}k as

observation. By using the Bayes’ rule, this corresponds to

P (li|I) = P (I|li)P (li)

P (I) (1)

where the generative model P (I|li) is computed on the ba-

sis of the inconsistency maps. Precisely as

P (I|li) =
∏
t,s

P (Mt←s|li) (2)

where the probability P (Mt←s|li) is modeled by a uniform

distribution U in case of a change, and by a truncated Gaus-

sian distribution centered in 0 in case of no change, i.e.

P (Mt←s (q) = x|li) =
{

H (x) 2
σc

√
2π

e
− x2

2σ2
c li = 0

U li = 1
(3)

where H (x) is the Heaviside step function, and q is a

generic pixel of Mt←s. Since changes corresponding to ve-

hicles, pedestrians and vegetation are not relevant for the

purpose of updating a 3D model, a classifier is used to rec-

ognize those classes of objects in the images [4]. Pixels

belonging to those classes are then not considered during

the change inference process.

This approach on its own is however not sufficient to deal

with the challenges involved in a large scale application

of change detection, such as geometric inaccuracies, geo-

location information inaccuracies, and wide baseline im-

agery. The following sections address all these challenges

and propose a solution to cope with each of them.

3.1. Inaccuracies in the geo-location information

In a scenario where a car is driving around capturing

panoramic images in a city, the geo-location information,

providing the position and orientation where each of these

images were taken, is typically captured using sensors like

GPSs and IMUs. The data recorded by these sensors is in

general noisy, with errors being on the order of ±5 meters

in the location and ±5 degrees in the orientation.

One way to refine these estimates is to exploit the avail-

able 3D model and register each image with respect to it.

Different approaches have been proposed in literature to

perform this task. However, registration techniques based

on image feature descriptors, e.g. [14], cannot be applied in

this case due to the typical absence of texture information

in the cadastral 3D models. Other registration techniques,

like the ones based on rigid [17] and non-rigid ICP [9, 11],

are also not applicable since they would require a 3D recon-

struction from the acquired images. This in general cannot

be achieved due to the sparse sampling nature of the cap-

tured images.

Figure 2. Inconsistency maps corresponding to the pair of images

Is and It, obtained using the approach of [15] (|It←s−It|) and the

one obtained using Equation 6 (below), accounting for geometric

inaccuracies. False changes due to missing details on the building

facade disappear in the latter.

An alternative is provided by [8, 13, 16]. For each

panoramic image, an object class segmentation is per-

formed in order to estimate the building outlines in these

images [7]. Let St denote the building outlines estimated

on the image It. Each pixel of St is labeled as 1 in case the

pixel belongs to a building, and 0 otherwise. Let ξt repre-

sent the current estimate for the pose of image It (the geo-

location information), and let B(ξt) denote the correspond-

ing building outlines obtained by rendering the cadastral 3D

model at pose ξt. Ideally, at the correct pose estimate, the

building outlines B(ξt) align perfectly with the actual out-

lines St. Formally, the correct pose ξt corresponds to the

minimization of the following functional:

argmin
ξt

‖St −B(ξt)‖0 (4)

where ‖ ·‖0 represents the L0-”norm”, counting the number

of mismatching pixels in the two images. In order to be

robust with respect to the presence of occluders such as cars,

pedestrians and vegetation, this score is not evaluated for

pixels belonging to one of these classes.
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3.2. Our registration approach

In general, minimizing for Equation 4 results in an ac-

curate registration of the input images with respect to the

cadastral 3D model. However, while the individual errors

in the registration might be small, these errors quickly accu-

mulate during the reprojection process. Since the proposed

change detection algorithm bases its inference on the repro-

jected images It←s, even small errors in the registration are

not tolerable, since they will generate false evidence of a

change in the inconsistency maps Mt←s.

Minimizing for Equation 4 is therefore insufficient for

our purpose, and a registration technique accounting also

for the relative alignment between neighboring images,

needs to be designed.

We do this, by adding an extra term in Equation 4 ac-

counting for the reprojection error Mt←s = |It←s − It|
between neighboring images. We then perform the pose es-

timation over a window of n = 5 consecutive panoramic

images. Precisely, let I1, . . . , In be n consecutive images,

and let ξ1, . . . , ξn represent their related pose parameters,

the joint registration of these images is obtained by mini-

mizing the following functional

argmin
ξ1,...,ξn

∑
t∈[1,...,n]

⎡
⎣‖St −Bt(ξt)‖0 +

∑
s∈[1,...,n]

‖Mt←s‖1
⎤
⎦
(5)

where ‖Mt←s‖1 represents the sum of all the pixel-wise

absolute differences between the images It←s and It.
This joint minimization considers both the individual

alignment error, of an image with the 3D model, and the

relative alignment error of an image with respect its neigh-

bors. This makes the pose estimation more robust to out-

liers, such as changes in the geometry and/or segmentation

errors in the images.

