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Abstract. Traditional active learning allows a (machine) learner to query the
(human) teacher for labels on examples it finds confusing. The teacher then pro-
vides a label for only that instance. This is quite restrictive. In this paper, we pro-
pose a learning paradigm in which the learner communicates its belief (i.e. pre-
dicted label) about the actively chosen example to the teacher. The teacher then
confirms or rejects the predicted label. More importantly, if rejected, the teacher
communicates an explanation for why the learner’s belief was wrong. This ex-
planation allows the learner to propagate the feedback provided by the teacher to
many unlabeled images. This allows a classifier to better learn from its mistakes,
leading to accelerated discriminative learning of visual concepts even with few la-
beled images. In order for such communication to be feasible, it is crucial to have
a language that both the human supervisor and the machine learner understand.
Attributes provide precisely this channel. They are human-interpretable mid-level
visual concepts shareable across categories e.g. “furry”, “spacious”, etc. We ad-
vocate the use of attributes for a supervisor to provide feedback to a classifier and
directly communicate his knowledge of the world. We employ a straightforward
approach to incorporate this feedback in the classifier, and demonstrate its power
on a variety of visual recognition scenarios such as image classification and an-
notation. This application of attributes for providing classifiers feedback is very
powerful, and has not been explored in the community. It introduces a new mode
of supervision, and opens up several avenues for future research.

1 Introduction

Consider the scenario where a teacher is trying to teach a child how to recognize gi-
raffes. The teacher can show example photographs of giraffes to the child, as well as
many pictures of other animals that are not giraffes. The teacher can then only hope
that the child effectively utilizes all these examples to decipher what makes a giraffe a
giraffe. In computer vision (and machine learning in general), this is the traditional way
in which we train a classifier to learn novel concepts.

It is clear that throwing many labeled examples at a passively learning child is very
time consuming. Instead, it might be much more efficient if the child actively engages
in the learning process. After seeing a few initial examples of giraffes and non-giraffes,
the child can identify animals that it finds most confusing (say a camel), and request the
teacher for a label for these examples where the labels are likely to be most informative.
This corresponds to the now well studied active learning paradigm.

While this paradigm is more natural, there are several aspects of this set-up that
seem artificially restrictive. For instance, the learner simply poses a query to the teacher,
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I	  think	  this	  is	  a	  
forest.	  What	  do	  
you	  think	  ?	  

No,	  this	  is	  
TOO	  OPEN	  to	  
be	  a	  forest.	  

…	  

Query	  

[Images	  more	  open	  than	  query]	  
Ah!	  These	  

images	  must	  
not	  be	  

forests	  either	  
then.	  

Fig. 1: We propose a novel use of attributes as a mode for a human supervisor to provide
feedback to a machine active learner allowing it to better learn from its mistakes.

but does not communicate to the teacher what its current model of the world (or gi-
raffes!) is. It simply asks “What is this?”. Instead, it could just as easily say “I think this
is a giraffe, what do you think?”. The teacher can then encouragingly confirm or gently
reject this belief. More importantly, if the teacher rejects the belief, he can now proac-
tively provide a focussed explanation for why the learners’ current belief is inaccurate.
If the learner calls a tiger a giraffe, the teacher can say “Unfortunately, you’re wrong.
This is not a giraffe, because its neck is not long enough.” Not only does this give the
learner information about this particular example, it also gives the learner information
that can be transferred to many other examples: all animals with necks shorter than this
query animal (tiger) must not be giraffes. With this mode of supervision, the learner can
learn what giraffes are (not) with significantly fewer labeled examples of (not) giraffes.

To allow for such a rich mode of communication between the learner and the teacher,
we need a language that they both can understand. Attributes provide precisely this
mode of communication. They are mid-level concepts such as “furry” and “chubby”
that are shareable across categories. They are visual and hence machine detectable, as
well as human interpretable. Attributes have been used for a variety of tasks such as
multimedia retrieval [1–6], zero-shot learning of novel concepts [7, 8], describing un-
usual aspects of objects [9], face verification [10] and others.

