FusionFlow Discrete-Continuous Optimization for Optical Flow Estimation

Victor Lempitsky, MSR Cambridge Stefan Roth, TU Darmstadt Carsten Rother, MSR Cambridge

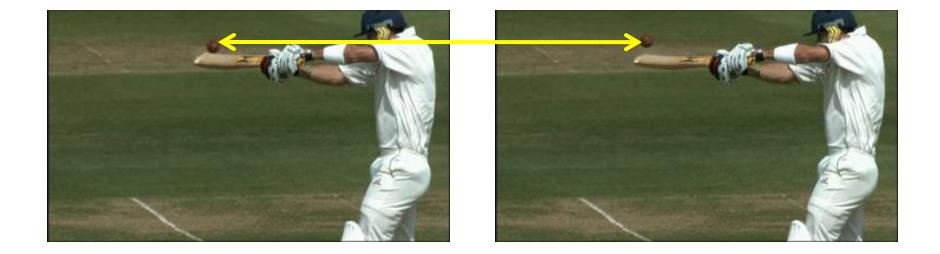
In Proc. IEEE Computer Vision and Pattern Recognition (CVPR), Anchorage, USA, June 2008

Presenter – Ankit Gupta

Outline

- Problem definition
- Previous work
- System overview
- Evaluation
- Conclusion

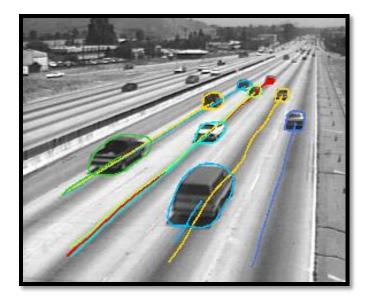
What is optical flow?



Two images I1 and I2 Where did a pixel in I1 go in I2?

Optical flow - Applications

- Tracking for surveillance
- Robotics
- Video editing
- 3D scene structure
- etc



Why isn't it solved yet?

Homogenous regions

Deformations

Lighting changes

Occlusions

Outline

- Problem definition
- Previous work
- System overview
- Evaluation
- Conclusion

Lukas-Kanade [1981]

- Given images: F and G
- F(x+h) = G(x)
- To find h

$$E = \sum_{x} \left[F(x+h) - G(x) \right]^2$$

Use Taylor's expansion to linearize in 'h' and differentiate

$$h = \left[\sum_{x} \left(\frac{\partial F}{\partial x}\right)^{T} \left[G(x) - F(x)\right]\right] \left[\sum_{x} \left(\frac{\partial F}{\partial x}\right)^{T} \left(\frac{\partial F}{\partial x}\right)\right]^{-1}$$

Follow Newton-Raphson type iterations

Lukas-Kanade [1981]

$$h = \left[\sum_{x} \left(\frac{\partial F}{\partial x}\right)^{T} \left[G(x) - F(x)\right]\right] \left[\sum_{x} \left(\frac{\partial F}{\partial x}\right)^{T} \left(\frac{\partial F}{\partial x}\right)\right]^{-1}$$

What is summation on?

- Whole image limited usefulness
- Small patch Whole patch has same motion
- Single pixel Ill conditioned

Horn-Schunck [1981]

Sequence of images as volume: E(x,y,t)

Illumination constancy constraint: dE/dt = 0

Each pixel has its own (u,v) flow vector

One constraint per pixel $(E_x, E_y) \cdot (u, v) = -E_t$ (after linearizing illumination constancy)

Aperture Problem

Horn-Schunck [1981]

Countering the aperture problem

Data term: $\mathscr{C}_b = E_x u + E_y v + E_t$

Smoothness term:

$$\mathscr{C}_{c}^{2} = \left(\frac{\partial u}{\partial x}\right)^{2} + \left(\frac{\partial u}{\partial y}\right)^{2} + \left(\frac{\partial v}{\partial x}\right)^{2} + \left(\frac{\partial v}{\partial y}\right)^{2}$$
$$\mathscr{C}^{2} = \int \int \left(\alpha^{2} \mathscr{C}_{c}^{2} + \mathscr{C}_{b}^{2}\right) dx dy$$

