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Abstract. We define a “good image cluster” as one in which images can be eas-
ily composed (like a puzzle) using pieces from each other, while are difficult to
compose from images outside the cluster. The larger and more statistically sig-
nificant the pieces are, the stronger the affinity between the images. This gives
rise to unsupervised discovery of very challenging image categories. We further
show how multiple images can be composed from each other simultaneously and
efficiently using a collaborative randomized search algorithm. This collaborative
process exploits the “wisdom of crowds of images”, to obtain a sparse yet mean-
ingful set of image affinities, and in time which is almost linear in the size of
the image collection. “Clustering-by-Composition” can be applied to very few
images (where a ‘cluster model’ cannot be ‘learned’), as well as on benchmark
evaluation datasets, and yields state-of-the-art results.

1 Introduction

A fundamental problem in computer vision is that of unsupervised discovery of visual
categories in a collection of images. This is usually approached by applying image
clustering to the collection, thereby grouping the images into meaningful clusters of
shared visual properties (e.g. shared objects or scene properties). The clustering process
aims to find the underlying structures and exploit them to partition the collection into
clusters of “similar” images.

One of the first works on unsupervised category discovery [1] relied on pairwise
affinities between images (using the Pyramid Match Kernel). However, these affini-
ties are typically not strong enough to capture complex visual similarity between im-
ages. Consequently, more sophisticated methods have been proposed, which usually
start with simple pairwise affinities, but refine these iteratively until a ‘common cluster
model’ emerges. These can be common segments [2], common contours [3,4], common
distribution of descriptors [5], representative cluster descriptors [6,7], etc.

However, observing the challenging image collection of Ballet and Yoga images
in Fig. 2, there seems to be no single (nor even few) ‘common model(s)’ shared by all
images of the same category. The poses within each category vary significantly from one
image to another, there is a lot of foreground clutter (different clothes, multiple people,
occlusions, etc.), as well as distracting backgrounds. Therefore, the above methods for
unsupervised ‘learning’ of a shared ‘cluster model’ will most likely fail (not only due
? Funded in part by the Israeli Science Foundation and the Israeli Ministry of Science.
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Fig. 1. Compositions used for computing image affinities.

to the large variability within each category, but also due to the small number of images
per category). In the absence of an emerging ‘common cluster model’, these methods
will be dominated by their simple initial pairwise affinities.

In this paper we suggest an approach, which does not seek a ‘common cluster
model’, but rather uses sophisticated images affinities based on “Similarity by Com-
position” [8]. Although the ballet poses differ from each other, one ballet pose can be
easily composed from pieces of other ballet poses (Fig 1). Our approach detects “statis-
tically significant” regions which co-occur between images. “Statistically significant”
regions are regions which have a low chance of occurring at random. The reoccurrence
of such regions across images induces strong and meaningful affinities, even if they do
not appear in many images (and thus can not be identified as a ‘common model’).

We define a “good image cluster” as one in which each image can be easily com-
posed using statistically significant pieces from other images in the cluster, while is
difficult to compose from images outside the cluster. We refer to this as “Clustering by
Composition”. We further show how multiple images can be composed from each other
simultaneously and efficiently using a collaborative randomized search algorithm. Each
image ‘suggests’ to other images where to search for similar regions within the image
collection. This collaborative process exploits the “wisdom of crowds of images”, to
obtain a sparse yet meaningful set of image affinities, and in time which is almost linear
in the size of the image collection. “Clustering by Composition” can be applied to very
few images, as well as on benchmark datasets, and yields state-of-the-art results.

The rest of this paper is organized as follows: In Sec. 2 we provide a high-level
overview of our approach, which is then detailed in Sections 3, 4, and 5. Experimental
results can be found in Sec. 6.

