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Figure 1: Realtime tracking and retargeting of the facial expressions of the user (inset) captured with an RGB-D sensor.

Abstract

We present a new algorithm for realtime face tracking on commod-
ity RGB-D sensing devices. Our method requires no user-specific
training or calibration, or any other form of manual assistance, thus
enabling a range of new applications in performance-based facial
animation and virtual interaction at the consumer level. The key
novelty of our approach is an optimization algorithm that jointly
solves for a detailed 3D expression model of the user and the cor-
responding dynamic tracking parameters. Realtime performance
and robust computations are facilitated by a novel subspace param-
eterization of the dynamic facial expression space. We provide a
detailed evaluation that shows that our approach significantly sim-
plifies the performance capture workflow, while achieving accurate
facial tracking for realtime applications.
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1 Introduction

Recent advances in realtime performance capture have brought
within reach a new form of human communication. Capturing
dynamic facial expressions of a user and retargeting these expres-
sions to a digital character in realtime allows enacting arbitrary vir-
tual avatars with live feedback. Compared to communication via
recorded video streams that only offer limited ability to alter one’s
appearance, such technology opens the door to fascinating new ap-
plications in computer gaming, social networks, television, training,
customer support, or other forms of online interactions.

Successfully deploying such a technology at a large scale puts high
demands on performance and usability. Facial tracking needs to
be accurate and fast enough to create plausible and responsive ani-
mations that faithfully match the performance of the captured user.
Ease-of-use affects both hardware and system handling. Marker-
based systems, multi-camera capture devices, or intrusive scanners
commonly used in high-end animation production are not suitable
for consumer-level applications. Equally inappropriate are methods
that require complex calibration or necessitate extensive manual as-
sistance to setup or operate the system.

Several realtime methods for face tracking have been proposed that
require only a single video camera [Chai et al. 2003; Amberg et al.
2009; Saragih et al. 2011] or consumer-level RGB-D camera, such
as the Microsoft Kinect [Weise et al. 2011; Baltrusaitis et al. 2012].
Video-based methods typically track a few facial features and often
lack fine-scale detail, which limits the quality of the resulting ani-
mations. Tracking performance can also degrade in difficult light-
ing situations that commonly occur in a home environment, for ex-
ample. Additionally exploiting 3D depth information obtained by
active IR sensing improves tracking accuracy and robustness. This
is commonly achieved using a 3D template model [Bradley et al.
2010; Valgaerts et al. 2012] or building a dynamic 3D expression
model (DEM) that represents the 3D geometry of the individual fa-
cial expressions of the user [Weise et al. 2011]. The DEM allows
formulating facial tracking as a non-rigid registration problem in a
low-dimensional parameter space, thus facilitating robust and effi-
cient tracking.
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However, current methods have one major drawback: The DEM
must be created a priori during a controlled training stage, where
each user is scanned in several pre-defined expressions. Manual
corrections and parameter tuning is often required to achieve sat-
isfactory tracking results. While appropriate for professionals in
animation content creation, such user-specific calibration is a se-
vere impediment for deployment in consumer-level applications.
‘We propose an algorithm that addresses this problem.

Contributions. We introduce an adaptive DEM that combines a
dynamic expression template, an identity PCA model, and a pa-
rameterized deformation model in a low-dimensional representa-
tion suitable for online learning. We show how this generic model
can be adapted to a specific user on-the-fly without any manual as-
sistance. Our core algorithmic contribution integrates online DEM
learning directly into the tracking method. As more and more of
the user’s expression space is observed during tracking, the generic
DEM is progressively adapted to the facial features of the specific
user, which in turn will lead to more accurate tracking. Combined
with state-of-the-art registration methods, our algorithm yields a
fully automatic, realtime face tracking and animation system suit-
able for consumer-level applications (see Figures 1 and 12).