Minimized using differential calculus

Total energy to be minimized:

$$(\alpha^{2} + E_{x}^{2} + E_{y}^{2})u = +(\alpha^{2} + E_{y}^{2})\bar{u} - E_{x}E_{y}\bar{v} - E_{x}E_{t}$$
$$(\alpha^{2} + E_{x}^{2} + E_{y}^{2})v = -E_{x}E_{y}\bar{u} + (\alpha^{2} + E_{x}^{2})\bar{v} - E_{y}E_{t}$$

Convex optimization

Reasons

- Linearization of constraints
- L2 norms for data terms
- Quadratic forms for smoothness

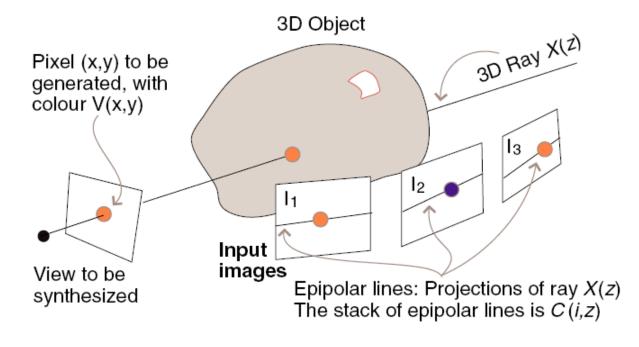
Problems

- Large motions not handled
- Over-smooth motion fields

<u>Optimizing non-convex functions is hard</u>

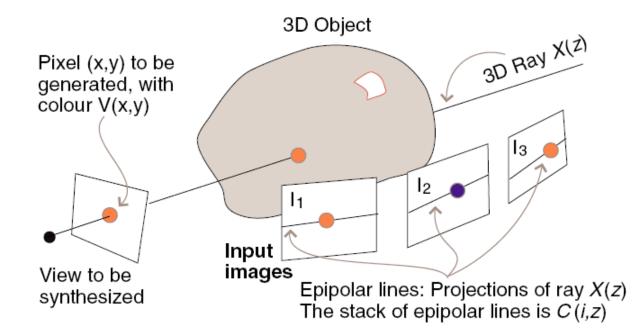
Let's move away from this a bit

A similar optimization in stereo



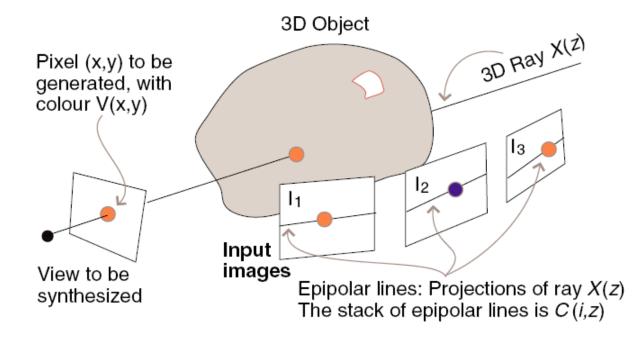
Depths for novel view generation

A similar optimization in stereo



<u>Depths for novel view generation</u> Every pixel in novel view to be assigned a depth and rendered

A similar optimization in stereo



<u>Depths for novel view generation</u> DISCRETE DEPTH LABELING PROBLEM

Discrete labeling model for optical flow

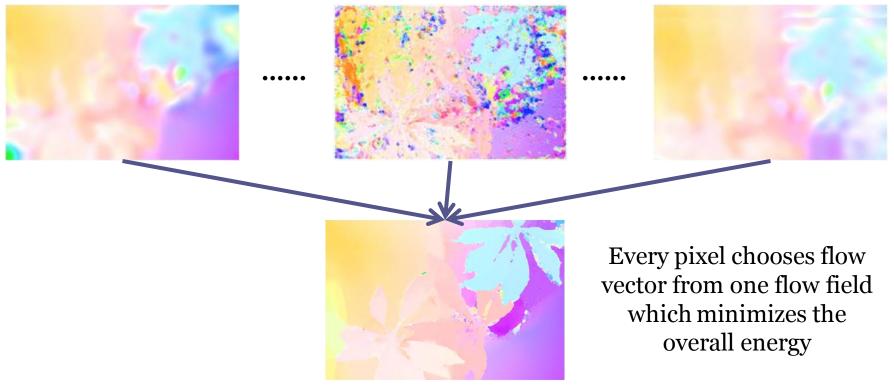
- Each pixel assigned a flow vector
- Problem too many possible labels
- Can we limit the set of labels?
 Cues from existing optical flow algorithms
 Core idea behind current paper