2 Overview of the Approach

Image affinities by composition: Our image affinities are based on “Similarity by
Composition” [8]. The notion of composition is illustrated in Fig 1. The Ballet image
I0 is composed of a few large (irregularly shaped) regions from the Ballet images I1
and I2. This induces strong affinities between I0 and I1, I2. The larger and more sta-
tistically significant those regions are (i.e., have low chance of occurring at random),
the stronger the affinities. The Ballet image I0 could probably be composed of Yoga
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Fig. 2. Clustering Results on our Ballet-Yoga dataset. This dataset contains 20 Ballet
and 20 Yoga images (all shown here). Images assigned to the wrong cluster are marked
in red. We obtain mean purity of 92.5% (37 out of 40 images are correctly clustered).

images as well. However, while the composition of I0 from other Ballet images is very
simple (a ‘toddler puzzle’ with few large pieces), the composition of I0 from Yoga im-
ages is more complicated (a complex ‘adult puzzle’ with many tiny pieces), resulting
in low affinities. These affinities are quantified in Sec. 3 in terms of the “number of bits
saved” by describing an image using the composition, as opposed to generating it ‘from
scratch’ at random. To obtain reliable clustering, each image should have ‘good com-
positions’ from multiple images in its cluster, resulting in high affinity to many images
in the cluster. Fig 1 illustrates two different ‘good compositions’ of I0.

Note that “good regions” employed in the composition are typically NOT ‘good
image segments’: they are not confined by image edges, may be a part of a segment, or
contain multiple segments. Therefore, such regions cannot be extracted ahead of time
via image segmentation (as in [2,9]). What makes them ‘good regions’ is NOT them
being ‘good segments’, but rather the fact that they co-occur across images, yet, are
statistically significant (non-trivial).

‘Good regions’ are image-specific, and not cluster-specific. A region may co-
occur only once, yet still provide strong evidence to the affinity between two images.
Such an infrequent region cannot be ‘discovered’ as a ‘common cluster shape’ from the
collection (as in [3,4]). Employing the co-occurrence of non-trivial large regions,
allows to take advantage of high-order statistics and geometry, even if infrequent,
and without the necessity to ‘model’ it. Our approach can therefore handle also very
small datasets with very large diversity in appearance (as in Figs. 2, 6).

Efficient “collaborative” multi-image composition: In principle, finding all match-
ing regions of arbitrary size and shape is a very hard problem (already between a pair
of images, let alone in a large image collection). We propose an efficient collabora-
tive randomized algorithm, which simultaneously composes all images in the collection
from each other. Images collaborate by guiding each other where to search for good
regions. This algorithm detects with very high probability the statistically significant
compositions in the collection, in runtime almost linear in the size of the collection.
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Our randomized algorithm is inspired by “PatchMatch” [10], but searches for ’simi-
lar regions’ (as opposed to similar patches or descriptors). We show that when randomly
sampling descriptors across a pair of images, and allowing collaboration between de-
scriptors, large shared regions (of unknown shape, size, or position) can be detected in
linear time O(N) (where N is the size of the image). In fact, the larger the region, the
faster it will be found, and with higher probability. This leverages on the “wisdom of
crowds of pixels”. These ideas are formulated in Sec. 4.

Finding the statistically significant compositions inside a collection of M images
should require in principle to go over all pairs of images - i.e. a complexity ofO(NM2).
However, we show that when all the images in the collection are composed simultane-
ously from each other, we can exploit the “wisdom of crowds of images” to iteratively
generate the most significant compositions for each image (without having to go over
all the image pairs). Images ‘give advice’ to each other where to search in the col-
lection according to their current matches. For example, looking at Fig. 1, image I0 has
strong affinity to images I1, .., I4. Therefore, in the next iteration, I0 can ‘encourage’
I1, .., I4 to search for matching regions in each other. Thus, e.g., I3 will be ‘encouraged’
to sample more in I1 in the next iteration. Note that the shared regions between I1 and
I3 need not be the same as those they share with I0. For example, the entire upper body
of the standing man in I3 is similar to that of the jumping lady in the center of I1.

This process produces within a few iterations a sparse set of reliable affinities (cor-
responding to the most significant compositions). Such sparsity is essential for good
image clustering, and is obtained here via ‘collective decisions’ made by all the images.
The collaboration reduces the computational complexity of the overall composition dra-
matically, to O(NM). In other words, the average complexity per image remains very
small - practically linear in the size of the image O(N), regardless of the number of
images M in the collection! Sec. 4 explains the randomized region search and provides
analysis of its complexity, while Sec. 5 describes the overall clustering algorithm.

3 Computing Image Affinities by Composition

’Similarity by Composition’ [8] defines a similarity measure between a ‘Query image’
Q and a ‘Reference image’ Ref , according to the ‘ease’ of composing Q from pieces
of Ref . Below we explain how we employ those ideas (modified and adapted to the
needs of our algorithm) for computing affinities between images.