Related work. Animating digital characters based on facial per-
formance capture is a well-established approach in the computer
graphics industry and has been an active area of research. We
briefly review the most common methods, but refer to [Pighin and
Lewis 2006] for a more detailed discussion. Marker-based systems
are widely used to capture realtime performances [Lin and Ouhy-
oung 2005; Deng et al. 2006]. Explicit face markers significantly
simplify tracking, but also limit the amount of spatial detail that can
be captured. Performance capture based on dense 3D acquisition,
such as structured light scanners [Zhang et al. 2004; Weise et al.
2009] or multi-view camera systems [Furukawa and Ponce 2009;
Bradley et al. 2010; Beeler et al. 2011; Valgaerts et al. 2012], have
been developed more recently and proven efficient to capture fine-
scale dynamics. Processing times can be significant, however, of-
ten impeding interactive framerates. Realtime performance can be
achieved by a combination of markers and 3D scanning, while still
preserving fine-scale spatial and temporal detail [Ma et al. 2008;
Bickel et al. 2008; Huang et al. 2011]. However, these systems re-
quire specialized hardware setups that need careful calibration.
None of the above methods is suitable or easily adaptable to the
kind of consumer-level applications that we target, where minimal
hardware setup, realtime performance, and the absence of complex
manual calibration or extensive pre-processing are mandatory.
Several realtime systems have been developed that do not require
complex hardware or markers, but instead operate with a single
camera to record facial performances [Chai et al. 2003; Amberg
et al. 2009; Saragih et al. 2011]. The price for this simplification
in the acquisition system is a substantially lower tracking quality
that often leads to artifacts in the generated face animations. Our
goal is to raise tracking quality while keeping the acquisition sys-
tem simple enough for consumer-level applications and avoiding
any manual system calibration or training.

Recent developments in RGB-D technology, such as the Microsoft
Kinect or Asus Xtion Live, facilitate this goal. The method pre-
sented in [BaltruSaitis et al. 2012] demonstrates how integrat-
ing depth and intensity information in a constrained local model
improves tracking performance significantly compared to image-
based tracking alone. Similarly, the realtime performance-based fa-
cial animation system proposed in [Weise et al. 2011] combines 2D
and 3D non-rigid registration methods in a single optimization to
achieve high-quality tracking. The main drawback of this approach
in the context of consumer applications is the need for extensive
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Figure 2: Adaptive DEM. The user-specific blendshape model B
is created using a combination of identity PCA model, expression

transfer from the template model B*, and corrective deformation
fields for each blendshape.

training. Robust and efficient tracking is achieved by building an
accurate 3D expression model of the user by scanning and pro-
cessing a predefined set of facial expressions. Beyond being time-
consuming, this preprocess is also error-prone. Users are asked to
move their head in front of the sensor in a specific static pose to
accumulate sufficient depth information. However, assuming and
maintaining the correct pose (e.g. mouth open for a specific, pre-
defined opening angle) is difficult and often requires multiple tries.
In contrast, our approach requires no user-specific preprocessing,
nor any calibration or user-assisted training, making the tracking
system operational right away for any new user.

Overview. The input to our system comes from a consumer-level
RGB-D device, such as the Microsoft Kinect or the Asus Xtion
Live, that provides a color image and 3D depth map of 640x480
resolution at 30 Hz. Due to the wide-angle lens, the face is confined
to a region of about 160x160 pixels. Our goal is to estimate expres-
sion parameters that accurately capture the facial dynamics of the
observed user in a representation that is appropriate for animating
digital avatars. Similar to previous work, e.g. [Weise et al. 2011;
Huang et al. 2011], we employ a 3D blendshape model that offers
a compact representation suitable for realtime tracking. In our sys-
tem we build the specific blendshape model of a user concurrently
to the tracking optimization, requiring no preceding training or cal-
ibration stage. Starting from a rough initial estimate, the dynamic
expression model (DEM) is continuously refined as tracking pro-
gresses. As soon as each blendshape has been observed sufficiently
many times, the DEM converges to a steady state.

We first describe our adaptive DEM that can be customized on the
fly to the particular expression space of the user (Section 2). Then in
Section 3 we show how realtime tracking can be achieved by regis-
tering the DEM with the observed image and depth map data, while
concurrently refining the DEM to match the geometry of the ob-
served user. Section 4 provides a detailed evaluation to demonstrate
that our realtime performance-based animation system achieves ac-
curate tracking results (see also accompanying video).