Outline

- Problem definition
- Previous work
- System overview
- Evaluation
- Conclusion

Labeling pixels with flow fields

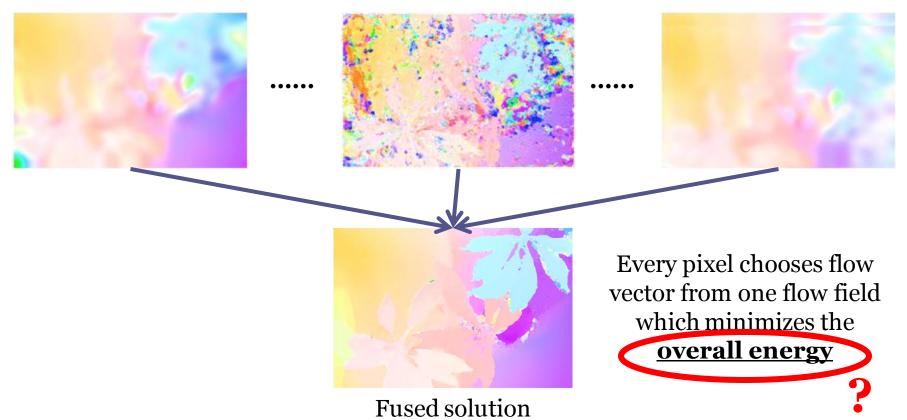
Possible flow fields from existing algorithms



Fused solution

Labeling pixels with flow fields

Possible flow fields from existing algorithms



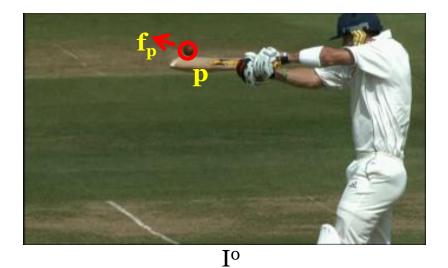
Objective Energy

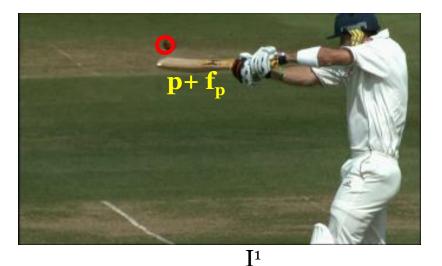
$$E(\mathbf{f}) = \sum_{\mathbf{p}\in\Omega} D_{\mathbf{p}}(f_{\mathbf{p}}; I^0, I^1) + \sum_{(\mathbf{p}, \mathbf{q})\in\mathcal{N}} S_{\mathbf{p}, \mathbf{q}}(f_{\mathbf{p}}, f_{\mathbf{q}})$$
$$f_{\mathbf{p}} = (\mathbf{u}_{\mathbf{p}}, \mathbf{v}_{\mathbf{p}}) \quad \mathbf{p}\in\Omega$$

Objective Energy - Data term

$$E(\mathbf{f}) = \left| \sum_{\mathbf{p} \in \Omega} D_{\mathbf{p}}(f_{\mathbf{p}}; I^{0}, I^{1}) \right| + \sum_{(\mathbf{p}, \mathbf{q}) \in \mathcal{N}} S_{\mathbf{p}, \mathbf{q}}(f_{\mathbf{p}}, f_{\mathbf{q}})$$

$$D_{\mathbf{p}}(f_{\mathbf{p}}; I^{0}, I^{1}) = \rho_{d}(||H^{1}(\mathbf{p} + f_{\mathbf{p}}) - H^{0}(\mathbf{p})||)$$