In this paper, we advocate the novel use of attributes as a mode of communication
for a human supervisor to provide feedback to a machine classifier. This allows for a
natural learning environment where the learner can learn much more from each mistake
it makes. The supervisor can convey his domain knowledge about categories, which can
be propagated to unlabeled images in the dataset. Leveraging these images allows for
effective discriminative learning even with a few labeled examples. We use a straight-
forward approach to incorporate this feedback in order to update the learnt classifiers.
In the above example, all images that have shorter necks than the tiger are labeled as
“not-giraffe”, and the giraffe classifier is updated with these new negative examples. We
demonstrate the power of this feedback in two different domains (scenes and faces) on
four visual recognition scenarios including image classification and image annotation.

2 Related Work

We discuss our work relative to existing work on exploiting attributes, collecting richer
annotation, active learning, providing a classifier feedback and discriminative guidance.
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Attributes: Human-nameable visual concepts or attributes are often used in the mul-
timedia community to build intermediate representations for images [1–6]. Attributes
have also been gaining a lot of attention in the computer vision community over the
past few years [7–24]. The most relevant to our work would be the use of attributes for
zero-shot learning. Once a machine has learnt to detect attributes, a supervisor can teach
it a novel concept simply by describing which attributes the concept does or does not
have [7] or how the concept relates to other concepts the machine already knows [8].
The novel concept can thus be learnt without any training examples. However zero-shot
learning is restricted to being generative in nature and the category models have to be
built in the attribute space. Given a test image, its attribute values need to be predicted,
and then the image can be classified. Hence, while very light on supervision, zero-shot
learning often lags in classification performance. Our work allows for the marriage of
using attributes to alleviate supervision effort, while still allowing for discriminative
learning. Moreover, the feature space is not restricted to being the attributes space.
This is because we use attributes during training to transfer category labels to other
unlabeled image instances, as opposed to directly carving out portions of the attributes
space where a category can live. At test time, attribute detectors need not be used.

Detailed annotation: With the advent of crowd-sourcing services, efforts are being
made at getting many more images labeled, and more importantly, gathering more
detailed annotations such as segmentation masks [25], parts [26], attributes [10, 20],
pose [27], etc. In contrast, the goal of our work is not to collect deeper annotations
(e.g. attribute annotations) for the images. Instead, we propose the use of attributes as
an efficient means for the supervisor to broadly transfer category-level information to
unlabeled images in the dataset, that the learner can exploit.

Active learning: There is a large body of work, in computer vision and otherwise, that
utilizes active learning to efficiently collect data annotations. Several works consider
the problem of actively interleaving requests for different forms of annotation: object
and attribute labels [20], image-level annotation, bounding boxes or segmentations [28],
part annotations and attribute presence labels [21], etc. To re-iterate, our work focuses
only on gathering category-label annotations, but we use attributes as a mode for the
supervisor to convey more information about the categories, leading to propagation of
category labels to unlabeled images. The system proposed in [22] recognizes a bird
species with the help of a human expert answering actively selected questions pertain-
ing to visual attributes of the bird. Note the involvement of the user at test time. Our
approach uses a human in the loop only during training. In [29], the learner actively asks
the supervisor linguistic questions involving prepositions and attributes. In contrast, in
our work, an informative attribute is selected by the supervisor that allows the classi-
fier to better learn from its mistakes. Our work can be naturally extended to leveraging
the provided feedback to simultaneously update the attribute models as in [20], or for
discovering the attribute vocabulary in the first place as in [23].

Rationales: In natural language processing, works have explored human feature selec-
tion to highlight words relevant for document classification [30–32]. A recent work in
vision [33] similarly solicits rationales from the annotator in the form of spatial infor-
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mation or attributes for assigning a certain label to the image. This helps in identifying
relevant image features or attributes for that image. But similar to zero-shot learning,
this can be exploited only if the feature space is the attributes space and thus directly
maps to the mode of feedback used by the annotator. Our work also uses attributes to
allow the supervisor to interactively communicate an explanation, but this explanation
is propagated as category labels to many unlabeled images in the dataset. The feature
space where category models are built is thus not constrained by the mode of commu-
nication i.e. attributes used by the annotator and can hence be non-semantic and quite
complex (e.g. bag-of-words, gist, etc.).

