# CSE590 V : Multi-View Reconstruction

**Avanish Kushal** 

# Multi-View Reconstruction Preserving Weakly-Supported Surfaces [CVPR 2011]

Michael Jancosek Tomas Padjla

#### Motivation

 Reconstruct Surfaces that do not have support in the input 3d point cloud (low textured walls, windows)



# Robust and Efficient surface reconstruction from range-data [CGF- 09]

- P. Labatut
- J. P. Pons
- R. Keriven

### **Problem Definition**

 Reconstruct a surface from a set of merged scans (noisy and outliers)





### Related Work

- 2 Primary Themes
  - Implicit Surfaces (Poisson Surface Reconstruction)



(a) Point cloud plus 50,000, 300,000 and 850,000 outliers



(b) Poisson

Delaunay Methods

 Perform a Delaunay Triangulation/ Tetrahedralization of the 3d point cloud + cameras/sensors.

•

 Perform a Delaunay Triangulation/ Tetrahedralization of the 3d point cloud + cameras/sensors.



- Construct a directed graph
  - Each tetrahedron is a vertex



- Construct a directed graph
  - Each tetrahedron is a vertex



- Construct a directed graph
  - Each tetrahedron is a vertex



- Find an s-t cutset of the directed graph
  - An additional s & t vertex





- Find an s-t cutset of the directed graph
  - The s-t cutset gives the surface



### Formulation

$$E(S) = E_{vis}(S) + \lambda_{qual} E_{qual}(S)$$

 $E_{vis}(S)$ : Visibility Information from points, cameras.

 $E_{qual}(S)$  : Quality of reconstructed surface in terms of size of triangles.

## **Surface Visibility**





(a) Point cloud plus 50,000, 300,000 and 850,000 outliers



(c) Our method

# Multi-View Reconstruction Preserving Weakly-Supported Surfaces[CVPR 2011]

Michael Jancosek Tomas Padjla

### **Problem Definition**

 Reconstruct Surfaces that do not have support in the input 3d point cloud (low textured walls, windows)







Input Image

**Point Cloud** 

Reconstructed Surface using CFG 09



### **Key Claim**

 Large Jump in Free Space Support as we go from outside to inside.

Even true for weakly supported surfaces.

•  $W_s = 9 (3 * 3)$ 



•  $W_t = 3 (1*3)$ 



• W<sub>s</sub> > W<sub>t</sub> -> creates wrong cut.



# Old t-weights



# Modified Weights



### Performance

| DataSet/Method | Baseline[CFG 09](mins) | Ours(mins) |
|----------------|------------------------|------------|
| Castle         | 30                     | 32         |
| Dragon         | 90                     | 94         |





**INPUT IMAGE** 

POINT CLOUD







OUR METHOD



**INPUT IMAGE** 











CFG-09 OUR METHOD



**INPUT IMAGE** 



CGF-09



POINT CLOUD



OUR METHOD

### Discussion

How good is the claim about free space jumps?

What should be the multiplication term?