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Abstract. Securing interactions between devices that do not know each
other a priori is an important and challenging task. We present Amigo,
a technique to authenticate co-located devices using knowledge of their
shared radio environment as proof of physical proximity. We present eval-
uation results that show that our technique is robust against a range of
passive and active attacks. The key advantages of our technique are that
it does not require any additional hardware to be present on the de-
vices beyond the radios that are already used for communication, it does
not require user involvement to verify the validity of the authentication
process, and it is not vulnerable to eavesdropping.

1 Introduction

We envision that with the increased adoption of mobile devices, spontaneous
communication between wireless devices that come within proximity of each
other but lack a pre-existing trust relationship will become common. For exam-
ple, patrons at a bar, guests at a party or conference participants may use their
mobile phones to exchange private contact information over Bluetooth or WiFi.
Consumers may use their mobile devices as electronic wallets to pay for tickets
at the train station or groceries at the store. A user may take advantage of re-
sources available in the environment by pairing their mobile phone to a public
full-sized display and keyboard [3], or share music by pairing their phone to a
friend’s home entertainment system.

An important precondition for the widespread proliferation of spontaneous
communication among wireless devices is securing these interactions against
eavesdropping, impostors, and man-in-the-middle attacks, in which an attacker
reads and inserts messages between two parties without either party knowing
that the channel between them has been compromised. Obviously, users would
not want their private contact or banking information to be overheard or tam-
pered with by a malicious third party.

We refer to the problem of securing the communication between devices in
proximity as secure pairing. Unfortunately, traditional cryptographic techniques,
such as the Diffie-Hellman protocol [6], by themselves are not sufficient for se-
curely pairing devices that spontaneously come into wireless contact. Whereas
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they provide a secure binding of keys to electronic identifiers, such as network
addresses or device names, these techniques cannot guarantee that the two de-
vices that the user holds in their hands are in fact the ones that are paired – an
attacker hundreds of meters away with a directional antenna could be imperson-
ating the device name or network address. What is required is a natural way to
authenticate that the keys obtained through the cryptographic exchange belong
indeed to devices that are within physical proximity.

This paper shows that it is possible to securely pair devices that come within
close proximity by deriving a shared secret from dynamic characteristics of their
common radio environment. This approach takes advantage of three observa-
tions. First, many mobile devices come equipped with radios that can sense
their immediate radio environment. Second, devices in close proximity that si-
multaneously monitor a common set of ambient radio sources, e.g., WiFi access
points or cell phone base stations, perceive a similar radio environment. For
high frequency radio technologies, receivers only a few centimeters away may
perceive different radio environments due to multi-path effects; however, these
differences are generally small compared to differences perceived by receivers at
larger distances. Third, due to environmental factors the radio channel varies
in unpredictable ways over short time scales. For example, at a single location,
signal strength from a cell phone base station fluctuates from one moment to
the next, but devices in close proximity perceive similar fluctuations.

Together, these observations imply that it is possible for devices in close prox-
imity to derive a common radio profile that is specific to a particular location
and time. This paper shows that this profile can be used to securely pair devices
in close proximity by using knowledge of their common radio environment as
proof of physical proximity.

We describe Amigo, a technique that extends the Diffie-Hellman key exchange
with verification of device co-location. Initially, the two devices perform a Diffie-
Hellman key exchange in order to derive a shared-secret. After this exchange
alone, it is not possible for either device to be sure whether it shares a secret
with the other co-located device or with some potentially malicious third party.
Next, both devices monitor their radio environment for a short period of time
and exchange a signature of that environment with the other device. Finally,
each device independently verifies that the received signature and its own signa-
ture are similar enough to conclude that the two devices are in proximity. The
verification takes into consideration both transmissions received by the devices
and perceived signal strength fluctuations.