Focussed discrimination: The role of the supervisor in our work can be viewed as
that of providing a discriminative direction that helps eliminate current confusions of
the learner. Such a discriminative direction is often enforced by mining hard negative
examples that violate the margin in large-margin classifiers [34], or is determined after-
the-fact to better understand the learnt classifier [35]. In our work, a human supervisor
provides this direction by simply verbalizing his semantic knowledge about the domain
to steer the learner away from its inaccurate beliefs.3

3 Proposed Approach

We consider a scenario where a supervisor is trying to teach a machine visual concepts.
The machine has already learnt a vocabulary of attributes relevant to the domain. As
learning aid, there is a pool of unlabeled images that the supervisor will label over the
course of the learning process for the classifier to learn from. The learning process starts
with the learner querying the supervisor for a label for a random example in the pool
of unlabeled images. At each subsequent iteration, the learner picks an image from the
unlabeled pool that it finds most confusing (e.g. a camel image in the giraffe learning
example). It communicates its own belief about this image to the supervisor in the form
of a predicted label for this image. The supervisor either confirms or rejects this label.
If rejected, the supervisor provides a correct label for the query. He also communicates
an explanation using attributes for why the learner’s belief was wrong. Note that the
feedback can be relative to the category depicted in the query image (“necks of tigers
are not long enough to be giraffes”) or relative to the specific image instance (“this
image is too open to be a forest image”, see Fig. 1). The learner incorporates both the
label-feedback (whether accepted or rejected with correction) and the attributes-based
explanation (when applicable) to update its models. And the process continues.

We train a binary classifier hk(x), k ∈ {1 . . .K} for each of the K categories to be
learnt. At any point during the learning process, there is an unlabeled pool of images and
a training set Tk = {(xk, yk)} of labeled images for each classifier. The labeled images
xk can lie in any feature space, including the space of predicted attribute values RM .
The class labels are binary yk ∈ {+1,−1}. In our implementation we use RBF SVMs
as the binary classifier with probability estimates as output. If pk(x) is the probability

3 In similar spirit, contemporary work at this conference [36] uses attributes to prevent a semi-
supervised approach from augmenting its training data with irrelevant candidates from an un-
labeled pool of images, thus avoiding semantic-drift.
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the classifier assigns to image x belonging to class k, the confusion in x is computed
as the entropy H of the distribution p̃(x), where

p̃k(x) =
pk(x)∑K
k=1 pk(x)

. (1)

At each iteration in the learning process, the learner actively selects an unlabeled
image x∗ with maximum entropy.

x∗ = argmax
x

H(p̃(x)) (2)

Note that there are two parts to the supervisor’s response to the query image. The
first is label-based feedback where the supervisor confirms or rejects and corrects the
learners predicted label for the actively chosen image instance x∗. And the second is an
attributes-based explanation that is provided if the learners predicted label was incor-
rect and thus rejected. We now discuss how the attributes-based feedback is incorpo-
rated. The label-based feedback can be interpreted differently based on the application
at hand, and we discuss that in Section 4.

3.1 Incorporating Attribute-based Explanation

Let’s say the learner incorrectly predicts the label of actively chosen image x∗ to be l.
The supervisor identifies an attribute am that he deems most appropriate to explain to
the learner why x∗ does not belong to l. In this work we consider two simple forms
of explanation. The supervisor can either say “x∗ is too am to be l” or “x∗ is not am
enough to be l”, whichever be the case.

In the former case, the learner computes the strength of am in x∗ as rm(x∗), where
rm is a pre-trained attribute strength predictor for attribute am (Section 3.2). The learner
identifies all images in the currently unlabeled pool of images Ũ with attribute strength
of am more than rm(x∗). Clearly, if x∗ is too am to be l, all images depicting a higher
strength of am must not be l either (Fig. 1). Hence the training data Tl is updated to
be T̂l = Tl ∪ {(x,−1)} ∀x ∈ Ũ s.t. rm(x) ≥ rm(x∗). Similarly, for the latter form
of feedback, T̂l = Tl ∪ {(x,−1)} ∀x ∈ Ũ s.t. rm(x) ≤ rm(x∗). The category-label
information is thus propagated to other images in Ũ aside from just x∗.