Estimating the likelihood of a region R: A region R is represented as an ensem-
ble of descriptors {di}, with their relative positions {li} within R. Let p(R|Ref, T )
denote the likelihood to find the region R ⊂ Q in another image Ref at a loca-
tion/transformation denoted by T . This likelihood is estimated by the similarity between
the descriptors of R and the corresponding descriptors (according to T ) in Ref :

p(R|Ref, T ) = 1

Z

∏
i

exp−|∆di(Ref, T )|
2

2σ2
(1)

where ∆di(Ref, T ) is the error between the descriptor di ∈ R and its correspond-
ing descriptor (via T ) in Ref and Z is a normalization factor. We use the following
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approximation of the likelihood of R, p(R|Ref) according to its best match in Ref :

p(R|Ref) , max
T

p(R|Ref, T )p(T ) (2)

(This forms a lower bound on the true likelihood)
In our current implementation, the descriptors {di} were chosen to be two types of

descriptors (estimated densely in the image): HOG [11] and Local Self-Similarity [12].
These two descriptors have complementary properties: the first captures local texture in-
formation, whereas the second captures local shape information while being invariant
to texture (e.g., different clothing). We assume a uniform prior p(T ) on the transforma-
tions T over all pure shifts. We further allow small local non-rigid deformations of R
(slight deviations from the expected (relative) positions {li} of {di}). Scale invariance
is introduced separately (see Sec. 5).

The ‘Statistical Significance’ of a region R: Recall that we wish to detect large non-
trivial recurring regions across images. However, the larger the region, the smaller its
likelihood according to Eq. (2). In fact, tiny uniform regions have the highest likelihood
(since they have lots of good matches in Ref ). Thus, it is not enough for a region to
match well, but should also have a low probability to occur at random, i.e.:

Likelihood Ratio (R) =
p(R|Ref)
p(R|H0)

(3)

This is the likelihood ratio between the probability of generating R from Ref , vs. the
probability of generating R at random (from a “random process” H0). p(R|H0) mea-
sures the statistical insignificance of a region (high probability = low significance). If a
region matches well, but is trivial, then its likelihood ratio will be low (inducing a low
affinity). On the other hand, if a region is non-trivial, yet has a good match in another
image, its likelihood ratio will be high (inducing a high affinity).

We next present an approach we developed for efficiently estimating p(R|H0), i.e.
the chance of a region R to be generated at random. Assuming descriptors di ∈ R are
independent: p(R|H0) =

∏
i p(di|H0). Given a set of images (the images we wish to

cluster, or a general set of natural images), we define D to be the collection of all the
descriptors extracted from those images. We define p(d|H0) to be the probability of ran-
domly sampling the descriptor d from the collectionD (or its frequency inD). This can
be estimated using Parzen density estimation, but is too time consuming. Instead, we
quantize D into a small rough ‘codebook’ D̂ of a few hundred codewords (e.g., using
k-means or even just uniform sampling). Frequent descriptors in D will be represented
well in D̂ (have low quantization error relative to their nearest codeword), whereas rare
descriptors will have high quantization error. This leads to the following rough approx-
imation, which suffices for our purpose: p(d|H0) = exp− |∆d(H0)|2

2σ2 , where ∆d(H0) is
the error between d and its most similar codeword in D̂.

Fig. 3 displays ∆d(H0) ∝ − log p(d|H0) for a few images of the Ballet/Yoga and
the Animals datasets. Red marks descriptors (HOG) with high error ∆d(H0), i.e., high
statistical significance. Image regions R containing many such descriptors have high
statistical significance (low p(R|H0)). Statistically significant regions in Fig. 3.a ap-
pear to coincide with body gestures that are unique and informative to the separation
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between Ballet and Yoga. Recurrence of such regions across images will induce strong
and reliable affinities for clustering. Observe also that the long horizontal edges (be-
tween the ground and sky in the Yoga image, or between the floor and wall in the Ballet
images) are not statistically significant, since such edges occur abundantly in many im-
ages. Similarly, statistically significant regions in Fig. 3.b coincide with parts of the
animals that are unique and informative for their separation (e.g., the Monkey’s face
and hands, the Elk’s horns, etc.) This is similar to the observation of [13] that the most
informative descriptors for classification tend to have the highest quantization error.