An evaluation conducted using WiFi-enabled laptops shows that without re-
quiring user interaction, Amigo can recognize an attacker located as close as 3
meters away. However, if the user is willing to create some localized entropy in
the radio environment by, for example, walking or waving their hand in front of
the antennas of the two co-located devices, Amigo can detect an attacker located
as close as 1 meter away, and can defeat a powerful attacker that has surveyed
the environment and has control over ambient radio sources.
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Amigo has three advantages over existing solutions: (a) it requires no ad-
ditional hardware to be present on the devices besides the standard wireless
radio already available on most devices; (b) in most cases, it requires no user
involvement (beyond specifying that the devices are to be paired); and (c) be-
cause devices determine co-location by listening to their radio environment, as
opposed to transmitting, Amigo is immune to eavesdropping attacks.

2 Problem Definition and Threat Model

We define the problem of secure pairing of devices in close proximity as follows.
Two devices that are located nearby (within 1 meter) to each other but do
not know each other a priori need to establish a channel between them that
is both secure and authentic. A secure channel implies that no eavesdropper
may intercept and decrypt messages between the endpoints, while authenticity
requires that both endpoints are able to confirm the identify of each other.
We assume that the devices can communicate over compatible wireless radios
(e.g., WiFi) and that neither additional out-of-band communication channels
are required (e.g., ultrasound) nor is additional hardware present on the devices
(e.g., accelerometers).

We assume the presence of an attacker that will try to pair with one or both
of the legitimate devices. We assume that the attacker is located beyond the
distance that separates the two legitimate devices, and can sense the wireless
environment, inject new traffic, and replay packets. Moreover, we assume that
the attacker could have surveyed the location where the two legitimate devices
are attempting to pair. The attacker can use this knowledge to convince the
legitimate devices that they are co-located by predicting the perceived signal
strength of ambient radio sources at the location and time of pairing. In the
most extreme case, we assume that the attacker both knows what packets were
heard by the legitimate device and has access to distributions of signal strengths
for each radio source as received by the legitimate device at the time and location
of pairing. This is a best-case scenario for the attacker who, even with full control
over ambient radio sources, would at best be able to transmit packets at known
power levels and predict which packets were received by the legitimate device
and at what signal strengths.

We consider two kinds of possible attacks: An impostor attack where the
attacker succeeds in disabling one of the co-located devices and attempts to
impersonate it; and a man-in-the-middle attack where the attacker attempts to
pair with the two co-located devices simultaneously, and hides its presence by
relaying authentication traffic between them.

3 Secure Pairing of Devices in Physical Proximity

In this section, we describe our algorithm to authenticate co-located devices using
measurements of their shared radio environment as proof of physical proximity.
Our solution is based on the observation that due to environmental effects it is
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very hard to predict fluctuations in the radio environment at a specific location
and at a specific time without being physically present at that location at that
time. On the other hand, devices that are positioned in proximity not only
tend to successfully decode radio transmissions from the same sources, but also
perceive similar fluctuations in signal strength. We will show how this common
radio environment can be used as a basis of an authentication scheme for co-
located devices.

The Diffie-Hellman protocol allows two parties to create a shared secret key
that can be used to secure future communications. While the protocol cannot be
compromised by eavesdropping, it is susceptible to man-in-the-middle attacks
by a third party. The protocol also does not provide any assurances as to the
identity or the proximity of the devices that end up pairing. To both protect
the protocol against man-in-the-middle attacks and to ensure that the pairing
actually happens with a device in close proximity (as opposed to a far away
attacker with a sensitive antenna), we extended the Diffie-Hellman key exchange
with a co-location verification stage.

In our scheme, after the two devices perform a Diffie-Hellman key exchange,
each device monitors the radio environment for a short period of time and gener-
ates a signature, which includes a sequence of packet identifiers1 and the signal
strength at which the packets were received. This signature is then transmitted
to the other device over the secure channel via a commitment scheme intended
to secure the pairing against a man-in-the-middle attack. Finally, each node
independently verifies that the received signature and its own signature are sim-
ilar enough to conclude that the two devices are co-located. At the end of the
verification, each device either accepts the signature or rejects it. Because the
signatures are used only to validate the keys being exchanged, but not as the
basis for encryption, the signatures do not have to remain secret once the au-
thentication takes place. The only requirement on the signatures is that they
have to be hard to guess during the authentication phase.