Objective Energy- Regularization

$$E(\mathbf{f}) = \sum_{\mathbf{p} \in \Omega} D_{\mathbf{p}}(f_{\mathbf{p}}; I^{0}, I^{1}) + \sum_{(\mathbf{p}, \mathbf{q}) \in \mathcal{N}} S_{\mathbf{p}, \mathbf{q}}(f_{\mathbf{p}}, f_{\mathbf{q}})$$
$$f_{\mathbf{p}} = (\mathbf{u}_{\mathbf{p}}, \mathbf{v}_{\mathbf{p}}) \quad \mathbf{p} \in \Omega$$

$$S_{\mathbf{p},\mathbf{q}} = \rho_{\mathbf{p},\mathbf{q}} \left(\frac{u_{\mathbf{p}} - u_{\mathbf{q}}}{||\mathbf{p} - \mathbf{q}||} \right) + \rho_{\mathbf{p},\mathbf{q}} \left(\frac{v_{\mathbf{p}} - v_{\mathbf{q}}}{||\mathbf{p} - \mathbf{q}||} \right)$$

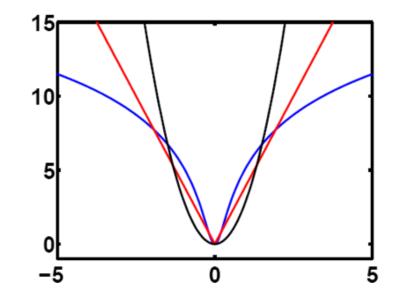
$$\begin{array}{c|c} \mathbf{p} & \mathbf{q} & (u_q, v_q) \\ \hline \\ (u_p, v_p) \end{array}$$

- Neighbors have similar flow vectors
- Use of robust functions

Robust functions for smoothness

$$S_{\mathbf{p},\mathbf{q}} = \rho_{\mathbf{p},\mathbf{q}} \left(\frac{u_{\mathbf{p}} - u_{\mathbf{q}}}{||\mathbf{p} - \mathbf{q}||} \right) + \rho_{\mathbf{p},\mathbf{q}} \left(\frac{v_{\mathbf{p}} - v_{\mathbf{q}}}{||\mathbf{p} - \mathbf{q}||} \right)$$

- $\rho_1(x) = x^2$ [Horn & Schunck]
- $\rho_2(\mathbf{x}) = |\mathbf{x}|$
- $\rho_3(x) = \lambda_{p,q} \log(1+x^2/2v^2)$ [Rother et al IJCV 2006]



Energy optimization

$$E(\mathbf{f}) = \sum_{\mathbf{p}\in\Omega} D_{\mathbf{p}}(f_{\mathbf{p}}; I^0, I^1) + \sum_{(\mathbf{p}, \mathbf{q})\in\mathcal{N}} S_{\mathbf{p}, \mathbf{q}}(f_{\mathbf{p}}, f_{\mathbf{q}})$$

How do we optimize ?

Energy optimization

$$E(\mathbf{f}) = \sum_{\mathbf{p}\in\Omega} D_{\mathbf{p}}(f_{\mathbf{p}}; I^0, I^1) + \sum_{(\mathbf{p}, \mathbf{q})\in\mathcal{N}} S_{\mathbf{p}, \mathbf{q}}(f_{\mathbf{p}}, f_{\mathbf{q}})$$

How do we optimize?

Step 1: Discrete optimization

Labeling over candidate flow fields

Step 2: Continuous optimization

Gradient descent over flow vectors

Discrete Optimization Step

- Candidate solutions as labels
 - Horn & Schunck [1981]
 - Lukas Kanade [1981]
 - Varying hierarchy levels and smoothness, shifted copies etc.
 - Constant flow fields from the fused solution
- Multi-label graph-cuts

Graph Cuts

Two-label problem

- Label affinities
- Neighborhood affinities

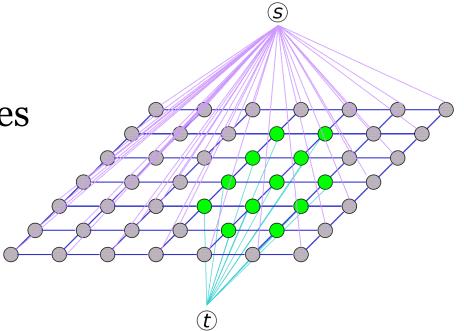
$$E(L) = \sum_{p} E_{p}(L_{p}) + \sum_{pq \in N} E(L_{p}, L_{q}) \quad L_{p} \in \{s, t\}$$