Unlike the common use of codebooks (“bags of descriptors”) in recognition, here
the codebook is NOT used for representing the images. On the contrary, a descriptor
which appears frequently in the codebook is “ignored” or gets very low weight, since it
is very frequently found in the image collection and thus not informative.

The “Saving in Bits” obtained by a region R: According to Shannon, the number of
bits required to ‘code’ a random variable x is − log p(x). Taking the log of Eq. (3) and
using the quantized codebook D̂ yields (disregarding global constants):

log
p(R|Ref)
p(R|H0)

=
∑
i

|∆di(H0)|2 − |∆di(Ref)|2 = “savings in bits” (4)

This is the number of bits saved by generating R from Ref , as opposed to generating
it ‘from scratch’ at random (using H0). Therefore, if a region R is composed of sta-
tistically significant descriptors (with high ∆di(H0)), and has a good match in Ref
(low ∆di(Ref)), then R will obtain very high ‘savings in bits’ (because the difference
between the two errors is large). In contrast, a large recurring uniform region or a long
edge will hardly yield any ‘savings in bits’, since both errors ∆di(H0) and ∆di(Ref)
will be low, resulting in a small difference.

So far we discussed a single regionR. When the query imageQ is composed of mul-
tiple (non-overlapping) regions R1, .., Rr from Ref , we approximate the total ‘savings
in bits’ of Q given Ref , by summing up the ‘savings in bits’ of the individual regions.
This forms the affinity between Q and Ref :

affinity(Q,Ref) = savings(Q|Ref) =
r∑
i=1

savings(Ri|Ref) (5)

4 Randomized Detection of Shared Regions

We propose a randomized algorithm for detecting large unknown (irregularly shaped)
regions which are shared across images. Inspired by “PatchMatch” [10], we exploit
the power of random sampling and the coherence of neighboring pixels (descriptors) to
quickly propagate information. However, unlike PatchMatch, we search for ’matching
regions’, as opposed to matching patches/descriptors.

Although efficient, the theoretical complexity of PatchMatch is O(N logN), where
N is the size of the images. This is because it spends most of its time seeking good
matches for the spurious and isolated descriptors. However, in our application, we wish
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Fig. 3. Statistical significance of descriptors. Red signifies HOG descriptors with the
highest statistical significance (descriptors that rarely appear). Green – lower signifi-
cance; Grayscale – much lower.

Fig. 4. Illustration of Claim 1

to find only large matching regions across images (and ignore the small spurious dis-
tracting ones). We show that this can be done in linear time O(N). In fact, the larger
the region, the faster it will be found (with fewer random samples, and with higher
probability). In other words, and quite surprisingly: region-matching is ‘easier’ than
descriptor-matching! We refer to this as the “wisdom of crowds of pixels”.

The Region Growing (Detection) Algorithm:
Let R be a shared region (of unknown shape, size, or position) between images I1 and
I2 of size N. Let R1 and R2 denote its instances in I1 and I2, respectively. The goal is
to find for each descriptor d1 ∈ R1 its matching descriptor d2 ∈ R2.

(i) Sampling: Each descriptor d ∈ I1 randomly samples S locations in I2, and chooses
the best one. The complexity of this step is O(SN). The chance of a single descriptor
d to accidently fall on its correct match in I2 is very small. However, the chance that at
least one descriptor from R1 will accidently fall on its correct match in R2 is very high
ifR is large enough (see Claim 1 and Fig. 4.a.). Once a descriptor fromR1 finds a good
match in R2, it propagates this information to all the descriptors in R1:

(ii) Propagation: Each descriptor chooses between its best match, and the match pro-
posed by its spatial neighbors. This is achieved quickly via two image sweeps (once
from top down, and once from bottom up). The complexity of this step is O(N).

Complexity: The overall runtime isO(SN). In Claim 1, we prove that for large enough
regions, the required S is a small constant, yielding a overall linear complexity, O(N).

Next we provide a series of claims (Claims 1-4) which quantify the number of ran-
dom samples per descriptor S required to detect shared regions R across images (pairs
and collections of images) at high probability. This is analyzed as a function of the
relative region size in the image |R|/N , the desired detection probability p, and the
number of images M in the image collection. All proofs appear on our project web-
site www.wisdom.weizmann.ac.il/˜vision/ClusterByComposition.html

www.wisdom.weizmann.ac.il/~vision/ClusterByComposition.html
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4.1 Shared Regions between Two Images

For the purpose of analysis only, we assume that the size of all images is N , and that
the transformation between shared regions is a pure rigid shift.