Next, we present our co-location verification algorithm and describe our com-
mitment scheme which is designed to prevent a man-in-the-middle attack.

3.1 Co-location Verification Algorithm

The problem of co-location verification can be described as follows. Given a
signature captured locally by a device A, and a signature received from a device
B, A needs to reach a binary decision as to whether B is co-located or not. For
A to conclude that B is co-located, the signature received from B should be
sufficiently similar to the signature captured locally. The verification algorithm
has four stages: temporal alignment, slicing, feature extraction and classification.
This process is shown in Figure 1.

Since the two devices capture packets locally, they may have started capturing
packets at slightly different moments. To meaningfully compare sequences of
packet identifiers and signal strength measurements, they need to be temporally

1 We use hashes of packet headers as packet identifiers.
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Fig. 1. The complete co-location verification process

aligned. The verification algorithm begins by aligning the packet sequences using
the first common packet identifier and discarding all preceding elements in each
sequence.

Once the signatures are temporally aligned, we slice them into smaller con-
secutive subsequences of a fixed timespan, known as segments. Slicing allows
the verification algorithm to first give a similarity score to each pair of aligned
segments and then combine these scores into a final classification decision. Using
segments of one second in length typically allows enough packets to be observed
for good performance while still keeping the protocol responsive.

The verification algorithm then extracts a set of features from each of the re-
sulting aligned segment pairs. Each feature captures a particular relationship be-
tween the two segments to be used by the classification algorithm. For example,
percentage of packets that are common to both segments is a useful feature because
a higher percentage is associated with a higher likelihood that the two devices are
co-located. We describe the set of features used by our classifier in Section 4.2. We
further refer to a set of features extracted from a pair of segments as an instance.

Finally, we feed the set of instances (one for each segment) into a classifier,
which gives a decision as to whether the two signatures have been captured by
co-located devices.

The Classifier. We distinguish instances generated by co-located devices from
instances generated by non co-located devices using a two stage boosted binary
stump classifier. The first stage was added in order to filter noisy data before
the more complex binary stump classifier, allowing effective training with less
data. During the first stage, instances that have less than a minimum percentage
of packets in common are marked as invalid; these are treated in a special way
at the end of the second stage. Instances with a low percentage of packets in
common (which occur much more commonly with non co-located pairs) were
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Margin(i) = 2.64 × x1(i) + 1.79 × x2(i) + . . . + 1.16 × x9(i) + 2.61 × x10(i)

x1(i) =
{

1
−1

if i.featureA ≤ 4.31625
otherwise

. . .

x10(i) =
{

1
−1

if i.featureB ≤ 5.297
otherwise

Fig. 2. A sample margin calculation for an instance i during the second stage of clas-
sification. The same feature may appear within multiple xi definitions.

found to have very high classification error. We found experimentally that a
threshold of 75% works well.

In the second stage, valid instances are assigned a score, referred to as a
margin. A margin is derived by evaluating a set of simple functions on an instance
and combining the results in a weighted-sum. A sample margin calculation is
shown in Figure 2. A larger positive margin indicates more confidence that the
devices are co-located. A lower negative margin indicates more confidence that
the devices are not co-located. A margin near zero indicates a lack of confidence
about the decision.

Finally, the classification algorithm aggregates a window of margins and makes
a prediction. Windowing allows the classifier to tolerate a lower degree of accu-
racy with each individual instance classification. The decision for each window
is made with a simple voting scheme. We convert margins into votes based on an
adjustable margin threshold; margins that are higher than the threshold are con-
verted to TRUE votes and margins that are below the threshold are converted
to FALSE votes. Instances that are marked as invalid do not contribute any
vote. At the end, if the window contains a majority of TRUE votes, the devices
are classified as co-located. Excessive invalid instances or a majority of FALSE
votes will cause the classified to be classified as not co-located. In Section 4.4, we
show that the margin threshold of 4 works well in practice and, in Section 4.3,
we evaluate the effect of the window size on the classification accuracy.