2 Adaptive Dynamic Expression Model

Blendshapes. We represent a DEM as a set of blendshape
meshes B = [bo,...,by,], where by is the neutral pose and
the b;,7 > 0 define specific base expressions. All blendshapes
have the same static mesh combinatorics and are represented by
stacked coordinate vectors. A new facial expression is generated
as F(x) = bg + ABx, where AB = [b; — bo,...,b, — bo],
and X = [z1,...,2,]7 are blendshape weights bounded between
0 and 1. The blendshape representation is well suited for realtime
performance capture because it reduces tracking to estimating the
rigid head alignment and the n blendshape weights for each frame.
As an additional benefit, the blendshapes b; can be chosen to match
pre-defined semantics of common face animation controllers, e.g.
mouth-open, smile, frown, etc., which simplifies post-editing and
animation retargeting.

We denote with B* = [b{, ..., b},] a template blendshape model
that is given a priori, in our case modeled by hand (see additional
material for a complete list of blendshapes). This template model
defines the expression semantics that we want to transfer onto the
DEM of the tracked user during online model building as described
in Section 3. Next, we introduce the main ingredients to achieve this
dynamic adaptation: an identity PCA model, an expression transfer
operator, and corrective deformation fields (Figure 2).

Identity PCA model. We capture variations of face geome-
try across different users with a morphable model as proposed
in [Blanz and Vetter 1999]. Given a large set of meshes of differ-
ent human faces with one-to-one vertex correspondence in neutral
expression, we build a reduced representation using PCA on the
stacked vertex coordinate vectors. Let m be the resulting mean face
and P = [p,,...,p,] the first [ PCA eigenvectors. With such an
orthonormal basis, a specific face model in neutral expression can
be approximated as bp = m + Py with suitable linear coefficients

y=[y1,...,u]"

Expression transfer operator. For a given neutral expression bg
we define approximations for all other blendshapes using a variant
of deformation transfer [Sumner and Popovi¢ 2004], see also [Li
et al. 2010]. Using the template B*, we transfer the known defor-
mation of the neutral expression by to a specific blendshape ex-
pression b}, onto the neutral expression by in order to obtain b;.
Our formulation defines b; as a linear transformation T} bg of the
neutral expression bg. Contrary to previous formulations of defor-
mation transfer [Sumner and Popovi¢ 2004; Botsch et al. 2006], the
operator T; does not depend on bg, which allows the model refine-
ment optimization to be formulated as the solution to a linear sys-
tem that can be computed efficiently and robustly (see Section 3.2).
A derivation of our expression transfer operator T is given in the
appendix.

Corrective deformation fields. The PCA model represents the
large-scale variability of facial geometries in the neutral expression,
but might not capture user-specific details. Similarly, deformation
transfer copies expressions from the template without accounting
for the particular facial dynamics of the user. We therefore apply
additional surface deformation fields to each reconstructed blend-
shape mesh b; € B to obtain a more faithful reconstruction of the
user’s facial expression space.

Per-vertex displacements are modeled using a spectral representa-
tion defined by the k last eigenvectors E = [e1, . . ., ex] of the graph
Laplacian matrix L computed on the 3D face mesh, see [Levy and
Zhang 2010] for more details. A smooth deformation field can then
be defined as a linear combination Ez, where z = [z, . . ., z;,]7 are
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Figure 3: Optimization pipeline. Each frame of the input data
(color image and depth map), is processed with our interleaved op-
timization that alternates tracking and model refinement. The out-
put are tracking parameters (rigid alignment, blendshape weights)
per frame that can be used to drive a virtual avatar in realtime.
Concurrently, the user-specific DEM is adapted according to the
facial characteristics of the observed user.

the spectral coefficients. The spectral basis offers two main advan-
tages in our setting: We can optimize for the corrective deforma-
tions in a low-dimensional space, requiring only & variables to rep-
resent a deformation of a blendshape mesh. In addition, the built-in
smoothness of the low-frequency eigenvectors helps to avoid over-
fitting when aligning the blendshapes to noisy depth maps.

Parameterized DEM. With all this machinery in place, we can
now define a parameterized DEM that can be adapted to a par-
ticular user (see Figure 2). The neutral expression is given as
bo = m + Py + Ezp, i.e., a combination of identity PCA model
and a corrective deformation field. The remaining blendshapes
b1,...,b, are parameterized as

b; = T:bo +Ez; = Tf(m+Py+Ezo) +EZ¢,

i.e., combining expression transfer of the template B* to the neutral
expression by with expression-specific deformation fields.



