

Chloé Kiddon

Object Classification Problem

- Humans can visually recognize 10⁴ 10⁵ different object categories
- How can we get a machine to be able to do the same thing?

Object Classification Problem

- □ Better image representations
 - Global visual histograms, Bag of features, Spatial Pyramid Matching, GIST
- Better classification methods
 Maximum likelihood, k-Nearest Neighbor, linear models, SVMs, trees
- Scalable TechniquesHierarchical models

Multi-class classification problem

- For each data instance, must choose between a large group of class labels
- Usually no single mathematical function exists to correctly separate data into multiple categories at once
 - We do have binary classifiers that can make decisions between two classes
- □ Use a set of binary classifiers!

Past Approaches

- Classification time scales at *best* linearly with # of categories
- Need to do better if we have hundreds of thousands of categories!

Open Research Question

- What is the best way to build hierarchies for object category classification?
 - □ Top-down vs. bottom-up
 - How to choose splits at each node
- Case studies: two recent approaches
 Griffin and Perona 2008 tree hierarchy
 Marszalek and Schmid 2008 relaxed hierarchy

Griffin and Perona - 2008

Learning and Using Taxonomies For Fast Visual Categorization

Motivation

- □ Hierarchies are useful for object classification
- Manually-created hierarchies will not scale well
 Need to be able to automatically generate useful hierarchies
- Hierarchies built on existing lexical hierarchies (such as WordNet) may not be optimal for visual classification

Motivation

- □ Hierarchies are useful for object classification
- Manually-created hierarchies will not scale well
 Need to be able to automatically generate useful hierarchies
- Hierarchies built on existing lexical hierarchies (such as WordNet) may not be optimal for visual classification
 - Need to find a more appropriate way to build hierarchies for this task

Building Taxonomies

- Construct confusion matrix from training data
 Train multi-class SVM with Spatial Pyramid Matching
 - kernel
 - One vs. all classification scheme
- Tried two ways of building a taxonomy from confusion matrix
 - Top-down
 - Bottom-up

Building Taxonomies

- Construct confusion matrix from training data
 Train multi-class SVM with Spatial Pyramid Matching kernel
 - One vs. all classification scheme
- Tried two ways of building a taxonomy from confusion matrix
 - Top-down
 - Bottom-up

Earth Mover's Distance

- Measure of distance between two distributions over a region
- Minimal cost to convert one distribution into the other

Earth Mover's Distance

- Measure of distance between two distributions over a region
- Minimal cost to convert one distribution into the other

Earth Mover's Distance

- Measure of distance between two distributions over a region
- Minimal cost to convert one distribution into the other

Spatial Pyramid Matching - Image Features

- SIFT features extracted from de-saturated image
 Over 72x72 uniform grid
- M-word vocabulary chosen (M=200)
 Fit random features to a Gaussian mixture model
- $\hfill\square$ Map features to vocabulary words
- **Reduce spatial grid to 4x4 for histogramming**
- Train SVM based on spatial pyramid matching kernel

Spatial Pyramid Matching - Image Features

- SIFT features extracted from de-saturated image
 Over 72x72 uniform grid
- □ M-word vocabulary chosen (M=200)
- Fit random features to a Gaussian mixture model
- $\hfill\square$ Map features to vocabulary words
- □ Reduce spatial grid to 4x4 for histogramming
- Train SVM based on spatial pyramid matching kernel
- □ Any image representation could have been used.

Building the Taxonomy - Top Down

- Recursively split the confusion matrix into two parts based on the Self-Tuning Spectral Clustering algorithm (Zelnik-Manor and Perona 2004)
- **Repeat process until leaves each have one category**

Splitting the Confusion Matrix

- Spectral Clustering uses an affinity matrix to cluster points $(-d^2 c_n)^2$
- Affinity matrix $A \in \mathbb{R}^{n \times n}$ defined by $A_{ij} = \exp\left(\frac{-a_i \langle s_i, s_j \rangle}{\sigma^2}\right)$ where $i \neq j$, zeros along diagonal
- $\Box \sigma$ is a static scaling parameter
- Self-tuning Spectral Clustering uses local scaling parameters
 σ_i = d(s_i,s_κ)

Marszalek and Schmid 2008

Constructing Category Hierarchies for Visual Recognition

Problem with Previous Approaches

- As # of classes grows, finding partitions in the feature space becomes more difficult
- Separation problems within the hard constraint of tree models for class hierarchies

Problem with Previous Approaches

- As # of classes grows, finding partitions in the feature space becomes more difficult
- Separation problems within the hard constraint of tree models for class hierarchies

The Relaxed Hierarchy (RH)

- Solution: Avoid disjoint partitioning by postponing difficult classification decisions
- Do not force classes that lie on a partition boundary into either partitionInclude in both
- □ Some slow down, still better than O(k) models

Image Representation

- □ Bag of features representation over SIFT features
- Regions for SIFT features chosen using interest point detectors
- Harris-Laplace and LaplacianInvariant to scale transformations
- Use k-means to cluster features and construct visual vocabulary (V = 8000)
- Again, methods can be used with any image representation

Training branch classifiers

- Train an SVM for each node using the training examples from the classes in the node decision
- Instances from classes split at the decision boundary are ignored

Experiments - Data

- □ Caltech-256 dataset training and testing
- □ Use the first 250 categories
- \square N_{train} = 15
- Rest of images in each category in study are used for testing

Results – Classification Accuracy Using image representation just described:	
Relaxed Hierarchy (r = 0, sparse IPs)	23.4%
Using Spatial Pyramid Matc	hing: Roughly 14.5% - 28%

Summary

- □ Class hierarchies can be used to perform classification in sub-linear time
- Hard class splits in branch classifiers can decrease accuracy
- □ Splits can be relaxed at a computational cost
- Neither paper shows future work, so apparently the problem is solved! ^(C)

