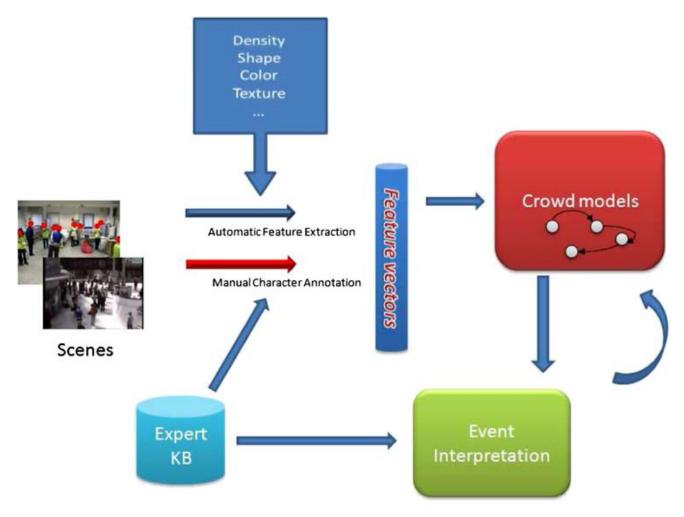
Data-driven Crowd Analysis in Videos

Mikel Rodriguez Josef Sivic

Ivan Laptev Jean-Yves Audibert

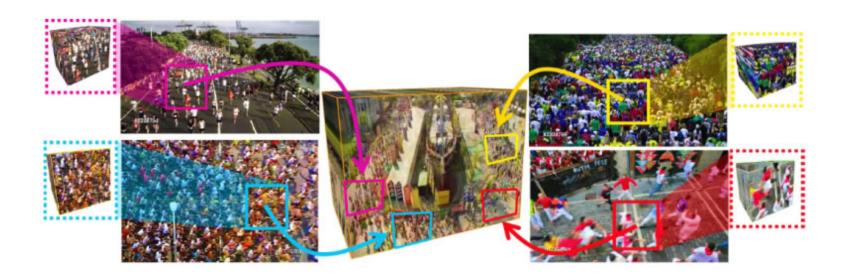
WILLOW project

Presented by Ezgi Mercan

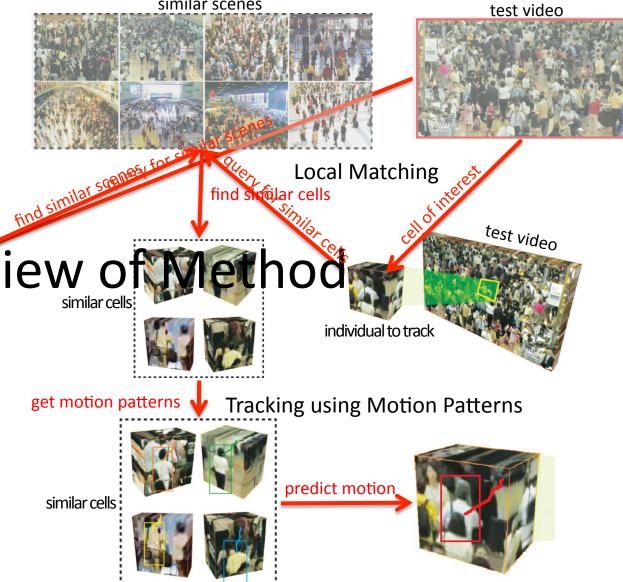

Crowd Analysis

Producto anemore ducino con t

<u>Crowd analysis: a survey</u>, Zhan, B., Monekosso, D.N., Remagnino, P., Velastin, S.A., Xu, L., Machine Vision and Applications, Vol 19, No 5-6, p. 345-357, DOI: 10.1007/s00138-008-0132-4.


Crowd Analysis

<u>Crowd analysis: a survey</u>, Zhan, B., Monekosso, D.N., Remagnino, P., Velastin, S.A., Xu, L., Machine Vision and Applications, Vol 19, No 5-6, p. 345-357, DOI: 10.1007/s00138-008-0132-4.


Data-driven Crowd Analysis

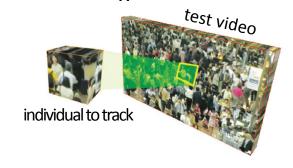
 Any given video can be thought as being a mixture of previously observed videos.

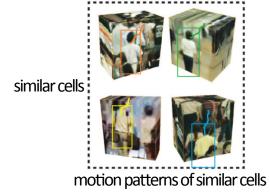
Learning Motion Global Matching similar scenes **Patterns** database

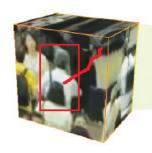
view similar cells get motion patterns 🔱

motion patterns of similar cells

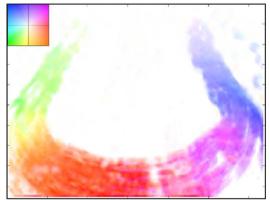
database


Global Matching



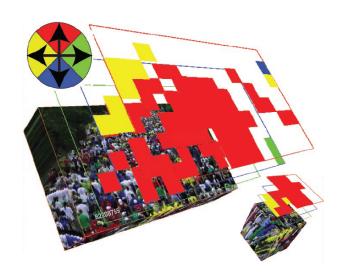

Local Matching

Tracking using Motion Patterns



Low-level Representation: Dense Optical Flow

- For each pixel in each frame, calculate average optical flow.
- Combine the optical flow vectors into a global motion field for a temporal window.
 - temporal window ω = 60 frames
 - spatial window 20 pixel x 20 pixel

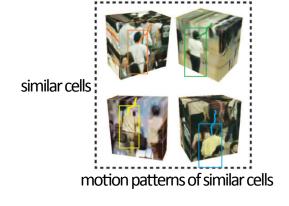


<u>An iterative image registration technique with an application to stereo vision.</u> B. Lucas and T. Kanade. In IJCAI, volume 3, pages 674–679, 1981.