3 Optimization

The adaptive DEM described in the previous section is at the core of
our tracking optimization algorithm. The goal of this optimization
is to compute accurate tracking parameters, while at the same time
refining the user-specific DEM in realtime.

More precisely, our algorithm solves for

e the rigid alignment of the face model to the input depth map
defined by a rotation matrix R and a translation vector t at
each frame ¢,

o the blendshape weights x = [z1, ..., 2,]” for each frame t,
)" for the neutral

e the identity PCA parameters y = [y, . . .
face expression bg of the user, and

e the deformation coefficients Z = {zo,...,z,} for each
blendshape b;, where z; = [z;1, ... zix]".

We use superscripts to refer to specific time frames, e.g. x* denotes
the blendshape weights at frame ¢t € N, where ¢ = 1 denotes the
first frame. To simplify notation, we omit the superscripts when
irrelevant or clear from the context.

The optimization alternates between two stages as shown in Fig-
ure 3. Stage I estimates the rigid alignment and blendshape weights,
keeping the DEM fixed. Stage Il refines the user-specific DEM by
solving for the PCA parameters y and deformation coefficients Z,
keeping the blendshape weights fixed. We bootstrap this alternating
minimization by initializing the DEM with the PCA reconstruction
for the neutral expression and deformation transfer of the template
DEM as described next.

Initialization. Our system requires the user to enter the sensor’s
field of view in a neutral facial expression. We use the method
of [Viola and Jones 2001] to detect the face and crop the depth
map to obtain a 3D scan of the neutral expression. From this initial
face scan, we compute a first approximation of bg by aligning the
parameterized neutral expression to the depth map. This means that
we solve for the PCA coefficients y and deformation coefficients zo,
as well as the rigid head pose (R, t), by minimizing the common
ICP energy with point-plane constraints [Rusinkiewicz and Levoy
2001]. More specifically, we solve for

arg min ||Ao (Rbo-+t)—co |3+ 81 Dy |13+ B2 | Dezol|5+ 85120 3-
R,t,y,zg
(€Y

Here (Ao, ¢o), is the matrix resp. right-hand side summarizing the
ICP constraint equations in the first term of the objective function
(see [Weise et al. 2011] for details). The remaining summands are
regularization terms with corresponding positive scalar weights (51,
(2, Bs. The term Dpy regularizes the PCA weights, where Dp is
a diagonal matrix containing the inverse of the standard deviation
of the PCA basis. The term Dgzo regularizes the deformation co-
efficients by measuring the bending of the deformation. Dk is the
diagonal matrix of eigenvalues corresponding to the eigenvectors in
E of the Laplacian matrix L [Botsch et al. 2010]. The last summand
penalizes the magnitude of the deformation vectors.

The optimization is solved using the Gauss-Newton method [Mad-
sen et al. 2004]. We initialize the solver with y = zo = 0, the initial
face location is retrieved from the face detector with the user as-
sumed to be front-facing. Given the reconstruction of bj at the first
frame (t = 1), we initialize the additional blendshapes by applying
the deformation transfer operator, i.e. b = T;bj fori =1,...,n.

3.1 Tracking

The tracking stage of the optimization assumes that the DEM is
fixed and solves for the rigid motion (R, t) and blendshape weights
X at timeframe ¢.

Rigid motion tracking. We first estimate R and t

by directly aligning the static reconstructed mesh of

the previous frame with the acquired depth map of

the current frame using ICP with point-plane con- f
straints. To stabilize the rigid motion, the constraints

are only defined for the front head and nose region

of the reconstructed mesh as illustrated in blue on

the right.

