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Object Classification Problem


 Humans can visually recognize 104 – 105 different 
object categories


 How can we get a machine to be able to do 
the same thing?


What am I?


?
?


Object Classification Problem


 Better image representations

 Global visual histograms, Bag of  features, Spatial 

Pyramid Matching, GIST


 Better classification methods

 Maximum likelihood, k-Nearest Neighbor, linear 

models, SVMs, trees


  Scalable Techniques

 Hierarchical models


Multi-class classification problem


  For each data instance, must choose between a 
large group of  class labels


 Usually no single mathematical function exists to 
correctly separate data into multiple categories at 
once

 We do have binary classifiers that can make decisions 

between two classes


 Use a set of  binary classifiers!
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Binary Classifiers to the Rescue!


 Voting – One Vs. One


Class 1 vs Class 2 

Class 1 vs Class 3 

Class 2 vs Class 4 

Class 2 vs Class 3 

Class 3 vs Class 4 

Class 1 vs Class 4 

Class 1 
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Class 1 

Class 2 

Class 2 
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Binary Classifiers to the Rescue!


 Voting – One Vs. One


  k(k-1)/2 classifiers: O(k2) complexity  


Class 1 vs Class 2 

Class 1 vs Class 3 

Class 2 vs Class 4 

Class 2 vs Class 3 

Class 3 vs Class 4 

Class 1 vs Class 4 

Class 1 

Class 1 

Class 1 
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Class 2 
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Decision: 

Class 1 

Binary Classifiers to the Rescue!


 Competition – One Vs. The Rest


  k classifiers: O(k) complexity  


Class 1 vs others 

Class 3 vs others 

Class 2 vs others 

Class 4 vs others 

Decision: 

Class 1 
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Binary Classifiers to the Rescue!


 Discarding subsequent hypotheses – DAG-SVM

 Platt et al. 2000


  Still O(k) complexity  


Class 1  
vs 

 Class 4 

Decision: 

Class 1 

Class 2  
vs 

 Class 4 

Class 1  
vs 

 Class 3 

Class 1  
vs 

 Class 2 

Class 2  
vs 

 Class 3 

Class 3  
vs 

 Class 4 

Not Class 1 

Not Class 4 

Not Class 3 

Not Class 4 

Not Class 1 

Not Class 2 

Past Approaches


 Classification time scales at best linearly with # of  
categories


 Need to do better if  we have hundreds of  
thousands of  categories!


Motivation for Hierarchical Structures


 Need classification costs that are sub-linear to the 
number of  categories


  Searching a balanced hierarchy/tree structure runs 
in O(log k)


Class 1, Class 2 
 vs  

Class 3, Class 4 
Class 3 

vs 
 Class 4 

Class 1 
vs 

 Class 2 

Decision: 

Class 1 

Open Research Question


 What is the best way to build hierarchies for object 
category classification?

 Top-down vs. bottom-up

 How to choose splits at each node


 Case studies: two recent approaches

 Griffin and Perona 2008 – tree hierarchy

 Marszalek and Schmid 2008 – relaxed hierarchy
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Learning and Using Taxonomies For Fast 
Visual Categorization


Griffin and Perona - 2008


Motivation


 Hierarchies are useful for object classification


 Manually-created hierarchies will not scale well

 Need to be able to automatically generate 

useful hierarchies


 Hierarchies built on existing lexical hierarchies 
(such as WordNet) may not be optimal for visual 
classification


Motivation


 Hierarchies are useful for object classification


 Manually-created hierarchies will not scale well

 Need to be able to automatically generate 

useful hierarchies


 Hierarchies built on existing lexical hierarchies 
(such as WordNet) may not be optimal for visual 
classification

 Need to find a more appropriate way to build 

hierarchies for this task


Building Taxonomies


 Construct confusion matrix from training data

 Train multi-class SVM with Spatial Pyramid Matching 

kernel

 One vs. all classification scheme


 Tried two ways of  building a taxonomy from 
confusion matrix

 Top-down

 Bottom-up
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Building Taxonomies


 Construct confusion matrix from training data

 Train multi-class SVM with Spatial Pyramid Matching 

kernel

 One vs. all classification scheme


 Tried two ways of  building a taxonomy from 
confusion matrix

 Top-down

 Bottom-up


Earth Mover’s Distance


 Measure of  distance between two distributions over 
a region


 Minimal cost to convert one distribution into the 
other
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Earth Mover’s Distance


 Measure of  distance between two distributions over 
a region


 Minimal cost to convert one distribution into the 
other


Spatial Pyramid Matching – "
Grauman and Darrell 2006"

  Similarity measured by feature histogram intersections
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Spatial Pyramid Matching for Images –"
Lazebnik et al. 2006


 Quantize feature vectors into M discrete types


€ 

KL X,Y( ) = κ L Xm,Ym( )
m=1

M

∑

Spatial Pyramid Matching - Image 
Features"

  SIFT features extracted from de-saturated image

 Over 72x72 uniform grid


 M-word vocabulary chosen (M=200)

 Fit random features to a Gaussian mixture model


 Map features to vocabulary words

 Reduce spatial grid to 4x4 for histogramming

 Train SVM based on spatial pyramid matching 

kernel




12/1/08 

7 

Spatial Pyramid Matching - Image 
Features"

  SIFT features extracted from de-saturated image

 Over 72x72 uniform grid


 M-word vocabulary chosen (M=200)

 Fit random features to a Gaussian mixture model


 Map features to vocabulary words

 Reduce spatial grid to 4x4 for histogramming

 Train SVM based on spatial pyramid matching 

kernel


 Any image representation could have been used.