As is evident, the supervisor provides an explanation only when the classifier is
wrong. Arguably, it seems wasteful to request an explanation when the classifier is al-
ready right. In addition, the form of feedback we consider only explains why an image
is not a certain class. As a result only negative labels are propagated to images. Our ap-
proach can easily also incorporate explanations that explain why an image does belong
to a certain class. We argue that more often than not, several factors come together to
make an image a certain concept e.g. an image is a coast image if it is open, natural,
displays the horizon and a body of water. Hence explaining to the system why an image
is a certain concept can be quite cumbersome. On the other hand, the supervisor needs
to identify only one reason why an image is not a certain class. Our formulation can be
easily extended to incorporate multi-attribute explanations if the supervisor so chooses.



6 Attributes for Classifier Feedback

Influence of imperfect attribute predictors: The updated T̂l may contradict the under-
lying ground truth labels (not available to the system). For instance, when the supervisor
says “x∗ is too open to be a forest”, there may be images in the unlabeled pool Ũ that
are more open than x∗ but are in fact forest images. Or, due to faulty attribute predic-
tors, a forest image that is less open than the query image is predicted to be more open,
and is hence labeled to be not forest. Hence, when in conflict, the label-based feedback
from the supervisor (which is the ground truth by definition) overrides the label of an
image that was or will be deduced from any past or future attributes-based feedback. In
this way, if the entire pool of unlabeled images U were sequentially presented to the su-
pervisor, even with inaccurate attributes-based feedback or faulty attribute predictors, it
will be correctly labeled. Of course, the scenario we are proposing is one where the su-
pervisor need not label all images in the dataset, and employ attributes-based feedback
instead to propagate labels to unlabeled images. Hence, in any realistic setting, some of
these labels are bound to be incorrectly propagated. Our approach relies on the assump-
tion that the benefit obtained by propagating the labels to many more images outweighs
the harm done by inaccuracies in the propagation caused by faulty attribute predictors.
This is reasonable, especially since we use SVM classifiers to build our category mod-
els, which involve maximizing a soft margin making the classifier robust to outliers in
the labeled training data. Of course, if the attribute predictors are severely flawed (in the
extreme case: predicting the opposite attribute than what they were meant to predict),
this would not be the case. But as we see in our results in Section 6, in practice the
attribute predictors are reliable enough allowing for improved performance. Since the
attribute predictors are pre-trained, their effectiveness is easy to evaluate (perhaps on
held-out set from the data used to train the attributes in the first place). Presumably one
would not utilize severely faulty attribute predictors in real systems. Recall, attributes
have been used in literature for zero-shot learning tasks [7, 8] which also hinge on rea-
sonable attribute predictors. We now describe our choice of attribute predictors.

3.2 Attributes Predictors

The feedback provided by the supervisor relates the query image actively selected by
the learner to the concept the learner believes the image depicts. Hence relative at-
tributes [8] are a natural choice. They were shown to respect relative judgements from
humans more faithfully than the score of a binary classifier, which is desirable in our
approach. We provide a brief overview of relative attributes below.

Suppose we have a vocabulary of M attributes A = {am}. These attributes are
mid-level concepts that can be shared across the categories the supervisor is trying to
teach the machine. For celebrities, relevant attributes may be “age” , “chubby”, etc.
while for scenes they may be “open”, “natural”, etc. This vocabulary of attributes is
learnt offline only once, using a set of training images I = {i} represented in Rn by
feature-vectors {xi}. For each attribute, we are given two forms of supervision: a set
of ordered pairs of images Om = {(i, j)} and a set of un-ordered pairs Sm = {(i, j)}
such that (i, j) ∈ Om =⇒ i � j, i.e. image i has a stronger presence of attribute
am than j, and (i, j) ∈ Sm =⇒ i ∼ j, i.e. i and j have similar relative strengths of
am. Either Om or Sm, but not both, can be empty. We wish to learn a ranking function
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rm(xi) = wT
mxi for m = 1, . . . ,M , such that the maximum number of the following

constraints is satisfied:

∀(i, j) ∈ Om : wT
mxi > wT

mxj ,∀(i, j) ∈ Sm : wT
mxi = wT

mxj . (3)

This being an NP hard problem a relaxed version is solved using a large margin
learning to rank formulation similar to that of Joachims [37] and adapted in [8]. With
this, given any image x in our pool of unlabeled images U , one can compute the relative
strength of each of the M attributes as rm(x) = wT

mx.