Estimating blendshape weights. Given the rigid pose and the
current set of blendshapes B, we now need to estimate the blend-
shape weights x that best match the input data of the current frame.
We formulate this problem as a combined 2D/3D registration. The
2D registration is formulated using optical flow constraints, while
the 3D registration is using ICP as above. This yields a fitting en-
ergy of the form

E = ||A(bo + ABx) — ¢||3, )

where (A, ¢) summarize the registration constraints
on a subset of the face vertices as indicated in blue
on the left. For brevity we omit the specific formulas
here, detailed derivations of the constraint terms can
be found in [Weise et al. 2011]. Our optimization
iteratively minimizes the following energy

arg min Eg + A1 Esmooth + /\2Esparse- 3)
X

Two additional terms, Fsmoon and Egparse With non-negative weights
A1 and A2, are added for regularization. Temporal smoothness is
enforced by penalizing the second-order difference

Esmootn = ||Xt_2 - 2Xt_1 + Xt”;

where ¢ denotes the current timeframe. We also apply the 1-norm
regularization
Esparsc = HXHI

on the blendshape coefficients. We found that this sparsity-inducing
energy is very important to stabilize the tracking (see Figure 4). Be-
cause the blendshape basis are not linearly independent, the same
expression could in principle be represented by different blend-
shape combinations. Favoring a reconstruction with as few blend-
shapes as possible avoids potential blendshape compensation arti-
facts and better matches the blendshape weights a human animator
would chose, which can be advantageous for retargeting. In ad-
dition, the /; regularization leads to a significant speed-up of the
subsequent model refinement stage (Section 3.2), since blendshape
refinement is only performed on blendshapes with non-zero blend-
shape weight (see also Figure 6).

The optimization is performed using a warm started shooting
method [Fu 1998]. The blendshape weights x = [z1,...,2,]"
are bounded between 0 and 1 by projection over the constraint set
at each iteration.

3.2 DEM Refinement

The refinement stage of the optimization adapts the blendshape
model by solving for the PCA parameters y and deformation coeffi-
cients zo, . . ., Zn, keeping the rigid pose (R, t) and the blendshape
weights x computed in the previous stage fixed.
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Figure 4: Comparison between 1y and lo regularization for the
blendshape weight optimization of Equation 3. The 1 regulariza-
tion leads to a lower average fitting error (denoted by fit), but more
importantly, significantly reduces the number of non-zero blend-
shape weights. The red bars on the left show the additionally acti-
vated blendshapes under l2 norm regularization.

We rewrite the fitting energy in Equation 2 as

n
B = [|A(bo + ABx) — c||5 = ||A[zbo + Y z:b] — |3,
=1
where Z = 1 — 3"  x;. Withbg = m + Py + Ezo and b; =

T;bo+Ez;, this term can then be reformulated as Fs = ||Au—¢||3,
where

A=A(@I+ ) oT))

i=1

)E, z1E, ..., z,E],

xI—i—sz

T T T]T

u=I[y ,zy,...,Z,] , and =

a:I—&—le

As previously, we regularize the PCA coefficients y and deforma-
tion coefficients z;, leading to the model refinement energy

Ewr = ||Au—¢[|3+ 51 |Deyl3+ > (BalDez: 3+ Bsl|z13). (4)

=0

Temporal Aggregation. The optimization of the DEM should
not only depend on the current frame, but consider the entire his-
tory of observed expressions. However, directly optimizing over
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Figure 5: Effect of the temporal decay factor v in Equation 5.
Lower values lead to faster reduction in fitting error, measured as
the mean non-rigid ICP error for each frame, but incur more vari-
ance, measured as the mean per-vertex difference between consec-
utive frames.

Algorithm 1: Blendshape Refinement at frame t

1 Initialization: M' = 0,y! =0,s' =0

2 st = 'yst_l —|— 1

3 M! —7 M L4 LAHTA

4y =t yt tE@AYTe

5 Output. u’ = GaussSeidel(M' + D,y u‘™1)

all frames would quickly become prohibitive in terms of memory
and computation overhead. We therefore introduce an aggregation
scheme that keeps the memory cost constant. The optimization is
formulated as

t t—j

arg min 77
vt ot S 35 V'
s205- m =1 j= 1

where ¢ is the current frame and 0 < v < 1 defines an exponential
decay over the frame history. EZ; denotes the refinement energy of
Equation 4 at time j. The optimal solution of this minimization can

be found by solving
D+ A A=Y —————(A)'¥,
P 1’Yt J i=1 23:1 gl
(6)

where D is a diagonal matrix containing the regularization terms of
Equation 4. To solve this system, we propose an online algorithm
based on warm-started Gauss-Seidel optimization [Barrett et al.
1994]. Our algorithm allows optimizing over the entire history of
frames with a fixed memory overhead, as we do not need to store
each frame separately (see Algorithm 1).