Claim 1 [A single shared region between two images]
Let R be a region which is shared by two images, I1 and I2 of size N . Then:
(a) Using S random samples per descriptor, guarantees to detect the region R with
probability p ≥

(
1− e−S |R|/N

)
.

(b) To guarantee the detection of the region R with probability p ≥ (1 − δ), requires
S = N

|R| log(
1
δ ) random samples per descriptor.

Proof: See project website �
Implication: Fig. 4.a,b graphically illustrates the terms in claim 1.a,b. For example, to
detect a shared region of relative size 10% with probability p ≥ 98% requires S = 40.
Thus, a complexity of O(40N) – linear in N .

Claim 2 [Multiple shared regions between two images]
Let R1, . . . , RL be L shared non overlapping regions between two images I1 and I2. If
|R1|+ |R2|+ . . . |RL| = |R|, then it is guaranteed to detect at least one of the regions
Ri with the same probability p ≥ (1 − δ) and using the same number of random sam-
ples per descriptor S as in the case of a single shared region of size |R|.

Proof: See project website �
Implication: Consider the case where at least 40% of one image can be composed
using several (smaller) pieces of another image. Then according to Fig. 4.b, when using
only S = 10, we are guaranteed to detect at least one of the shared regions with prob-
ability p ≥ 98%. Moreover, as shown in Fig. 4.a, this region will most likely be one
of the largest regions in the composition, since small regions have very low detection
probability with S = 10 (e.g., a region of size 1% has only 10% chance of detection).

4.2 Shared Regions within an Image Collection

We now consider the case of detecting a shared region between a query image and at
least one other image in a large collection of M images. For simplicity, let us first ex-
amine the case where all the images in the collection are “partially similar” to the query
image. We say that two images are “partial similar” if they share at least one large
region (say, at least 10% of the image size). The shared regions Ri between the query
image and each image Ii in the collection may be possibly different (Ri 6= Rj).

Claim 3 [Shared regions within an image collection]
Let I0 be a query image and let I1...IM be “partially similar” to I0. Let R1...RM be
regions of size |Ri| ≥ αN such that Ri is shared by I0 and Ii (regions Ri may overlap
in I0). Using S = 1

α log( 1δ ) samples per descriptor in I0, distributed randomly across
I1...IM , guarantees with probability p ≥ (1− δ) to detect at least one region Ri.
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Proof: See project website �
Implication: The above claim entails that using the same number of samples S per
descriptor as in the case of two images, but now scattered randomly across the entire
image collection, we are still guaranteed to detect at least one of the shared regions with
high probability. This is regardless of the number of images M in the collection! For
example, if the regions are at least 10% of the image size (i.e., α = 0.1), then S = 40
random samples per descriptor in I0, distributed randomly across I1, .., IM , suffice to
detect at least one region Ri with probability 98%.

In practice, however, only a portion of the images in the collection are “partially
similar” to I0, and those are ‘buried’ among many other non-similar images. Let the
number of “partially similar” images be M

C , where 1
C is their portion in the collection.

It is easy to show that in this case we need to use C times more samples in order to
find at least one shared region between I0 and one of the “partially similar” images.
For example, assuming there are 4 clusters and assuming all images in the cluster are
“partially similar” (which is not always the case) then C = 4. Note that typically, the
number of clusters is much smaller than the number of images, i.e. C �M .

Claim 4 [Multiple images vs. Multiple images]
Assume each image in the collection is “partially similar” with at least M

C images
(shared regions ≥ 10% image size), and S = 40C samples per descriptor. Then one
‘simultaneous iteration’ (all the images against each other), guarantees that at least
95% of the images will generate at least one strong connection (find a large shared
region) with at least one other image in the collection with high probability. This prob-
ability rapidly grows with the number of images, and is practically 100% forM ≥ 500.

Proof: See project website �
Implication: Very few iterations thus suffice for all images to generate at least one
strong connection to another image in the collection. Fig. 5 shows a few examples of
such connecting regions detected by our algorithm in the Ballet/Yoga dataset.