4 Applications

We consider four different applications to demonstrate our approach. For each of these
scenarios, the label-based feedback is interpreted differently, but the attributes-based
feedback has the same interpretation as discussed in Section 3.1. The label-based feed-
back carries different amounts of information, and thus influences the classifiers to vary-
ing degrees. Recall that via the label-based feedback, the supervisor confirms or rejects
and corrects the classifier’s predicted label for the actively chosen image x∗.

Classification: This is the classical scenario where an image is to be classified into only
one of several pre-determined number of classes. In this application, the label-based
feedback is very informative. It not only specifies what the image is, it also indicates
what the image is not (all other categories in the vocabulary). Let’s say the label pre-
dicted by the classifier for the actively chosen image x∗ is l. If the classifier is correct,
the supervisor can confirm the prediction. This would result in T̂l = Tl ∪ {(x∗, 1)},
and T̂n = Tn ∪ {(x∗,−1)} ∀ n 6= l. On the other hand, if the prediction was in-
correct, the supervisor would indicate so, and provide the correct label q. In this case,
T̂q = Tq ∪ {(x∗, 1)} and T̂n = Tn ∪ {(x∗,−1)} ∀ n 6= q (note that this includes
T̂l = Tl∪{(x∗,−1)}). In this way, every label-based feedback impacts all the K classi-
fiers, and is thus very informative. Recall that the attributes-based explanation can only
affect (the negative side) of one classifier at a time. We would thus expect that attributes-
based feedback in a classification scenario would not improve the performance of the
learner by much, since the label-based feedback is already very informative.

Large Vocabulary Classification: Next we consider is one that is receiving a lot of
attention in the community today: a classification scenario where the number of classes
is very large (and perhaps evolving over time); for example (celebrity) face recogni-
tion [10] or specialized fine-grained classification of animal species [16] or classifying
thousands of object categories [38]. In this scenario, the supervisor can verify if the
classifier’s prediction of x∗ is correct or not. But when incorrect, it would be very time
consuming for or beyond the expertise of the supervisor to seek out the correct label
from the large vocabulary of categories to provide as feedback. Hence the supervisor
only confirms or rejects the prediction, and does not provide a correction if rejecting
it. In this case, if the classifier’s prediction l is confirmed, similar to classification,
T̂l = Tl ∪ {(x∗, 1)}, and T̂n = Tn ∪ {(x∗,−1)} ∀ n 6= l. However, if the classi-
fier’s prediction is rejected, we only have T̂l = Tl ∪ {(x∗,−1)}. In this scenario, the
label feedback has less information when the classifier is wrong, and hence the classifier
would have to rely more on the attributes-based explanation to learn from its mistakes.
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Annotation: In this application, each image can be tagged with more than one class.
Hence, specifying (one of the things) the image is, does not imply anything about what
else it may or may not be. Hence when the classifier predicts that x∗ has tag l (as
one of its tags), if the supervisor confirms it we have T̂l = Tl ∪ {(x∗, 1)} and if the
classifier’s prediction is rejected, we have T̂l = Tl ∪ {(x∗,−1)}. Note that only the
lth classifier is affected by this feedback, and all other classifiers remain unaffected. To
be consistent across the different applications, we assume that at each iteration in the
learning process, the classifier makes a single prediction, and the supervisor provides
a single response to this prediction. In the classification scenario, this single response
can affect all classifiers as we saw above. But in annotation, to affect all classifiers, the
supervisor would have to comment on each tag individually (as being relevant to image
x∗ or not). This would be time consuming and does not constitute a single response.
Since the label-based feedback is relatively uninformative in this scenario, we expect
the attributes-based feedback to have a large impact on the classifier’s ability to learn.

