Pictorial Structures for Articulated Pose Estimation

Ankit Gupta CSE 590V: Vision Seminar

Goal

Articulated pose estimation (

recovers the pose of an articulated object which consists of joints and rigid parts

Classic Approach

Marr & Nishihara 1978

Part Representation

- Head, Torso, Arm, Leg
- Location, Rotation, Scale

Classic Approach

Marr & Nishihara 1978

Fischler & Elschlager 1973 Felzenszwalb & Huttenlocher 2005

Part Representation

- Head, Torso, Arm, Leg
- Location, Rotation, Scale

Pictorial Structure

- Unary Templates
- Pairwise Springs

Classic Approach

Marr & Nishihara 1978

Fischler & Elschlager 1973 Felzenszwalb & Huttenlocher 2005

Part Representation

- Head, Torso, Arm, Leg
- Location, Rotation, Scale

Pictorial Structure

- Unary Templates
- Pairwise Springs

Lan & Huttenlocher 2005 Sigal & Black 2006 Ramanan 2007 Epshteian & Ullman 2007 Wang & Mori 2008 Ferrari etc. 2008

Andriluka etc. 2009 Eichner etc. 2009 Singh etc. 2010 Johnson & Everingham 2010 Sapp etc. 2010 Tran & Forsyth 2010

Pictorial Structures for Object Recognition

Pedro F. Felzenszwalb, Daniel P. Huttenlocher IJCV, 2005

Pictorial structure for Face

- S(I,L)
- *I*: Image
- *l_i*: Location of part *i*

- α_i : Unary template for part *i*
- $\phi(I, l_i)$: Local image features at location l_i

- $\psi(l_i, l_j)$: Spatial features between l_i and l_j
- β_{ij}: Pairwise springs between part i and part j

Using this Model

Train phase

Test phase

Train phase
$$S(I,L) = \sum_{i \in V} \alpha_i \cdot \phi(I,l_i) + \sum_{ij \in V} \beta_{ij} \psi(l_i,l_j)$$

Test phase

Given:

- Images (I)
- Known locations of the parts (L)

Need to learn

- Unary templates α_i
- Spatial features

Train phase
$$S(I,L) = \sum_{i \in V} \alpha_i \cdot \phi(I,l_i) + \sum_{ij \in V} \beta_{ij} \psi(l_i,l_j)$$

Test phase

Given:

- Images (I)
- Known locations of the parts (L)

Need to learn

- Unary templates α_i
- Spatial features β_{ij}

Standard Structural SVM formulation

- Standard solvers available (SVMStruct)

Train phase
$$S(I,L) = \sum_{i \in V} \alpha_i \cdot \phi(I,l_i) + \sum_{ij \in V} \beta_{ij} \psi(l_i,l_j)$$

Test phase
$$S(I, L) = \sum_{i \in V} \alpha_i \cdot \phi(I, l_i) + \sum_{ij \in E} \beta_{ij} \cdot \psi(l_i, l_j)$$

Given:

- Images (I)
- Known locations of the parts (L)

Need to learn

- Unary templates α_i
- Spatial features

Standard Structural SVM formulation - Standard solvers available (SVMStruct)

 β_{ij}

Given: - Image (I)

Need to compute

- Part locations (L)

Algorithm - L* = arg max (S(I,L))

Train phase
$$S(I,L) = \sum_{i \in V} \alpha_i \cdot \phi(I,l_i) + \sum_{ij \in V} \beta_{ij} \psi(l_i,l_j)$$

Test phase $S(I,L) = \sum_{i \in V} \alpha_i \cdot \phi(I,l_i) + \sum_{ij \in E} \beta_{ij} \cdot \psi(l_i,l_j)$

Given:

- Images (I)
- Known locations of the parts (L)

Need to learn

- Unary templates α_i
- Spatial features

Standard Structural SVM formulation

 β_{ii}

- Standard solvers available (SVMStruct)

Given: - Image (I)

Need to compute

- Part locations (L)

Algorithm - L* = arg max (S(I,L))

Standard inference problem - For tree graphs, can be exactly computed using belief propagation

Articulated Pose Estimation with Flexible Mixtures of Parts

Yi Yang & Deva Ramanan University of California, Irvine

Problems with previous methods: Wide Variations

Problems with previous methods: Wide Variations

Naïve brute-force evaluation is expensive

Our Method – "Mini-Parts"

Key idea:

"mini part" model can approximate deformations

Example: Arm Approximation

- $\psi(l_i, l_j)$: Spatial features between l_i and l_j
- β_{ij}: Pairwise springs between part i and part j

The Flexible Mixture Model

• m_i : Mixture of part *i*

Our Flexible Mixture Model

- m_i : Mixture of part *i*
- $\alpha_i^{m_i}$: Unary template for part *i* with mixture m_i