Due to the extreme non linearities in Equation 5, this

minimization is performed using a sample based technique.

In particular we used Particle Swarm Optimization [1],

which is an evolutionary algorithm computing the evolu-

tion of a swarm of particles influenced at each iteration by

the particle’s own experience (the cognitive factor) and also

by the swarm’s experience (the social factor).

3.3. Dealing with geometric inaccuracies

Cadastral 3D models typically show low level of detail.

In fact, while these models correctly represent the volume

of the buildings in a city as bounding boxes augmented with

simple features like roofs and chimneys, details like bal-

conies, streetside windows, extended roofs, and in general

any protruding structures on the building facades, are typ-

ically missing or inaccurately represented. Consequently,

the projections of each of these structures from one image

into another can result in high inconsistency values in the

Mt←s maps. This consequently degrades the detection per-

formance by increasing the number of false detections.

To account for these geometric inaccuracies, we draw

multiple hypotheses on the real extent of the missing or the

inaccurately represented structures, by shifting the building

walls on the ground plane. For each of these hypotheses, the

corresponding inconsistency map is computed. In princi-

ple, the inconsistency map Mt←s resulting from a geometry

which perfectly represents the actual building corresponds

to the pixel-wise minimum of the individual inconsistency

maps produced by each hypothesis. Formally, let I�vt←s be

the image projection obtained by translating the building

walls by a vector �v, where �v is a vector on the ground plane.

Then the inconsistency map resulting from a perfectly rep-

resented geometry is

Mt←s = min
�v∈S

|I�vt←s − It| (6)

where | · | indicates the pixel-wise absolute values, and S
represents the set of translation vectors �v used to compen-

sate for the protruding structures. In particular, we set S
equal to all the possible ground translations of an amount

smaller than 0.5 meters. The computation of the I�vt←s and

the Mt←s images is done on the GPU, making this process

very fast.

Figure 2 shows the effects of the usage of this approach

on the generated Mt←s maps in a scenario where the bal-

conies and the extended roof of a building facade were miss-

ing from the 3D model. It is visible, in the bottom image,

that false inconsistencies disappear when multiple hypothe-

ses are evaluated for the location of these elements.

3.4. Dealing with sparse imagery

While the multiple hypotheses approach introduced in

the previous section allows us to account for small inaccu-

racies in the cadastral 3D model, another issue needs to be

considered when projecting images captured very far apart.

In these cases in fact, high perspective distortions and

image sub-samplings corrupt the reprojected image It←s by

generating blurring artifacts (Figure 3(c)), and consequently

decreasing the accuracy of the detector by generating more

false positives (Figure 3(d)). In fact, in these situations, a

pixel in the source image Is does not project into a unique

pixel in the target image plane It, but instead, into multiple

ones, causing the blurring.

A work around to this problem is to avoid comparing im-

ages that are farther than a certain distance. This however

would also reduce the amount of information at our disposal

for the change detection inference. Since we already have a

limited amount of data observing the same location, due to

the sparse imagery, we need to use all possible images in-

side a certain radius even if that means considering images

captured more than 30 meters apart.
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(a) Is (b) It

(c) It←s (d) min |I�vt←s − It|

(e) F�v (It) (f) min |I�vt←s −F�v (It) |
Figure 3. Example scenario where the source image Is was cap-

tured more than 30 m away from the target image It. (c) Repro-

jected image. (d) Inconsistency map obtained as a result of Equa-

tion 6. (e) Image obtained after filtering It with the spatially vary-

ing kernel defined in Section 3.4. (f) Inconsistency map obtained

as result of Equation 7.

Therefore, we chose to explicitly account for the artifacts

generated in case of large baselines, by simulating them also

in the target image It. Precisely, we estimate the shape that

each pixel of the source image Is would have in the target

image It. This can be easily performed on the GPU by ap-

proximating the original pixel shape with a circle of radius

0.5 pixel units. Its projection on the target image would

result in an ellipse centered on a point p. This ellipse de-

scribes the amount of blur that the image It←s is affected

by in p.

Therefore, to better compare the reprojected image It←s

with the target image It, we simulate in It the same blurring

artifacts as in It←s, by applying to each pixel of It a spa-

tial filter shaped accordingly to the ellipse projecting into

p. Basically, this corresponds to filtering It with a spatially

varying kernel. Let F�v (It) be the image resulting after this

process assuming a translation vector of �v for the geometry.