In order to train the classifier, appropriate features, constants and weights for
the margin calculation must be selected. This process is discussed in Section 4.2.

3.2 Dealing with a Man-in-the-Middle Attack

In order to deal with a man-in-the-middle attack, our algorithm employs a simple
commitment scheme. The trace collection is broken into short periods of a fixed
duration during which a device captures one block of data. The devices are
required to exchange the blocks at the end of each time period, otherwise the
pairing is rejected. Before sending a block, a device concatenates the block with
a hash of its Diffie-Hellman session key and its device identifier, encrypts the
result using a nonce value and sends this encrypted block to the other device.
Concatenation of the session key is required to prevent the attacker from simply
forwarding blocks back and forth between the co-located devices as explained
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below, and concatenation of the device identifier prevents the attacker from
simply “mirroring” the messages. After all blocks have been transferred, both
devices exchange the set of nonces required to decrypt the sequence of encrypted
blocks and verify the hashes of the session keys and device identifiers.

At the end of each time period, the attacker is required to supply a block.
Since the attacker cannot decrypt received blocks until the end of the collection
process, he has only two choices. The attacker can either pass on the encrypted
block received from a co-located device or can generate a new block with its
own session key. Since the session keys between the attacker and each co-located
device are different, simply passing the encrypted blocks between devices will
not allow the attacker to pair with either of the devices. In Section 4, we show
that trying to forge new packets based on the radio environment is also likely to
be fruitless, unless the attacker is very close to the co-located devices.

This scheme is equivalent to a fixed-delay interlock protocol [15]. The nonce
used to decrypt the blocks can be sent one collection period after the encrypted
blocks. However, unlike the fixed-delay interlock protocol, it is not necessary to
use the delays to simply detect a man-in-the-middle; after the relevant time pe-
riod has passed, each block becomes useless, as they are strictly time-dependent.
The attacker can not extract useful information from any block in order to pass
it to a target when it is required. The nature of the secrets implicitly detects a
man-in-the-middle by forcing him to generate fake traces.

4 Evaluation

In this section, we first discuss our data collection and training procedures, then
we proceed to evaluate the performance of Amigo under various conditions. First,
we test the basic configuration, similar in nature to our training configuration,
but using data collected at a different time and place. We then test the effect
of obstacles between the attackers and the co-located devices. Subsequently, we
experiment with more sophisticated attacker scenarios, and explore having the
user generate localized entropy in order to improve accuracy. Finally, we briefly
discuss current limitations of this evaluation.

4.1 Data Collection

We collected WiFi traces using a testbed consisting of 6 laptop computers (3
ThinkPad, 2 Dell and 1 Toshiba), all equipped with Orinoco Gold WiFi cards.
WiFi is a practical technology for evaluating Amigo, since it is increasingly preva-
lent. At 2.4GHz, a few centimeters can make a difference in a multi-path channel,
but in our experience the differences in the radio environment observed by nodes
separated by greater distances tend to dominate these smaller dissimilarities.

Two laptops that were playing the role of the co-located devices were po-
sitioned 5 centimeters apart in an opposite orientation, so that their WiFi
cards would be located as close as possible. Four additional laptops positioned
1 meter, 3 meters, 5 meters and 10 meters away from the co-located laptops



260 A. Varshavsky et al.

 50

 60

 70

 80

 90

 100

 110

 0  200  400  600  800  1000

R
S

S
I

Time (ms)

(a) Co-located Devices

 50

 60

 70

 80

 90

 100

 110

 0  200  400  600  800  1000

R
S

S
I

Time (ms)

(b) Devices 10m Apart

Fig. 3. The received signal strength for packets heard by two devices in a 1 second
period. Packets marked as “+” were received by only one laptop. Lines connect packets
heard by both devices.

were playing the roles of malicious devices. We felt that these distances would
provide a good indication of the ability of the algorithm to differentiate adver-
saries at various distances. Whereas most of our experiments only consider the
devices positioned 5 centimeters apart to be co-located, we explore stretching
this distance to 1 meter in Section 4.6.