5 The Collaborative Image Clustering Algorithm

So far, each image independently detected its own shared regions within the collection,
using only its ‘internal wisdom’ (the “wisdom of crowds of pixels”). We next show how
collaboration between images can significantly improve this process. Each image
can further make ‘scholarly suggestions’ to other images where they should sample and
search within the collection. For example, looking at Fig. 1, image I0 has strong affinity
to images I1, .., I4. Therefore, in the next iteration, I0 can ‘encourage’ I1, .., I4 to search
for matching regions in each other. Thus, e.g., I3 will be ‘encouraged’ to sample more
in I1 in the next iteration. The guided sampling process via multi-image collaboration
significantly speeds up the process, reducing the required number of random samples
and iterations. Within few iterations, strong connections are generated among images
belonging to the same cluster. We refer to this as the “wisdom of crowds of images”.

Instead of exhausting all the random samples at once, the region detection is per-
formed iteratively, each time using a small number of samples. Most of the detected
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regions in the first iterations are inevitably large, since only large regions have high
enough probability to be detected given a small number of samples (according to Claims
1-2 and Fig. 4.a). Subsequently, as we perform more iterations, more samples are added,
and smaller regions also emerge. However, the detection of smaller shared regions is
guided by the connections already made (via the larger shared regions). This increases
the chance that these small regions are also meaningful, thus strengthening connections
within the cluster, rather than detecting small distracting coincidental regions. We typi-
cally choose S (the number of random samples per descriptor), to be twice the number
of clusters (at each iteration). For example, for 4 clusters S = 8 at each iteration.

In a nut-shell, our algorithm starts with uniform random sampling across the en-
tire collection. The connections created between images (via detected shared regions)
induce affinities between images (see Sec. 3). At each iteration, the sampling density
distribution of each image is re-estimated according to ‘suggestions’ made by other im-
ages (guiding it where to sample in the next iteration). This results in a “guided” random
walk through the image collection. Finally, the resulting affinities (from all iterations)
are fed to the N-Cut algorithm [14], to obtain the desired clusters.

Note that N-Cut algorithm (and other graph partitioning algorithms) implicitly rely
on two assumptions: (i) that there are enough strong affinities within each cluster, and
(ii) that the affinity matrix is relatively sparse (with the hope that there are not too
many connections across clusters). The sparsity assumption is important both for com-
putational reasons, as well as to guarantee the quality of the clustering. This is often
obtained by sparsifying the affinity matrix (e.g., by keeping only the top 10 log10M
values in each row [6]). The advantage of our algorithm is that it implicitly achieves
both conditions via the ‘scholarly’ multi-image collaborative search. The ‘suggestions’
made by images to each other quickly generate (within a few iterations) strong intra-
cluster connections, and very few inter-cluster connections.

Notations:

• Fi denotes the mapping between the descriptors of image Ii to their matching descrip-
tors in the image collection. It contains for each descriptor the index of the image of its
match and its spatial displacement in that image. Fi tends to be piece-wise smooth in
areas where matching regions were detected, and quite chaotic elsewhere.

• A denotes the affinity matrix of the image collection. Our algorithm constructs this
matrix using the information obtained by composing images from each other.

• B denotes the“Bit-Saving” matrix at each iteration. The value Bij is “Saving in Bits”
contributed by image Ij to the composition of image Ii, at a specific iteration.

• P denotes the “sampling distribution” matrix at each iteration. Pij is the prior prob-
ability of a descriptor in image Ii to randomly sample descriptors in image Ij when
searching for a new candidate match. Pi (the ith row of P ) determines how image Ii
will distribute its samples across all other images in the collection in the next iteration.

• U denotes the matrix corresponding to a uniform sampling distribution across images.
(i.e., all its entries equal 1

M−1 , except for zeros on the diagonal).
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Fig. 5. Examples of shared regions detected by our algorithm. Detected connecting
regions across images are marked by the same color.