Equation 6 becomes

Mt←s = min
�v∈S

|I�vt←s −F�v (It) | (7)

Figure 3(f) and (d) show the Mt←s images obtained with

and without the filtering operation. It is visible that account-

ing for these distortions/blurring artifacts significantly im-

proves the Mt←s image by eliminating the false inconsis-

tencies caused by the large baseline between the images.

3.5. Additional cue: building outlines consistency

To improve the performance of our detection algorithm,

we introduce an additional cue to the original generative

model P (I|li) of Equation 2, accounting for building out-

lines consistency. In principle, in case of no change, not

only should the inconsistency Mt←s maps be zero, but the

corresponding building outlines seen in the images should

be consistent with those in the geometry as well.

Formally, let Ct be the image representing the pixel-

wise inconsistencies between the building outlines esti-

mated from the image It and the outlines of the 3D model

visible from the point of view of It, i.e.,

Ct = |St −B (ξt) | (8)

where | · | indicates the pixel-wise absolute value. Ideally,

in case of no change, Ct is zero everywhere. Viceversa, in

case of a change, some of its values might differ from zero.

We model this behavior by updating the generative model

P (I|li) of Equation 2 as follows

P (I|li) =
∏
t,s

P (Mt←s|li)
∏
t

P (Ct|li) (9)

While the first series of products indicate the independence

between the image formation process of the different incon-

sistency maps Mt←s, the second series of products under-

lines the independence between the image formation pro-

cess of the building outlines seen from the different im-

ages It. Further, assuming that the conditional probabil-

ity of Ct given a voxel label li is only influenced by the

pixels in the footprint of voxel i on Ct, we introduce an

additional random variable ηit representing the fraction of

incorrectly labeled pixels in this footprint. Formally, given

ηit =
1
N

∑
Ct(q), P (Ct|li) is equal to P (ηit|li) and

P
(
ηit = x|li

)
=

{
H (x) 2

σs

√
2π

e
− x2

2σ2
s li = 0

U li = 1
(10)

where H is same as in Equation 3.

As observed earlier, inaccuracies in the geometry might

lead to false inconsistencies in Ct. To cope for this, we

adopt a similar approach as was proposed for the Mt←s

maps, that is, we define Ct similarly as in Equation 6, i.e.

Ct = min
�v∈S

|St −B�v (ξt) |. (11)

117117117



4. Results
The proposed approach was evaluated on an area of 6

square kilometers (about 2.31 square miles) inside a city. In

total, 3420 panoramic images were used to detect changes

in this environment.

In particular, we used images downloaded from Google

StreetView. Each of these images consists of a full spheri-

cal panorama with resolution generally up to 3328 × 1664
pixels, covering a field of view of 360 degrees by 180 de-

grees. In the tested location, these images were captured

on an average once every 10 meters, although this distance

increased in some regions. Since the primary application of

these images is street navigation their quality is, in general,

not very high. In fact, besides being low resolution, they

display numerous artifacts mainly due to blending errors,

and moving objects.

The geo-location data for each panoramic image was ob-

tained also from the Google StreetView service. Since this

data is in general too inaccurate for the purpose of change

detection, showing errors with a standard deviation of 3.7
meters in translation, and 2 degrees in orientation [16], this

was refined using the method proposed in Section 3.2. Pre-

cisely, Equation 5 was optimized using an initial swarm

noise of 7 meters in translation and 6 degrees in rotation.

The cadastral 3D model was instead obtained from the

city administration, and its claimed accuracy was 0.5 me-

ters. For this reason we chose the translation vectors in S to

have a magnitude of up to 0.5 meters.

We learnt the parameters of our detector on a small sub-

set of the available data. In particular, the object class clas-

sifier was trained on 70 manually labeled images chosen

randomly across the city. Similarly, the parameters σc and

σs, modeling the color and building outline consistency re-

spectively (see Equation 3 and Equation 10), were estimated

on another set of 75 images where each pixel was manually

labeled as change or no change. The probability distribution

of the corresponding Mt←s and Ct maps was then estimated

from these images. In the end a Gaussian distribution was

fit onto those distributions.

Figure 5 and Figure 1 show the changes detected by our

approach on two small regions of the processed cadastral

3D model. The green dots denote the locations of the input

panoramas, while the blue dots represent voxels labeled as

change. The green markers act as a reference for the im-

ages below. Each of those images shows the cadastral 3D

model (red) overlaid on one of the input panoramic images

captured at that location.