 (\mathbf{S})

Graph Cuts

Two-label problem

- Label affinities
- Neighborhood affinities
- Exactly solvable by max-flow-min-cut algorithm

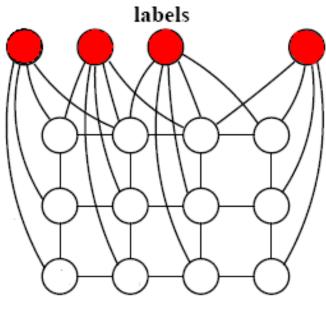


 $E(L) = \sum E_p(L_p) + \sum E(L_p, L_q) \quad L_p \in \{s, t\}$ $pq \in N$

Graph Cuts

<u>Multi-label problem</u>

- Many algorithms
 Belief propagation
 Local moves
 - Alpha-expansion
 - Global moves



pixels

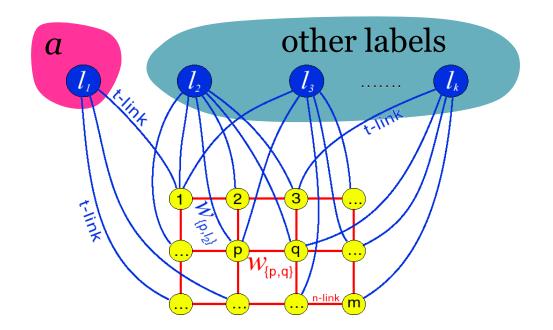
Alpha-expansion algorithm

- 1. Start with any initial solution
- 2. For each label "a" in any (e.g. random) order
 - 1. Compute optimal a-expansion move (s-t graph cuts)
 - 2. Decline the move if there is no energy decrease
- 3. Stop when no expansion move would decrease energy

Alpha-expansion move

Basic idea:

break multi-way cut computation into a **sequence of binary** *s-t* **cuts**



Taken from Yuri Boykov's ICCV 2007 tutorial

Multi-label graph cuts

original pair of "stereo" images

depth map ??

Taken from Yuri Boykov's ICCV 2007 tutorial

Alpha-expansion moves

For each move we choose expansion that gives the largest decrease in the energy: **binary optimization problem**

$$E(\mathbf{f}) = \sum_{\mathbf{p}\in\Omega} D_{\mathbf{p}}(f_{\mathbf{p}}; I^0, I^1) + \sum_{(\mathbf{p},\mathbf{q})\in\mathcal{N}} S_{\mathbf{p},\mathbf{q}}(f_{\mathbf{p}}, f_{\mathbf{q}})$$

TOO MANY

- Labels
 Algorithms instead of flow vectors
- Energy term ⇔ Flow vectors from algorithms

$$E(\mathbf{f}) = \sum_{\mathbf{p}\in\Omega} D_{\mathbf{p}}(f_{\mathbf{p}}; I^0, I^1) + \sum_{(\mathbf{p}, \mathbf{q})\in\mathcal{N}} S_{\mathbf{p}, \mathbf{q}}(f_{\mathbf{p}}, f_{\mathbf{q}})$$

γοο μανγ

- Labels
 Algorithms instead of flow vectors
- Energy term ⇔ Flow vectors from algorithms
- Essentially fusing fields together
- Alpha expansion Expand a **flow field label**

$$E(\mathbf{f}) = \sum_{\mathbf{p}\in\Omega} D_{\mathbf{p}}(f_{\mathbf{p}}; \ I^0, I^1) + \sum_{(\mathbf{p}, \mathbf{q})\in\mathcal{N}} S_{\mathbf{p}, \mathbf{q}}(f_{\mathbf{p}}, f_{\mathbf{q}})$$

Fusion move [Lempitsky et al, ICCV 2007]