The algorithm;

Initiate affinity matrix to zero: A ≡ 0 and sampling distributions to uniform: P = U ;
for iteration t = 1, . . . , T do

for image i = 1, . . . ,M do
1. Randomly sample according to distribution Pi using S samples;
2. ‘Grow’ regions (Sec. 4), allowing small non-rigidities. This results in the mapping
Fi;
3. Update row i of B (“Bit-Saving”) according to mapping Fi;

end
Update affinity matrix: A = max(A,B);
Update P (using the “wisdom of crowds of images”);
if (t mod J) = 0 (i.e every J-th iteration): Reset the mappings F1, ..., FM ;

end
Impose symmetry on the affinity matrix A by A = max(A,AT );
Apply N-cut [14] on A to obtain K image clusters (we assume K is known);

Explanations:

• Randomly sample according to distribution Pi: Each descriptor in image Ii sam-
ples descriptors at S random locations in the image collection. Each of the S samples is
sampled in 2 steps: (i) an image index j = 1, . . . ,M is sampled according to distribu-
tion Pi (ii) a candidate location in Ij is sampled uniformly. If one of the new candidates
for this descriptor improves the current best match, then it becomes the new match.
•Allow small non-rigidities: We add a local refinement sampling phase at the vicinity
of the current best match, thus allowing for small non-rigid deformations of matched
regions (implemented similarly to the local refinement phase of [10]).
• Update ”Bit-Savings” matrix B: The detected (“grown”) regions need not be ex-
plicitly extracted in order to compute the “Savings-in-bits”. Instead, for each image Ii,
we first disregard all the descriptors which are spuriously mapped by Fi (i.e mapped
in an inconsistent way to their surrounding). Let χi denote all remaining descriptors in
image Ii. These descriptors are part of larger regions grown in Ii. B(i, j) is estimated
using the individual pixel-wise “Savings-in-bits” induced by the mapping Fi, summed
over all the descriptors in χi which are mapped to image Ij :
B(i, j) =

∑
k∈χ,Fi(k)7→Ij |∆dk(H0)|2 − |∆dk(Ij)|2, where ∆dk(Ij) is the error be-

tween descriptor dk in Ii and its match in Ij (induced by Fi).
• Update P (using the “wisdom of crowds of images”): Let us consider a Markov
chain (a “Random Walk”) on the graph whose nodes are the images in the collection.
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We set the transition probability matrix between nodes (images) B̂ to be equal to the
“Bit-Savings” matrix B, after normalizing each row to 1. B̂(i, j) reflects the relative
contribution of each image to the current composition of image Ii. If we start from
state i (image Ii) and go one step in the graph, we will get a distribution equal to B̂i
(the image own “wisdom”). Similarly, if we go two steps we get a distribution B̂2

i (the
neighbors’ “wisdom”). Using these facts, we update the sampling distributions in P as
follows: P = w1B̂ + w2B̂

2 + w3U , where w1 + w2 + w3 = 1. The first term, B̂,
encourages each image to keep sampling in those images where it already found initial
good regions. The second term, B̂2, contains the ‘scholarly’ suggestions that images
make to each other. For example, if image Ii found a good region in image Ij (high
B̂ij), and image Ij found a good region in image Ik (high B̂jk), then B̂2

ik will be high,
suggesting that Ii should sample more densely in image Ik in the next iteration. The
third term, U , promotes searching uniformly in the collection, to avoid getting ‘stuck’
in local minima. The weightsw1, w2, w3 gradually change with the J internal iterations.
At the beginning more weight is given to uniform sampling and at the end of the process
more weight is given to to the guided sampling.
• Reset the mappings {Fi}: This is done every few iterations (J = 3) in order to en-
courage the images to restart their search in other images and look for new connections.

Incorporating Scale Invariance: In order to handle scale invariance, we generate
from each image a cascade of multi-scale images, with relative scales {(

√
0.5)l}3l=0 -

images of size {1, 0.7, 0.5, 0.35} relative to the original image size (in each dimension).
The region detection algorithm is applied to the entire multi-scale collection of images,
allowing region growing also across different scales between images. The multi-scale
cascade of images originating from the same input image are associated with the same
entity in the affinity matrix A.

Complexity (Time & Memory): All matrix computations and updates (max(A,B),
B̂2, update P , etc.) are efficient, both in terms of memory and computation, since the
matrix B is sparse. Its only non-zero entries correspond to the image connections gen-
erated in the current iteration. We set the number of iterations to be T = 10 log10M ,
which is the recommended sparsity of the affinity matrix by [6]. Note that our algorithm
directly estimates a good set of sparse affinities (as opposed to computing a full affin-
ity matrix and then sparsifying it). T is typically a small number (e.g., for M = 1000
images T = 30; for M = 10, 000 images T = 40). The complexity of each iteration is
O(NM) (see Sec. 4). Therefore, the overall complexity of our clustering algorithm is
O(NMlog10(M)) - almost linear in the size of the image collection (NM ).