It is visible that a high density of the blue voxels in the

map corresponds to a change revealed by the input images.

For instance, location (A) depicts a scenario where more

floors were added to a building. In the map in fact, blue

voxels can be seen on the top of the corresponding building.

Locations (B), (E) and (F) show three scenarios where an

Figure 4. Evaluation of the algorithm performance. (Blue) ROC

curve obtained using our method. (Red) ROC obtained using the

method proposed in [15]. (Green) ROC obtained using the method

of [15] also incorporating the refinement of section 3.4.

entire building had been constructed since the model acqui-

sition. In particular (F) shows a building under construction.

Locations (C) and (D) reveal relatively small changes

corresponding to a new roof, and a connecting hallway be-

tween buildings, respectively. Updating the model with

such details might be useful, for instance to generate a warn-

ing if a large truck has to pass through this street.

Locations (G) and (H) instead show two examples of

false changes that were detected due to trees (mislabeled

as building by the classifier), and due to strong reflections,

respectively.

4.1. Quantitative evaluation and comparison with
prior work

We generated ground truth data by manually labeling

each panoramic image as corresponding to a change or not.

In particular, for this experiment, we focused only on a re-

stricted subset of the original dataset consisting of 1000 im-

ages. The labeling was performed on the basis that, an im-

age represents a change if an actual change in the geometry

was visible from approximately 25 meters distance. On this

particular subset of the dataset, 76 images were labeled as

change.

We compared this ground truth with the results obtained

using our change detection algorithm. Precisely, using the

same labeling methodology as for the ground truth, an im-

age was labeled as corresponding to a change if a sufficient

number of voxels were detected as change in a radius of 25
meters from the image location. This threshold was set to

30 voxels in our experiments.

The ROC curve in Figure 4 shows the performance of

our algorithm (blue curve). In the same figure, the red curve
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shows the performance of the method proposed in [15]. Pre-

cisely, we ran this method on exactly the same data (images

+ registration). For a fair comparison, we also incorpo-

rated the building outline consistency term of Section 3.5

into their approach. The green curve instead shows the per-

formance of this method also incorporating the robustness

against distortion effects (section 3.4).

It is visible that for the same number of true positives,

our approach results in much less false detections. Our

approach, in fact benefits from the considerations made in

Section 3.3 and in Section 3.4, making it more robust to

inaccuracies in the geometry and to wide baseline imagery.

5. Conclusions
In this paper, we proposed a method to detect changes in

the geometry of a city using panoramic images captured by

a car driving around the city. We extended the work of [15]

to account for all the challenges involved in a large scale

application of change detection.

In particular, we showed how to deal with the geometric

inaccuracies typically present in a cadastral 3D model, by

evaluating different hypotheses on the correct geometry of

the buildings contained in it.

We showed how to deal with errors in the geo-location

data of the input images, by proposing a registration tech-

nique aimed at minimizing the absolute alignment error of

each image with respect to the 3D model, as well as the rel-

ative alignment error with respect to its neighboring images.

To cope for the limited amount of images observing a lo-

cation, we proposed a robust comparison method explicitly

compensating for the image sub-sampling artifacts and the

high perspective distortions resulting in case of large base-

line imagery. To further improve the detection accuracy, we

proposed to use building outlines as an additional cue for

our change detection inference.

The performance of our algorithm was evaluated on the

scale of a city (6 square kilometers area) using 3420 im-

ages downloaded from Google StreetView. These images,

besides being publicly available, are also a good example

of panoramic images captured with a driving vehicle on the

scale of a city. This dataset is known to be very challeng-

ing due to the sparse capturing rate (on an average every

10 meters), their low resolution, the blending artifacts, and

their inaccurate geo-location data.

On a quantitative evaluation our algorithm outperformed

the current state of the art (see Figure 4). However, as is

clearly visible, there is still space for improvement due to

the relative large number of detected false positives. This is

mainly due to strong reflections and errors in the segmen-

tation, particularly on trees (and especially those without

foliage, as in Figure 5G). A bigger training set accounting

for different appearance of trees across seasons would def-

initely improve the performance of the algorithm. Another

improvement can be obtained by detecting windows as well

which are typical sources of reflections.
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Figure 5. (Top) Cadastral 3D model overlaid with the voxel grid. Voxels detected as a change are marked in blue. The input images are

shown as green dots, while the green markers indicate some of the changed locations recognized using our approach. (Bottom) Images

corresponding to the green markers in the map overlaid with the cadastral model. For locations D, E, F and H please refer to Figure 1.
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