Biased Binary Classification: The last scenario we consider is that of a binary clas-
sification problem, where the negative set of images is much larger than the positive
set. This is frequently encountered when training an object detector for instance, where
there are millions of negative image windows not containing the object, but only a few
hundreds or thousands of positive windows containing the object of interest. In this case,
an example can belong to either the positive or negative class (similar to classification),
and the label-based feedback is informative. However, being able to propagate the neg-
ative labels to many more instances via our attributes-based explanation can potentially
accelerate the learning process. Approaches that mine hard negative examples [34] are
motivated by related observations. However, what we describe above is concerned more
with the bias in the class distribution, and not so much with the volume of data itself.

For all three classification-based applications, at test time, an image is assigned to
the class that receives the highest probability. For annotation, all classes that have a
probability greater than 0.5 are predicted as tags for the image.

5 Experimental Set-up

Datasets: We experimented with the two datasets used in [8]. The first is the out-
door scene recognition dataset [39] (Scenes) containing 2688 images from 8 categories:
coast, forest, highway, inside-city, mountain, open-country, street and tall-building de-
scribed via gist features [39]. The second dataset is a subset of the PubFig: Public
Figures Face Database [10] (Faces) containing 772 images of 8 celebrities: Alex Ro-
driguez, Clive Owen, Hugh Laurie, Jared Leto, Miley Cyrus, Scarlett Johansson, Viggo
Mortensen and Zac Efron described via gist and color features [8]. For both our datasets,
we used the pre-trained relative attributes made publicly available by Parikh et al. [8].
For Scenes they include natural, open, perspective, large-objects, diagonal-plane and
close-depth. For Faces: Masculine-looking, White, Young, Smiling, Chubby, Visible-
Forehead, Bushy-Eyebrows, Narrow-Eyes, Pointy-Nose, Big-Lips and Round-Face.

Applications: For Scenes, we show results on all four applications described above.
The binary classification problems are set up as learning only one of the 8 categories
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(a) “This image is not
perspective enough to
be a street scene.”

(b) “Zac Effon is too
young to be Hugh
Laurie (bottom right).”

(c) open-country,
mountain, forest

(d) street, inside-city,
tall-building

Fig. 2: (a), (b) Example feedback collected from subjects (c), (d) Example images from
Scenes dataset annotated with multiple tags by subjects.

through the entire learning process, which is selected at random in each trial. Images
from the remaining 7 categories are considered to be negative examples. This results in
more negative than positive examples. Many of the images in this dataset can be tagged
with more than one category. For instance, many of the street images can just as easily
be tagged as inside-city, many of the coast images have mountains in the background,
etc. Hence, this dataset is quite suitable for studying the annotation scenario. We collect
annotation labels for the entire dataset as we will describe next. For Faces, we show
results for classification, binary classification and large vocabulary classification (anno-
tation is not applicable since each image displays only one person’s face). For evaluation
purposes, we had to collect exhaustive real human data as attributes-based explanations
(more details below). This restricted the vocabulary of our dataset to be small. However
the domain of celebrity classification lends itself well to large vocabulary classification.

Collecting attributes-based feedback: To gather attributes-based feedback from real
users, we conducted human studies on Amazon Mechanical Turk. We gather all the
data offline, allowing us to run automatic experiments without a live user in the loop,
while still using real data from users. Note that the attribute feedback depends on the
image being classified, and the label predicted by the classifier for that image. Since we
can not anticipate ahead of time what the learner will predict as the label of an image
if actively chosen as the query at some point during the learning process, we collect
feedback for each image being classified into each one of the classes. As stated earlier,
this restricted the number of categories our datasets can have. Note that the restriction
on number of classes was only to systematically evaluate our approach, and is not a
reflection of any limitations of our approach to scale to a large number of classes.