- Expand a flow field label (fusion)
- Problem Non-submodular energy

Submodularity condition

- L and M be two labels assigned to neighbors p and q
- $E_{p,q}(L,L) + E_{p,q}(M,M) \le E_{p,q}(L,M) + E_{p,q}(M,L)$
- Cannot be guaranteed to hold true when L and M are flow fields

$$E(\mathbf{f}) = \sum_{\mathbf{p}\in\Omega} D_{\mathbf{p}}(f_{\mathbf{p}}; \ I^0, I^1) + \sum_{(\mathbf{p}, \mathbf{q})\in\mathcal{N}} S_{\mathbf{p}, \mathbf{q}}(f_{\mathbf{p}}, f_{\mathbf{q}})$$

Fusion move [Lempitsky et al, ICCV 2007]

- Expand a flow field label (fusion)
- Non-submodular energy → Alpha-expansion not possible
- QPBO (Quadratic Pseudo-Boolean Optimization) instead of graph cuts [Boros&Hummer, 2002]

Discrete Optimization Step

Input images

Discrete Optimization Step



Final (energy = 7483)

Energy optimization

$$E(\mathbf{f}) = \sum_{\mathbf{p}\in\Omega} D_{\mathbf{p}}(f_{\mathbf{p}}; I^0, I^1) + \sum_{(\mathbf{p}, \mathbf{q})\in\mathcal{N}} S_{\mathbf{p}, \mathbf{q}}(f_{\mathbf{p}}, f_{\mathbf{q}})$$

How do we optimize?

Step 1: Discrete optimization

Labeling over candidate flow fields

Step 2: Continuous optimization

Gradient descent over flow vectors

Continuous Optimization

- Why another step
 - Good candidates not available in some regions
- Same energy function

$$E(\mathbf{f}) = \sum_{\mathbf{p}\in\Omega} D_{\mathbf{p}}(f_{\mathbf{p}}; I^0, I^1) + \sum_{(\mathbf{p}, \mathbf{q})\in\mathcal{N}} S_{\mathbf{p}, \mathbf{q}}(f_{\mathbf{p}}, f_{\mathbf{q}})$$

Use of conjugate gradients

Continuous Optimization



After discrete step (energy = 7483) Finally (energy = 5788)

Outline

- Problem definition
- Previous work
- System overview
- Evaluation
- Conclusion

Evaluation

• Talk about Middlebury dataset [Baker et al ICCV 2007]

(switch to web page)

Evaluation

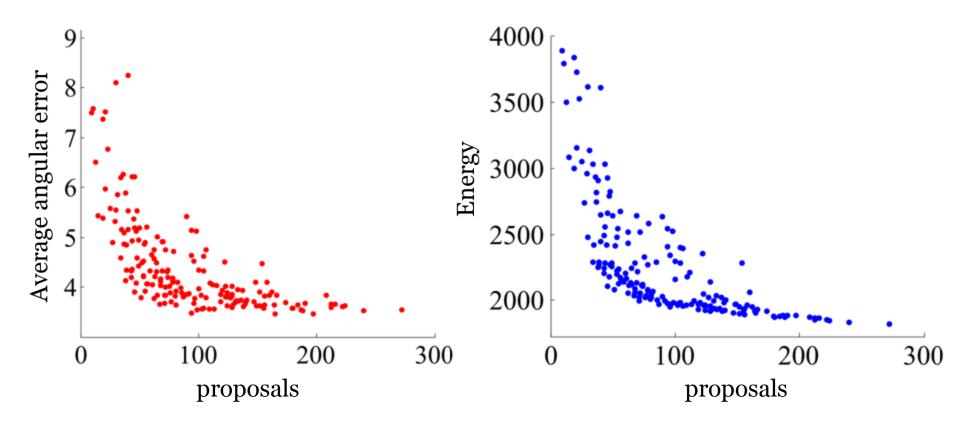
Images

Ground truth

Result



Evaluation - number of proposals



Conclusion

- Discrete labeling to prevent local minima
 Followed by continuous optimization
- Use of optical flow statistics
- Spatially varying smoothness weight
- Slow (speed not mentioned in paper)
- What is the limit to improvement?

Thank you

Aperture problem

