Seeing People in Social Context:

Recognizing People and Social Relationships

Gang Wang¹, Andrew Gallagher², Jiebo Luo², and David Forsyth¹

¹ University of Illinois at Urbana-Champaign, Urbana, IL
² Kodak Research Laboratories, Rochester, NY

ECCV 2010

Presented by Aditya Sankar CSE 590V

Construct Appearance Model

Construct Appearance Model \longrightarrow Recognize

Construct Appearance Model \longrightarrow Recognize

Does not work on weakly labeled data sets

Weak Labeling

Judy, John, Noah and Andrew in the UK

John, Judy and the kids at Eric's wedding

Photo albums, news captions, Flickr tags etc. Label ambiguity increases learning difficulty

People in personal image collections are generally not strangers

Social relationships often exhibit certain visual patterns

People in personal image collections are generally not strangers

Social relationships often exhibit certain visual patterns

In this case:

- Husband and wife are in close proximity
- Husband is taller

Can we improve face recognition by considering these social relationships?

Training input:

Daisy, Noah

Edward, Daisy & Noah

Can we improve face recognition by considering these social relationships?

Training input:

Daisy, Noah

Edward, Daisy & Noah

Social relationships:

Daisy-Noah	->	sibling
Daisy-Edward	->	sibling
Noah-Edward	->	sibling

Birth years:

Daisy: 2002 Noah: 2004 Edward: 2005

Can we improve face recognition by considering these social relationships?

Training input:

Daisy, Noah

Edward, Daisy & Noah

Social relationships:

Daisy-Noah	->	sibling	
Daisy-Edward	->	sibling	
Noah-Edward	->	sibling	i

Birth years:

Daisy: 2002 Noah: 2004 Edward: 2005

?

?

?

Related Work

Automatic Face Annotation

Stone et al. "Autotagging Facebook", CVPR 2008

Weakly Labeled Images

President George W. Bush makes a statement in the Rose Garden while Secretary of **Defense Donald Rumsfeld** looks on, July 23, 2003. Rumsfeld said the United States would release graphic photographs of the dead sons of **Saddam Hussein** to prove they were killed by American troops. Photo by Larry Downing/Reuters

Berg et al. "Names and Faces", CVPR 2004

Contextual Features

Divvala et al."An Empirical Study of Context in Object Detection", CVPR 2008

Representing Social Relationships

 r_{ij} : social relationship between i^{th} and j^{th} person

mother-child father-child grandparent-child husband-wife siblings child-mother child-father child-grandparent wife-husband

 f_{ij} : social relationship 'features' between i^{th} and j^{th} face

- Height difference
- Face size ratio
- Closeness
- Age difference (appearance based)
- Gender (appearance based)

Representing Social Relationships

 r_{ij} : social relationship between i^{th} and j^{th} person

mother-child father-child grandparent-child husband-wife siblings child-mother child-father child-grandparent wife-husband

$\sum_{A} \prod_{i=1}^{N} p(p_i \mid w_{A_i}) \prod_{i=1,j=1}^{N} p(f_{A_i A_j} \mid r_{ij}, t_i, t_j) p(r_{ij} \mid p_i, p_j) p(A)$

$$\sum_{A} \prod_{i=1}^{N} p(p_i \mid w_{A_i}) \prod_{i=1,j=1}^{N} p(f_{A_i A_j} \mid r_{ij}, t_i, t_j) p(r_{ij} \mid p_i, p_j) p(A)$$

Appearance term represented with a discriminative model. w_{Ai} denotes facial features associated with p_i

$$\sum_{A} \prod_{i=1}^{N} p(p_i \mid w_{A_i}) \prod_{i=1,j=1}^{N} p(f_{A_i A_j} \mid \underline{r_{ij}, t_i, t_j}) p(r_{ij} \mid p_i, p_j) p(A)$$

Relationship term represented with a generative model. f_{AiAj} denotes social relationship 'features' between faces A_i and A_j r_{ij} denotes the discrete social relationship between i^{th} and j^{th} person A is a hidden variable that relates names and faces

Since relationships are annotated $p(r_{ij} | p_{i, p_j}) = 1$

Learn using EM

Learn using EM

Parameter: $\widehat{\theta} = \operatorname{argmax}_{\theta} p(P, R, T \mid W, F; \theta)$

Simplifications: System initialized with parameters produced by the baseline model (omits social relationships)