Collecting ground truth annotation labels: We had 5 subjects provide feedback for a
total of 240 images (30 per category) from the Scenes dataset. Six attributes allow for 12
possible feedback statements for each category: “this image is too open to be a forest”
or “this image is not natural enough to be a forest” and so on. The study asked subjects
to select one of the 12 statements that was “most true”. An image was annotated with a
statement for that category if the statement was chosen by at least 2 subjects. In 18% of
the cases, we found that no such statement existed i.e. all 5 subjects selected a different
statement. These cases were left unannotated. In our experiments, no attributes-based
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Fig. 3: Results for four different applications on the Scenes Dataset. See text for details.

explanation was provided for those particular image-category combinations. Hence the
performance reported in our results is an underestimate.

For the Faces dataset, since the categories correspond to individuals, the attributes
we use can be expected to be the same across all images in the category. Hence we
collect feedback at the category-level. For each pair of categories, our 11 attributes
allow for 22 statements such as “Miley Cyrus is too young to be Scarlett Johansson” or
“Miley Cyrus is too chubby to be Scarlett Johansson” and so on. We showed subjects
example images for the celebrities. Again, 5 subjects selected one of the statements that
was “most true”. We found that all category pairs had at least two subjects agreeing on
the feedback. Note that during the learning process, unlike Scenes, every time an image
from class q in the Faces dataset is classified as class l, the same feedback will be used.
Example responses collected from subjects can be seen in Fig. 2 (a), (b).

We annotate all 2688 images in the Scenes dataset with multiple tags. For each im-
age, 5 subjects on Amazon Mechanical Turk were asked to select any of the 8 categories
that they think can be aptly used to describe the image. A tag was retained if at least
2 subjects selected it. For sake of completeness, for each image, we append its newly
collected tags with its ground truth tag from the original dataset (although in most cases
the ground truth label was already provided by subjects). On average, we have 1.6 tags
for every image in the dataset. Example annotations can be seen in Fig. 2 (c), (d).

6 Results

We now present our experimental results on the Scenes and Faces datasets for the ap-
plications described above. We will compare the performance of our approach that uses
both the label-based feedback (Section 4) as well as attributes-based explanations (Sec-
tion 3.1) for each mistake the classifier makes, to the baseline approach of only using
the label-based feedback (Section 4). Hence the difference in information in the label-
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Fig. 4: Results for three different applications on the Faces Dataset. See text for details.

based feedback for the different applications affects both our approach and the baseline.
Any improvement in performance is due to the use of attributes for providing feedback.

Our results are shown in Figs. 3 and 44. We show results in the raw feature space
(feat) i.e. gist for Scenes and gist+color for Faces, as well as in the relative attributes
space (att). The results shown are average accuracies of 20 random trials. For each trial,
we randomly select 50 images as the initial unlabeled training pool of images. Note
that for Scenes, these 50 images come from the 240 images we had subjects annotate
with feedback. The remaining images (aside from the 240 images) in the datasets are
used as test images. On the x-axis are the number of iterations in the active learning
process. Each iteration corresponds to one response from the supervisor as described
earlier. For classification-based applications, accuracy is computed as the proportion of
correctly classified images. For annotation, the accuracy of each of the tags (i.e. class)
in the vocabulary is computed separately and then averaged.

As expected, for classification where the label-based feedback is already informa-
tive, attributes-based feedback provides little improvement. On the other hand, for an-
notation where label-based feedback is quite uninformative, attributes-based feedback
provides significant improvements. This demonstrates the power of attributes-based
feedback in propagating information (i.e. class labels), even if weak, to a large set of
unlabeled images. This results in faster learning of concepts. Particularly with large vo-
cabulary classification, we see that the attributes-based feedback boosts performance
in the raw feature space more than the attributes space. This is because learning in
high-dimensional space with few examples is challenging. The additional feedback of
our approach can better tame the process. Attributes-based feedback also boosts perfor-
mance in the biased binary classification scenario more than in classical classification.
In datasets with a larger bias towards negative examples, the improvement may be even
larger. Note that in many cases, the same classification accuracy can be reached via our
approach using only a fifth of the user’s time as with the baseline approach. Clearly,

4 Number of iterations for binary classification was truncated because performance leveled off
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attributes-based feedback allows classifiers to learn more effectively from their mis-
takes, leading to accelerated learning even with fewer labeled examples.