Building the Taxonomy – Top Down


 Recursively split the confusion matrix into two 
parts based on the Self-Tuning Spectral Clustering 
algorithm (Zelnik-Manor and Perona 2004)


 Repeat process until leaves each have one category


Splitting the Confusion Matrix


  Spectral Clustering uses an affinity matrix to cluster 
points

 Affinity matrix                   defined by 


 where i ≠ j, zeros along diagonal

 σ is a static scaling parameter


  Self-tuning Spectral Clustering uses local scaling 
parameters

   


€ 
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Splitting the Confusion Matrix
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Splitting the Confusion Matrix
 Splitting the Confusion Matrix


Splitting the Confusion Matrix
 Building the Taxonomy – Bottom Up


1.  Start with each category in its own group


2.  Pick two groups with the most mutual confusion 
and combine into a larger group


3.  Continue until there is one group that contains all 
the categories


(Agglomerate clustering)
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Training the Branch Classifiers


 Each branch node is trained on the training images 
for the classes used in the decision


 Picked a random subset for SVM training

 Ftrain = 10%


  Split sampled training examples into two “classes”


 Trained an SVM for those two “classes”

 Spatial Pyramid Matching kernel again


Classification


Classification
 Classification
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Classification
 Experiments


 Caltech-256 dataset – training and testing

 Removed clutter category (background images)

 256 object categories

 Tested performance for Ntrain = 10 to 50


 Tested different hierarchy approaches

 Top down vs. bottom up vs. random control


 Tested performance vs. speed for classification

 For different values of  Ntrain 


Experiments
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Experiments


Constructing Category Hierarchies for Visual 
Recognition


Marszalek and Schmid 2008


Problem with Previous Approaches


 As # of  classes grows, finding partitions in the 
feature space becomes more difficult


  Separation problems within the hard constraint of  
tree models for class hierarchies
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Problem with Previous Approaches


 As # of  classes grows, finding partitions in the 
feature space becomes more difficult


  Separation problems within the hard constraint of  
tree models for class hierarchies


The Relaxed Hierarchy (RH)


 Solution: Avoid disjoint partitioning by 
postponing difficult classification decisions


 Do not force classes that lie on a partition boundary 
into either partition

 Include in both 


  Some slow down, still better than O(k) models


Example


A

B 

C
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Example


A

B

C

Example


A

B

C

A vs. C 

Example


A

B

C

A vs. C 
A or B C or B 

Example


A

B

C

A vs. C 

A vs. B B vs. C 

A or B C or B 
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Example


A

B

C

A vs. C 

A vs. B B vs. C 

A B C B 

A or B C or B 

Building the Hierarchy


  Split the training examples S = A ∪ B

 Normalized Cuts


 Use that split to split the classes into three groups

 A-side classes, B-side classes, split classes


 Continue to split for each branch step until:

 Only one class remains in the group

 Classes impossible to split


 Use One vs. The Rest


A 

C 
B B 

Image Representation


 Bag of  features representation over SIFT features

 Regions for SIFT features chosen using interest 

point detectors

 Harris-Laplace and Laplacian


 Invariant to scale transformations


 Use k-means to cluster features and construct visual 
vocabulary (V = 8000)


 Again, methods can be used with any image 
representation


Training branch classifiers


 Train an SVM for each node using the training 
examples from the classes in the node decision


  Instances from classes split at the decision boundary 
are ignored
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Experiments - Data


 Caltech-256 dataset – training and testing


 Use the first 250 categories


 Ntrain = 15


 Rest of  images in each category in study are used 
for testing


Hierarchy Results


Results – Classification Accuracy


OAR (reimpl. of Zhang et al.)  23.6% 

Relaxed Hierarchy (r = 0, sparse IPs)  23.4% 

Using Spatial Pyramid Matching:


Griffin and Perona 2008 (Ntrain = 15) Roughly 14.5% - 28% 

Relaxed Hierarchy (r = 0, dense/grid))  27.9% 

Using image representation just described:


Results - Complexity
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Results – Speed vs. Accuracy
 Summary


 Class hierarchies can be used to perform 
classification in sub-linear time


 Hard class splits in branch classifiers can decrease 
accuracy


  Splits can be relaxed at a computational cost


 Neither paper shows future work, so apparently the 
problem is solved! 


The End!



