

Visual Phrases CSE 590V

Supasorn Suwajanakorn

Visual Phrases

A person riding a horse

Objects + Interactions

A woman drinks from a water bottle

Visual Phrases

Dog Jumping

Object + Activity

Why do we care?

- So that we understand the scene better
- Help detect individual objects!
 - (... if we have an accurate visual phrase detector)

 Say, we want to detect people as well as describe activity in these pictures

Let's look at what our detectors are good at

Find a person like this

Find a horse like this

So, we can combine these two detectors then try to model the relationship

Using that method, we can excel at finding person in pictures like these

Can we find a person in this picture with good precision? Maybe

VS

Person riding a horse usually has:

Change in Appearance A few postures One leg not visible

How do we take advantage of this?

- A simple solution
 - Add one more class "person riding horse", in addition to "person" and "horse"
 - Train a classifier to detect "person riding horse" using some training examples
 - Done?

Non-maximum suppression

What's wrong with NMS

We could have done better if visual phrase plays a role

Maybe remove this because some person is riding a horse and there shouldn't be another person under the horse

What's wrong with NMS

We could have done better if visual phrase plays a role

If person detector gives a low confidence, but we are pretty sure there are horse and person riding it, confidence for this person should go up

Need a better method that take into account the relationship between objects

NMS to Decoder

Our current pipeline

Novel decoding procedure

"Recognition Using Visual Phrases" Mohammad Sadeghi, Ali Farhadi

NMS to Decoder

Our current pipeline

Novel decoding procedure

"Recognition Using Visual Phrases" Mohammad Sadeghi, Ali Farhadi

Redefine Feature

- Decoding needs more info from features
- Goal: a new representation of feature that is aware of the surrounding features

Consider this "person"-bounding box Suppose this is feature x₁

Now let's consider x_1 in relation with other surrounding "horse"

confid	ence Over	Iap Size	ratio
0	0	0	
0	0	0	
0.8	0.7	1.2	

Consider this "person"-bounding box Suppose this is feature x₁

Now let's consider x₁ in relation with other surrounding "P rides H"

-	confid	ence Over		ratio
	0	0	0	
	0	0	0	
	0.9	0.6	1.8	

Inference (Decoder)

Goal: Decides whether x_i should be in final response

$$Y^* = \{y_1^*, y_2^*, \dots, y_M^*\}$$
$$y_i^* = \arg \max_{y_i} w_{c_i}^T x_i y_i$$

Max margin structure learning

 $X = \{x_1, x_2, \ldots, x_M\}$: *M* bounding boxes / features $Y = \{y_1, y_2, \ldots, y_M\}$: $y_i \in \{0, 1\}$ if x_i should be in final response $c_i \in \{1, 2, \ldots, K\}$: class of i^{th} bounding box. w_{c_i} : the set of weights corresponding to the class of c_i

Comparing Methods

This paper

Sadeghi & Farhadi

Related Method

Discriminative models for multi-class object layout (C. F. C. Desai, D. Ramanan)

$$S(X,Y) = \sum_{i} w_{c_{i}}^{T} x_{i} \qquad S(X,Y) = \sum_{\substack{i,j \\ \text{Pairwise term}}} w_{y_{i},y_{j}}^{T} d_{ij} + \sum_{i} w_{y}^{T} x_{i}$$
No info about surrounding

Problem?

Inference is hard. Need to guess labels (greedily search)

Fix (Sadeghi & Farhadi) No need to guess labels. Labels directly from detectors Infer y_i only (0 or 1) Get exact inference

Phrases	Phrase	Baseline	Gain	
(Trained with 50 positive images)	(AP)	(AP)	(AP)	
Person next to bicycle	0.466	0.252	0.214	
Person lying on sofa	0.249	0.022	0.227	
Horse and rider jumping	0.870	0.035	0.835	
Person drinking from bottle	0.279	0.010	0.269	
Person sitting on sofa	0.262	0.033	0.229	
Person riding horse	0.787	0.262	0.525	
Person riding bicycle	0.669	0.188	0.481	
Person next to car	0.443	0.340	0.103	
Dog lying on sofa	0.235	0.069	0.166	
Bicycle next to car	0.448	0.461	-0.013	
Dog Jumping	0.072	0.134	-0.062	
Person sitting on chair	0.201	0.141	0.060	
Person running	0.718	0.484	0.234	
Person lying on beach	0.179	0.140	0.039	
Person jumping	0.317	0.036	0.281	
Person next to horse	0.351	0.287	0.064	
Dog running	0.504	0.160	0.344	

Baseline:

Optimistic upper-bound on how well one can detect visual phrases by individually detecting participating objects then Modeling the relation.

Significant gain in detecting visual phrases compared to detecting objects and describing their relations.

	bicycle	bottle	car	chair	dog	horse	person	sofa
detectors of [8]	0.434	0.429	0.329	0.213	0.316	0.438	0.295	0.204
[2] without phrases	0.431	0.425	0.191	0.225	0.297	0.475	0.204	0.167
[2] with phrases	0.449	0.435	0.228	0.217	0.316	0.462	0.286	0.204
Our decoding without phrases	0.437	0.434	0.330	0.216	0.329	0.440	0.297	0.218
Our decoding with phrases	0.457	0.435	0.344	0.227	0.335	0.485	0.302	0.260

This method outperforms state-of-the-art object detector+NMS and state-of-the-art multiclass recognition method of C. F. C. Desai, D. Ramana.

Discussion

- Negative examples do not contain participating objects. If we detect person riding horse with a picture of person next to horse, false positive might rise, precision might fall
- Visual phrases in practice, limitations