El, )

t

Figure 5 illustrates the tradeoff between fitting error and temporal
variance as a function of the parameter . We found v = 0.9 to
provide a good balance and use this value for all our experiments.

Blendshape coverage. In principle, DEM refinement could run
indefinitely to continuously optimize the blendshape model as
tracking progresses. However, we can improve computational per-
formance with a simple heuristic. Blendshapes that have been op-
timized sufficiently many times can be considered “’saturated” and
are removed from the optimization. We define a coverage coeffi-

cient o; = 23:1 :L'Z that measures how well each blendshape b;

#blendshapes time
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0 24
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Figure 6: Optimization performance. Left: The number of blend-
shapes optimized during DEM refinement gradually decreases as
more blendshapes reach the coverage threshold. Right: total com-
putation time per frame as a function of the number of blendshapes
that are optimized in each frame.
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Figure 7: Evaluation of the initial estimation of the neutral expres-
sion bo when varying the number of PCA basis in P and the number
of Laplacian eigenvector in E. The graph shows the mean non-rigid
ICP error averaged over a sequence of 440 frames.

has been observed until the current frame ¢. As soon as o; > &
for some fixed threshold &, the corresponding blendshape b; is
considered saturated and remains constant for the subsequent op-
timization. Since the neutral expression by plays a special role as
the source for expression transfer, we always run the full optimiza-
tion until Z;zl max(z’,0) > &. In practice, this does not affect
performance significantly, since by is the blendshape that is typi-
cally most often observed. Figure 6 gives an indication of the com-
putational overhead of DEM refinement. Since the computational
cost gradually decreases as more blendshapes reach their coverage
thresholds, DEM refinement quickly becomes negligible compared
to the tracking stage of the optimization.

3.3 Implementation

In our current implementation, we employ a blendshape model of
34 blendshapes (see additional material for a complete list). The
identity PCA model is computed from the dataset of [Blanz and
Vetter 1999] that consists of 100 male and 100 female head scans
of young adults. We use 50 PCA basis vectors to approximate the
neutral expression for all our examples. The corrective deforma-
tion fields are represented by 50 Laplacian eigenvectors for each
coordinate (see also Section 4). We empirically determined the pa-
rameters 51 = 0.5, B2 = 0.1, and B3 = 0.001 for Equations 1
and 4, A1 = 10 and A2 = 20 for Equation 3, and & = 10 for
the coverage threshold, and use the same fixed settings for all our
examples.

Our software is implemented in C++ and parallelized using
OpenMP. We use the Eigen library for linear algebra computations
and OpenCYV for the face detector [Viola and Jones 2001] and im-
age processing operations. In order to speed-up the system we do
not optimize for the unknowns of the blendshapes with 0 weight,
keeping them fixed during the Gauss-Seidel optimization. Another
speed improvement is achieved by building (At)TAt per block as
numerous blocks are similar up to a scalar factor, and blocks corre-
sponding to the blendshapes with 0 weights are 0.

To complete the face tracking algorithm, we have implemented a
separate image-based eye tracker. Since the rigid and the non-rigid
alignment accurately determine the location of the eyes in the color
image, we can apply a k-nearest neighbor search in a database

of labeled eyes by cropping, rectifying and normalizing the input
image. This k-nearest neighbor search is implemented using the
OpenCV library. The final result is a weighted average of the labels
of the k neighbors. The result of the eye tracker drives 14 supple-
mentary blendshapes (see additional material) localized around the
eyes. These blendshapes are computed using expression transfer
only and are not part of the model refinement optimization.

Our system achieves sustained framerates of 25 Hz with a latency
of 150 ms on a MacBook Pro with an Intel Core i7 2.7Ghz pro-
cessor, 16 GBytes of main memory, and an NVIDIA GeForce GT
650M 1024MB graphics card.

4 Evaluation

In this section we present several experiments that we have per-
formed to analyze our optimization algorithm, and discuss limita-
tions of our approach.