Our Flexible Mixture Model

- m_i : Mixture of part *i*
- $\alpha_i^{m_i}$: Unary template for part *i* with mixture m_i
- $\beta_{ij}^{m_i m_j}$: Pairwise springs between part *i* with mixture m_i and part *j* with mixture m_j

Our Flexible Mixture Model

- m_i : Mixture of part *i*
- $\alpha_i^{m_i}$: Unary template for part *i* with mixture m_i
- $\beta_{ij}^{m_i m_j}$: Pairwise springs between part *i* with mixture m_i and part *j* with mixture m_j

Co-occurrence "Bias"

$$S(M) = \sum_{ij \in E} b_{ij}^{m_i m_j}$$

- b^{m_im_j}: Pairwise co-occurrence prior between part
 i with mixture m_i and part *j* with mixture m_j
- Can also add unary terms b_i^{m_i} to have priors over mixtures of a part

Co-occurrence "Bias": Example

Let

part *i* : eyes, mixture m_i = {open, closed} part *j* : mouth, mixture m_j = {smile, frown}

Co-occurrence "Bias": Example

Let

part *i* : eyes, part *j* : mouth,

mixture m_i = {open, closed} mixture m_j = {smile, frown}

VS

b (closed eyes, smiling mouth)

b (open eyes, smiling mouth)

Co-occurrence "Bias": Example

Let

part *i* : eyes, part *j* : mouth,

mixture m_i = {open, closed} mixture m_j = {smile, frown}

learnt

b (closed eyes, smiling mouth)

b (open eyes, smiling mouth)

Using this Model

Train phase

Test phase

Given:

- Images (I)
- Known locations of the parts (L)

Need to learn

- Unary templates α_i
- Spatial features
- Co-occurrence

S(M)

Standard Structural SVM formulation - Standard solvers available (SVMStruct)

Test phase

Given:

- Images (I)
- Known locations of the parts (L)

Need to learn

- Unary templates α_i
- Spatial features
- Co-occurrence

Standard Structural SVM formulation - Standard solvers available (SVMStruct) **Test phase** $S(I \mid L, M) = \sum_{i \in V} \alpha_i^{m_i} \cdot \phi(I, l_i) + \sum_{ij \in E} \beta_{ij}^{m_i m_j} \cdot \psi(l_i, l_j) + S(M)$

Given:

- Image (I)

Need to compute

- Part locations (L)
- Part mixtures (M)

Algorithm

 $-(L^*,M^*) = \arg \max (S(I,L,M))$

Standard inference problem - For tree graphs, can be exactly computed using belief propagation

Results

Achieving articulation

Achieving articulation

K parts, M mixtures $\Rightarrow K^M$ unique pictorial structures

Not all are equally likely --- "prior" given by S(M)

Qualitative Results

Qualitative Results

Qualitative Results

Failure cases

Benchmark Datasets

PARSE Full-body

http://www.ics.uci.edu/ ~dramanan/papers/parse/ index.html

BUFFY Upper-body

http://www.robots.ox.ac.uk/ ~vgg/data/stickmen/index.html

Quantitative Results on PARSE

% of correctly localized limbs

Method	Head	Torso	U. Legs	L. Legs	U. Arms	L. Arms	Total
Ramanan 2007	52.1	37.5	31.0	29.0	17.5	13.6	27.2
Andrikluka 2009	81.4	75.6	63.2	55.1	47.6	31.7	55.2
Johnson 2009	77.6	68.8	61.5	54.9	53.2	39.3	56.4
Singh 2010	91.2	76.6	71.5	64.9	50.0	34.2	60.9
Johnson 2010	85.4	76.1	73.4	65.4	64.7	46.9	66.2
Our Model	97.6	93.2	83.9	75.1	72.0	48.3	74.9

Image Parse Testset

1 second per image

Quantitative Results on BUFFY

% of correctly localized limbs

Method	Head	Torso	U. Arms	L. Arms	Total
Tran 2010					62.3
Andrikluka 2009	90.7	95.5	79.3	41.2	73.5
Eichner 2009	98.7	97.9	82.8	59.8	80.1
Sapp 2010a	100	100	91.1	65.7	85.9
Sapp 2010b	100	96.2	95.3	63.0	85.5
Our Model	100	99.6	96.6	70.9	89.1

Subset of Buffy Testset

All previous work use explicitly articulated models

More Parts and Mixtures Help

Discussion

- Possible limitations?
- Something other than human pose estimation?
- Can do more useful things with the Kinect?
- Can this encode occlusions well?

References

- <u>http://phoenix.ics.uci.edu/software/pose/</u>
- Code and benchmark datasets available