6 Experimental Results

We tested our algorithm on various datasets, ranging from evaluation datasets (Caltech,
ETHZ), on which we compared results to others, to more difficult datasets (PASCAL),
on which to-date no results were reported for purely unsupervised category discovery.
Finally, we also show the power of our algorithm on tiny datasets. Tiny datasets are
challenging for unsupervised learning, since there are very few images to ‘learn’ from.
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Table 1. Performance evaluation on benchmark datasets

Our Method
Benchmark # of classes Measure [3] [4] [7] Our Method (with restricted

search range)
Caltech 4 F-measure - - 0.87 0.89 0.96
Caltech 10 F-measure - - 0.68 0.79 0.87
Caltech 7 Purity - - 78.9 89.8 90
Caltech 20 Purity - - 65.6 78.9 86.3
ETHZ 5 Purity 76.5 87.3 - 89 95.3

Fig. 6. Clustering Results on our Animal dataset (horses, elks, chimps, bears).

Experiments on Benchmark Evaluation Datasets: We used existing benchmark eval-
uation datasets (Caltech, ETHZ-shape) to compare results against ([7],[3],[4]) using
their experimental setting and measures. Results are reported in Table 1. The four
datasets generated by [7] consist of difficult classes from Caltech-101 with non-rigid
objects and cluttery background (such as leopards and hedgehogs), from 4 classes (189
images) up to 20 classes (1230 images). ETHZ consists of 5 classes: Applelogos, Bot-
tles, Giraffes, Mugs and Swans. For the ETHZ dataset, we followed the experimental
setting of [3] (which crops the images so that the objects are 25% of the image size).
For both Benchmarks, our algorithm obtains state-of-the-art results (see Table 1). Fur-
thermore, when restricting the spatial search range of descriptors to no more than 25%
of the image size (around each descriptor), results improve significantly (see Table 1).
Such a restriction enforces a weak prior on the rough geometric arrangement within the
image. Note that for the case of 10 and 20 Caltech classes, our algorithm obtains 30%
relative improvement over current state-of-the-art.

Experiments on a Subset of Pascal-VOC 2010 Dataset: The Pascal dataset is a very
challenging dataset, due to the large variability in object scale, appearance, and due to
the large amount of distracting background clutter. Unsupervised category discovery is
a much more difficult and ill-posed problem than classification, therefore to-date, no re-
sults were reported on PASCAL for purely unsupervised category discovery. We make a
first such attempt, restricting ourselves at this point to 4 categories: Car, Bicycle, Horse
and Chair. We generated a subset of 100 images per category restricting ourselves to
images labeled “side view” and removing images which simultaneously contain objects
from 2 or more of the above categories (otherwise the clustering problem is not well-
defined). See resulting subset in our project website www.wisdom.weizmann.ac.
il/˜vision/ClusterByComposition.html. Note that in many of the images the
object is extremely small. We tested our algorithm on this subset and obtained a mean

www.wisdom.weizmann.ac.il/~vision/ClusterByComposition.html
www.wisdom.weizmann.ac.il/~vision/ClusterByComposition.html
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purity of 66.5% (a 20% relative improvement over a bag-of-words + N-cut baseline).
In this case, restricting the search range did not yield better results. More detailed clus-
tering results of the PASCAL subset and their analysis appear in the project website.

Experiments on Tiny Datasets: Existing methods for unsupervised category discov-
ery require a large number of images per category (especially for complex non-rigid
objects), in order to ‘learn’ shared ‘cluster models’. To further show the power of our
algorithm, we generated two tiny datasets: the Ballet-Yoga dataset (Fig. 2) and the Ani-
mal dataset (Fig. 6). These tiny datasets are very challenging for unsupervised category
discovery methods, because of their large variability in appearance versus their small
number of images. Our algorithm obtains excellent clustering results for both datasets,
even though each category contains different poses, occlusions, foreground clutter (e.g.
different clothes), and confusing background clutter (e.g. in the animal dataset). The
success of our algorithm can be understood from Figs. 3, 5: Fig. 3 shows that the de-
scriptors with the highest statistical significance are indeed the most informative ones
in each category (e.g., the Monkey’s face and hands, the Elk’s horns, etc.). Fig. 5 shows
that meaningful shared regions were detected between images of the same category.
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