Dynamic expression model. Figure 7 shows how the optimiza-
tion of the neutral face depends on the number of basis vectors used
for the identity PCA model and the corrective deformation fields,
respectively. Due to the limited number of input samples (200 head
models total), we observed no significant improvement beyond 50
basis vectors for the PCA model. For the deformation fields we
found that 50 Laplacian eigenvectors are sufficient to obtain accu-
rate reconstructions while still enabling realtime performance. The
effect of the deformation fields is also shown for several blend-
shapes in Figure 8, where notable changes can be observed in the
mouth region and around the nostrils. In general, we found these
per-vertex deformations to be important to capture geometric detail,
in particular the asymmetries common in many faces.

€ %‘
y) y)
E ‘ - -

bo = m 4 Py biZT:bo
g

Q R n Q
bo = m + Py + Ez, bi:T:bo-I—EZi

:’9 7mm 10mm 6mm 3mm
) » " ] ]

| | | | | | en | |

| u u u

0 0 0 0

Ezo Ez;

Figure 8: Effect of corrective deformation fields. PCA and expres-
sion transfer only (top), additional deformation fields for both bo
and the b; (middle), color-coded vertex displacements due to the
deformation fields Ez; (bottom).
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Figure 9: Dynamic adaptation of the DEM model for three different
users. The vertical spikes in fitting error indicate when a new user
enters the field of view of the sensor. The DEM quickly adapts to the
new facial geometry. High tracking accuracy is typically achieved
within a second of using the system.

Tracking and DEM refinement. The accompanying video best
demonstrates the quality of tracking achieved by our system. Fig-
ure 5 and Figure 9 show how the fitting error decreases over time
as the DEM is refined concurrently to tracking. The corresponding
adaptation of the blendshapes is illustrated in Figure 10. Figure 11
provides a comparison with a commercial software [Faceshift 2013]
that requires significant user-specific training and manual assistance
to create the DEM. As the plot illustrates, our approach achieves
comparable accuracy, while requiring no training or pre-processing.
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Figure 10: Progressive DEM refinement. Each row shows the tem-
poral evolution of a specific blendshape. The input image on the
right is provided for reference. For this experiment we omit the
PCA initialization to illustrate the robustness of the DEM refine-
ment even when large deformations are required to match the face
geometry of the tracked user.

fitting error

7. mm template only
e

S Ar/ AP AAIN g A\t P

our method FS

/

N

20 40 60 80 100 120 140 frame

Figure 11: Comparison of average fitting error for different track-
ing methods. DEM refinement significantly improves tracking ac-
curacy compared to tracking with the template only. After conver-
gence of the DEM, our method is comparable to the commercial
software Faceshift Studio (FS) that depends on user-specific train-
ing. For this test, FS requires 11 static face scans of the user to
create the expression model, as well as some manual work to assist
the reconstruction, while our approach is completely automatic.

Retargeting. The expression transfer operator (see Section 2 and
Appendix), ensures that the user-specific DEM retains the blend-
shape semantics of the template model. The blendshape weights
computed during tracking can therefore be used directly to drive a
compatible face rig with the same blendshape configuration. This
simple retargeting incurs no extra cost, which is particularly impor-
tant for realtime applications. Figures 1 and 12 show that virtual
avatars with significantly different facial features than the tracked
user can be animated faithfully with our method.

Limitations. Our performance capture system is limited by the
resolution and noise levels of the input device. While future hard-
ware developments are likely to improve the performance of our
system, tracking accuracy is inherently limited by the geometric de-
tail of the template blendshape model. This representation is built
on the premise that the location of facial features is spatially con-
sistent across different users, an assumption that is no longer valid
at small scales. For example, wrinkles typically appear at different
locations for different people. As a consequence, such fine-scale
features are not modeled adequately with our current approach.

In general, the same dynamic expression template might not be op-
timal for all tracked users. For example, children have significantly
different facial dynamics than adults, and it might be more appro-
priate to apply different template models to different age groups.
Since the identity PCA model of [Blanz and Vetter 1999] that we
currently use does not contain any children or older people, we did
not yet investigate this hypothesis further.