Mid-level Representation: Correlated Topic Model

- CTM captures spatial dependencies of different behaviors in the same scene.
- Video(720x480)=> 10 sec clips=> 36x24 cells(20x20)
- Optical flow is quantized into directions
 => {V₀, V_{up}, V_{down}, V_{left}, V_{right}}
- Motion word dictionary is constructed
- Behavior is (hidden) topic from which motion words are generated.

database



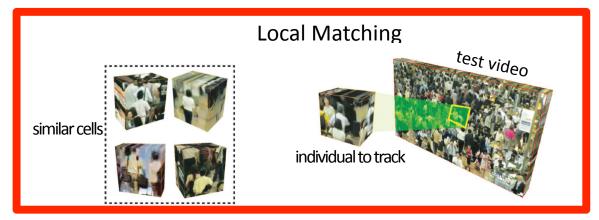
Global Matching similar scenes test video

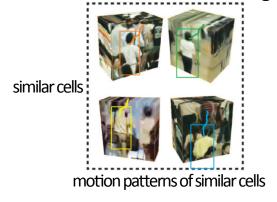
Local Matching

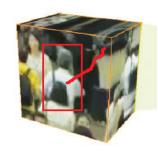
Tracking using Motion Patterns

Global Crowded Scene Matching

- Gist scene descriptor is used to retrieve similar scenes from the database.
- Global matching provides semantically similar scenes.


database


Global Matching

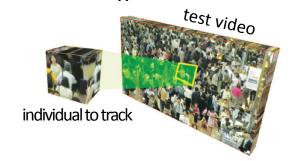


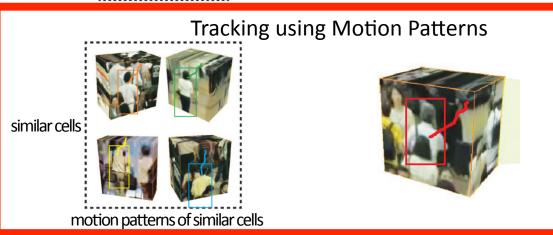
Tracking using Motion Patterns

Local Crowd Patch Matching

- HOG3D is used to retrieve similar patches from the selected scenes.
- HOG3D demonstrates good performance in action recognition.

database


Global Matching



Local Matching

Tracking using Motion Patterns

Prediction of system

Prediction by Kalman filter

Tracker position for person at location *O*

Using:

- Optical Flow
- CTM

Learnt from:

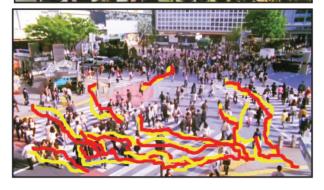
- Test video
- Database of videos

$$P_O = K + \lambda S$$

Experiments

- Data: Downloaded from video web sites using text queries like "crosswalk", "political rally", "festival", "marathon".
- 2 types of experiment:
 - 1. Tracking Typical Crowd Behavior
 - 2. Tracking Rare and Abrupt Events

Experiments



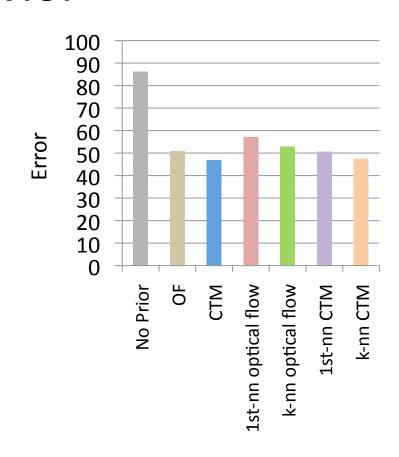
- <u>Test videos</u> are manually annotated to measure the error in pixels.
 - Blue = Typical crowd behavior
 - Red = Rare events

Experiments

- Error = # of pixels between the positions of tracker and individual in each frame
 - Yellow = ground truth
 - Red = tracking results

1st Experiment

Tracking typical crowd behavior


No Prior

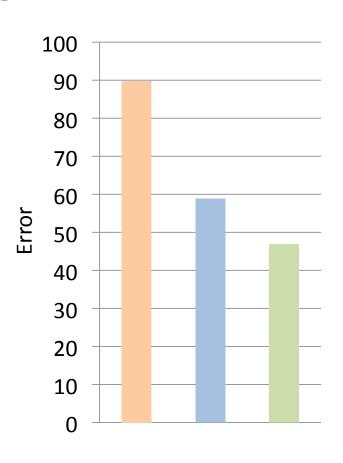
Results for tracking typical crowd behavior

		Error
No prior		86.24
Learned on test video	OF	50.93
	СТМ	46.93
Learned on database	1 st -nn OF	57.06
	3-nn OF	52.76
	1 st -nn CTM	50.59
	3-nn CTM	47.47

Error is measured in pixels.

2nd Experiment

Tracking rare events


Results for tracking rare events

- Red Ground Truth
- YellowBatch mode
- GreenData-driven

Results for tracking rare events

		Error
No prior		89.8
Learned on test video	СТМ	58.82
Learned on database	k-nn CTM	46.88

Error is measured in pixels.

Discussion

- There is no information about the performance of 'just optical flow' method on tracking rare events (2nd experiments).
- There is no information about the speed of the system although it is intended to be an online system.

Resources

• Website:

http://www.di.ens.fr/willow/research/ datadriven/index.html

Database will be public soon.