In Figs. 3 and 4 we also show an oracle-based accuracy for our approach. This is
computed by selecting the feedback at each iteration that maximizes the performance on
a validation set of images. This demonstrates the true potential our approach holds. The
gap between the oracle and the performance using human feedback is primarily due to
lack of motivation of mechanical turk workers to identify the best feedback to provide.
We expect real users of the system to perform between the two solid (red and black)
curves. In spite of the noisy responses from workers, the red curve performs favorably
in most scenarios. This speaks to the robustness of the proposed straightforward idea of
using attributes for classifier feedback.

In Figs. 3 and 4 we also show the accuracy of zero-shot learning using the direct at-
tribute prediction model of Lampert et al. [7]. Briefly, each category is simply described
in terms of which attributes are present and which ones are not. These binary attributes
are predicted for a test image, and the image is assigned to the class with the most
similar signature. We use the binary attributes and binary attributes-based descriptions
of categories from [8]. Note that in this case, the binary attributes were trained using
images from all categories, and hence the categories are not “unseen”. More impor-
tantly, the zero-shot learning descriptions of the categories was exactly what was used
to train the binary attribute classifiers in the first place. We expect performance to be
significantly worse if real human subjects provided the descriptions of these categories.
We see that even this optimistic zero-shot learning performance compares poorly to our
approach. While our approach also alleviates supervision burden (but not down to zero,
of course) by using attributes-based feedback, it still allows access to discriminative
learning, making the proposed form of supervision quite powerful.

7 Discussion and Conclusion

The proposed learning paradigm raises many intriguing questions. It would be interest-
ing to consider the different strategies a user may use to identify what feedback should
be provided to the classifier for its mistake. One strategy may be to provide the most
accurate feedback. That is, when saying “this image is too open to be a forest”, ensur-
ing that there is very little chance any image that is more open than this one could be
a forest. This ensures that incorrect labels are not propagated across the unlabeled im-
ages, but there may be very few images to transfer this information to in the first place.
Another strategy may be to provide very precise feedback. That is, when saying “the
person in this image (Miley Cyrus) is too young to be Scarlett Johansson”, ensuring
that Scarlett Johansson is very close in age to Miley Cyrus. This ensures that this feed-
back can be propagated to many celebrities (all that are older than Scarlett Johansson).
Yet another strategy may be to simply pick the most obvious feedback. Of the many
attributes celebrities can have, some are likely to stand out to users more than others.
For example, if a picture of Miley Cyrus is classified as Zac Efron, most of us would
probably react to the fact that the genders are not consistent. Analyzing the behavior
of users, and perceptual sensitivity of users along the different attributes is part of fu-
ture work. Developing active learning strategies for the proposed learning paradigm is
also part of future work. An image should be actively selected with considerations that
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the supervisor will provide an explanation that would propagate to many other images
relative to the selected image. One can also envision accounting for distance between
images in the attributes space when propagating labels. For instance, if a particular im-
age is too open to be a forest, an image that is significantly more open is extremely
unlikely to be a forest. This leads to interesting calibration questions: when a human
views an image as being “significantly” more open, what is the corresponding differ-
ence in the machine prediction of the relative attributes open? One could also explore
alternative interfaces for the supervisor to provide feedback e.g. providing an automati-
cally selected short-list of relevant attributes to select from. It would be worth exploring
the connections between using attributes-based feedback to transfer information to un-
labeled images and semi-supervised learning. Finally, exploring the potential of this
novel learning paradigm for other tasks such as object detection is part of future work.
Conclusion: In this work we advocate the novel use of attributes as a mode of com-
munication for the human supervisor to provide an actively learning machine classifier
feedback when it predicts an incorrect label for an image. This feedback allows the
classifier to propagate category labels to many more images in the unlabeled dataset
besides just the individual query images that are actively selected. This in turn allows
it to learn visual concepts faster, saving significant user time and effort. We employ a
straight forward approach to incorporate this attributes-based feedback into discrimi-
natively trained classifiers. We demonstrate the power of this feedback on a variety of
visual recognition applications including image classification and annotation on scenes
and faces. What is most exciting about attributes is their ability to allow for communi-
cation between humans and machines. This work takes a step towards exploiting this
channel to build smarter machines more efficiently.
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