The template blendshape model we currently use has been created
in an iterative, empirical process. Starting with the most commonly
used expressions, such as mouth open, smile, etc., we successively
extended the model to include more blendshapes to obtain a more
accurate expression space. This extension has been done with the
advice of professional animators in order to match the established
conventions for blendshape controllers. However, what constitutes
the optimal blendshape model for tracking is not clear. A systematic
study answering this question could be interesting future work.



Figure 12: Mimicry, an application case study using our approach. An observer can simply step in front of the picture frame and the
character depicted in the virtual painting will start mimicking the person’s facial expression in realtime. The sensor is embedded in the

[frame. See also accompanying video.

5 Conclusion

‘We have demonstrated that online model building can replace user-
specific training and manual calibration for facial performance cap-
ture systems, while maintaining high tracking accuracy. Requiring
only a low-cost 3D sensor and no manual assistance of any kind, our
system opens the door for new applications in human communica-
tion, such as in-game puppetry, virtual avatars for social networks,
or computer-assisted realtime training applications.

Beyond exploring these applications, future work will focus on fur-
ther improving tracking accuracy. One interesting possibility would
be to integrate speech analysis for better lip synching. Another
promising avenue for future work is online avatar creation. The
user-specific DEM that we build automatically already constitutes
a fully rigged geometric avatar. Adding reconstruction of texture
and other facial features such as hair would allow building com-
plete digital avatars that can directly be integrated into online ap-
plications. Finally, we would like to investigate the application of
similar online optimizations to other linear models such as Active
Appearance Models or Active Shape Models.
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Appendix: Expression Transfer

In this section we describe our formulation of deformation trans-
fer that we use to deform the neutral expression bg to an expres-
sion b; by transferring the deformation from the neutral expres-
sion by to the expression b; of a template model. We first com-
pute the set of affine transformations {S7,...,S;} deforming the
p triangles of bg to the corresponding ones of b;. As an affine

transformation is not fully characterized by the deformation of a
triangle we instead use tetrahedrons to compute the affine trans-
formations where the fourth vertex is added in the direction per-
pendicular to the triangle [Sumner and Popovi¢ 2004]. The affine
transformation S* of a tetrahedron {v{y, v3z, Vg3, Vo } Of b to the
corresponding tetrahedron { v}, vy, Vi3, Vi4 } of bj is computed as
S* = §:8; "), where St = [viy — Vi1, Vi3 — Vi1, Vis — vii] and
S6 = [Vo2 — Vo1, Vo3 — Vo1, Voa — Vo1 The deformation transfer
problem can then be formulated as

p
argbminz 1S5t0; — tis || + pl[F(bi — bo) |3,

i j=1
where t;; = [Vi2 — Vi1, Vi3 — V;1]; represents two
- edges of the triangle j of b;, F is a diagonal matrix

defining the vertices that need to be fixed between
bo and b; shown in blue on the left, and p is a weight
factor that we fix to ;n = 100 for all our computa-
tions. This optimization can be reformulated as

arg min |[H; Gbo — Gb; |5 + l[F(b; — bo)][3, %)

where G is a matrix transforming vertices to edges and Hj is a
matrix containing the affine transformations mapping each edge of
the template neutral expression bg to the template expression b} .
The optimal solution of this problem is b, = T;bo where T; =
(GTG+F)"*(GTH;G +F) is a linear operator defining the trans-
formation from the neutral expression bg to an expression b; that
matches the transformation of b{; to b;. The main difference of our
formulation compared to previous approaches proposed in [Sum-
ner and Popovi¢ 2004] or [Botsch et al. 2006] is that T; does not
depend on bg. Effectively, our formulation uses a graph Laplacian
instead of a cotan Laplacian, which avoids the weighting factor of
triangle areas of bg in T}, which would make T; bg non-linear with
respect to bg. Since our face meshes are uniformly tessellated, this
simplification has little effect on the resulting deformations (see
Figure 13). However, it allows the DEM refinement optimization
to be formulated as a simple linear system (see Equation 4) which
makes it fast and robust to solve.
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Figure 13: Expression transfer from a template model (top) to the
user-specific model (middle). Our approach gives comparable re-
sults to the method of [Sumner and Popovic 2004 ] (bottom), but can
express the transfer operation as a linear transformation.
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