Event prediction

CS 590v

Applications

- Video search
- Surveillance
 - Detecting suspicious activities
 - Illegally parked cars
 - Abandoned bags
- Intelligent environments
 - Healthcare: fall detector
 - Healthcare: hand-washing prompter

Common approaches

- Compare keypoint (joint) trajectory shapes
- Various spatio-temporal features with classifier

Trajectories of keypoints

- Yilmaz and Shah, 2005 UCF
- Joint trajectories in XYT space
- Compare trajectory shapes to classify actions

Trajectories of keypoints

- Another approach: modeling trajectories likelihood
 - Flag low likelihood events

Scene context

- Idea: transfer event information only from similar images
- Use context to determine expected motion
 - E.g. climber on a rock wall vs. climber on a building

Features for matching images: Gist

Oliva and Torralba, 2001

- Apply oriented Gabor filters over different scales
- Average filter energy in each bin
 - 8 orientations
 - 4 scales
 - <u>x 16</u> bins
 - 512 dimensions

- Used for scene recognition
- Similar to SIFT (Lowe 1999)

Retrieving similar images from large image databases

Image completion using Flickr images

Hays and Efros, 2007

Transfer of knowledge: SIFT-flow

C. Liu, J. Yuen, A. Torralba, 2009

 Can "copy and paste" segmentation labels from similar labeled example to unknown

Task

- Predict motion from static images
- Predict semantic event from static images

Approach: high-level

- Model video as trajectories of keypoints
 - Cluster of trajectories for each object

Global similarity measure

Tracking key points

- KLT feature tracker
 - Solve for the displacement d that optimizes a dissimilarity metric, per pair of consecutive frames
- Cluster trajectories into objects
 - By average distance between them

Comparing track clusters

- Create spatial histogram of cluster velocities
- Sum of histogram intersections is the similarity

$$\mathbf{S}_{clust}(\mathbf{C}_1,\mathbf{C}_2) \equiv \mathbf{I}(H_1,H_2) = \sum_{i \in \mathbf{G}} \sum_{b=1}^8 min\Big(H_1(i,b),H_2(i,b)\Big)$$

1-level spatial pyramid matching

Predicting local motion

Average motion over N nearest neighbors

$$p(motion|x, y, \text{scene}) = \frac{1}{N} \sum_{i}^{N} \frac{1}{M_i} \sum_{j}^{M_i} \sum_{t \in D} K(x - x_{i,j}(t), y - y_{i,j}(t); \sigma)$$

Event prediction

- Match query with similar track clusters from database
- Cluster retrieved tracks to reduce redundant results

Results: local motion prediction

Results: event prediction

Results: event prediction

Unusual events

Overall discussion

- Still need training data from scenes similar to target
- Possible corruption by unusual events in the training set?
- Applications
 - Unusual event detector
 - Knowledge transference between environments

The end