Learn using EM

Parameter: $\widehat{\theta} = \operatorname{argmax}_{\theta} p(P, R, T \mid W, F; \theta)$

Simplifications: System initialized with parameters produced by the baseline model (omits social relationships)

E Step:
$$p(A^* \mid P, R, T, W, F; \theta^{\text{old}}) = \frac{p(P, R, T, W, F \mid A^*; \theta^{\text{old}})p(A^*; \theta^{\text{old}})}{\sum_A p(P, R, T, W, F \mid A; \theta^{\text{old}})p(A; \theta^{\text{old}})}$$

Simplifications: Prior distribution of A treated as uniform distribution. Only assign one p_i to a w_j when $p(p_i | w_j)$ is bigger than a threshold.

Learn using EM

Parameter: $\widehat{\theta} = \operatorname{argmax}_{\theta} p(P, R, T \mid W, F; \theta)$

Simplifications: System initialized with parameters produced by the baseline model (omits social relationships)

E Step:
$$p(A^* \mid P, R, T, W, F; \theta^{\text{old}}) = \frac{p(P, R, T, W, F \mid A^*; \theta^{\text{old}})p(A^*; \theta^{\text{old}})}{\sum_A p(P, R, T, W, F \mid A; \theta^{\text{old}})p(A; \theta^{\text{old}})}$$

Simplifications: Prior distribution of A treated as uniform distribution. Only assign one p_i to a w_j when $p(p_i | w_j)$ is bigger than a threshold.

M Step: Maximize by updating $p(p \mid w)$ and $p(f \mid r, t)$ separately.

Inference

Input

- No name labelsExtract facial features (W)
- and relationship features (F)

Inference

No name labels
Extract facial features (W)

and relationship features (F)

Inference

No name labels
Extract facial features (W) and relationship features (F)

- Tagged faces (P)

Experiment A

Recognizing people with social relationships

Data

Training	Test
Collection I,123 imag 34 people 600 trainin	2: jes g examples

Training Test Collection 3: 1,117 images 152 people

600 training examples

Procedure

Results - Experiment A

Recognizing people with social relationships

Green - Correctly recognized with relationship modeling Red - Incorrectly recognized with relationship modeling

Recognizing people with social relationships

Average improvement: **5.4%**

	without relationships	+height	+closeness	+size	+age	+gender	+all
Collection 1	0.560	0.621	0.628	0.637	0.635	0.630	0.646
Collection 2	0.537	0.563	0.560	0.583	0.573	0.584	0.595
Collection 3	0.343	0.361	0.359	0.362	0.362	0.362	0.361
Overall Mean	0.480	0.515	0.516	0.527	0.523	0.525	0.534

Experiment B

Recognizing social relationships in novel image sets

Data

Training	Test	Test
Collection I: 1,125 images	Collection 2: 1,123 images	Public dataset ^[1] : 5,080 images
47 people 600 training examples	34 people	28,231 people

^[1] A. Gallagher and T. Chen. Understanding Images of Groups of People. In Proc. CVPR, 2009.

Procedure

Train relationship model on Collection I Classify social relationships on previously unseen image

Results - Experiment B

Recognizing social relationships in novel image sets

Husband-Wife

Siblings

Mother-Child

Results - Experiment B

Recognizing social relationships in novel image sets

Confusion Matrices

child-mother .71 .01 .24 .01 .03 mother-child .01 .71 .01 .24 .03 child–father .39 .01 .32 .01 .23 .04 father-child .01 .38 .33 .24 .01 .04 wife-husband .07 .04 .01 .05 .35 .48 husband-wife .07 .01 .03 .04 .40 .44 .07 .02 .02 .05 sibling .07 .05 .73 mother child Shild-father Father child wife-husband husband wife child_mother

Test on Collection 2

Random assignment = 14.3% Average Performance = 50.8%

Test on Public Collection

Random assignment = 20% Average Performance = 52.7%

Discussion

- Relatively large no. of training examples (50% of collection).
 What is the actual overhead of relationship labeling?
- Can we add more appearance based features?
 - Eg. Husband skin tone is darker than wife's *
- Performance of classifier in exceptional cases
 - Wife taller than husband
 - Same-sex couple
- Marginal improvement 5.4%
 - They use Fisher subspace features (weak). Will the gain reduce if we include more attributes?
- Limited to family photos. Other applications?

* Manyam et. al. "Two faces are better than one", IJCB 2011

Thanks!