We wrote a script that simultaneously switches the WiFi cards on all laptops
into a monitor mode and captures packets overheard by the cards. The WiFi
drivers on all laptops were modified not to discard corrupted packets, but simply
mark the packets as corrupted.

An active scan for WiFi access points in the lab environment where data collec-
tion took place reveals 11 access points on average.With a 10 minute trace taken in
the afternoon, each laptop captured between 30 thousand and 50 thousand packets
(including all WiFi beacons, etc.) and heard between 45 and 58 unique transmit-
ters. The majority of transmitters heard in this environment were not loquacious -
each laptop captured less than 100 packets from most sources.

Figure 3 shows the packets received by two co-located devices and non co-
located devices over a period of 1 second . The y axis represents the Received
Signal Strength Indicator (RSSI) value associated with each packet. The packets
marked by “+” were received by only one of the two laptops, while packets
connected by lines were received by both laptops. For the co-located pair, during
this time period approximately 85% of the packets received were common to
both. For the distant pair, only 40% of the packets were common. Comparing
the figures also immediately makes apparent the similarity of RSSI values for
the co-located pair.

4.2 Training the Classifier

As discussed in Section 3.1, the classifier must be trained. For this purpose,
we used a MultiBoost [24] algorithm with decision stumps (single node decision
trees) as its base learner. The MultiBoost algorithm is a decision committee
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Table 1. A relevant subset of features extracted from aligned segments. The sequences
of RSSI values for the N common packets in each instance are represented by ai and
bi, 0 ≤ i ≤ N .

Feature Name Feature Definition Description

signal:abs
∑N

1 |ai−bi|
N

The mean absolute difference be-
tween received signal strength mea-
surements.

signal:eucl
√∑N

1 (ai − bi)2 The euclidean difference between re-
ceived signal strength vectors.

signal:exp
∑N

1 e|ai−bi|

N
The mean exponential of the differ-
ence between signal strength mea-
surements.

signalexp:diff:eucl
√∑N

2 (e(ai−ai−1) − e(bi−bi−1))2 The euclidean difference between
exponential signal strength deltas.

technique that combines AdaBoost [7] with wagging. This approach has been
shown to be more effective in reducing error than either of its constituent tech-
niques [24]. The MultiBoost algorithm selects the appropriate set of weighted
linear classifiers that are used for the margin calculation for each valid instance.

For training, we captured 10 minutes worth of packets on all 6 laptops. We
aligned and sliced all packet sequences captured by each pair of laptops in our
testbed, and then extracted features from all pairs of sequences that included
the first co-located laptop. We trained our classifier using 596 instances from
co-located devices and 2279 instances from non co-located devices.

To evaluate the effectiveness of the classifier, we investigate its performance in
terms of false positive and false negative rates. False positives occur when the al-
gorithm predicts that the devices are co-located when they are in fact not, and the
false positive rate is the number of false positives divided by the total number of
non co-located instances. False negatives occur when the algorithm predicts that
the devices are not co-located when they in fact are, and false negative rate is the
number of false negatives divided by the total number of co-located instances. Note
that in general, reducing false positives is ultimately more important that reduc-
ing false negatives because confusing a malicious device for a co-located device is a
more serious flaw than not admitting the co-located device and requiring the user
to wait for a longer period before the devices get paired together.

Training the classifier with all available features achieves 23 false negatives
out of 596 true instances and 50 false positives out of 2279 instances. Although
we constructed dozens of features, only four were selected by the MultiBoost
algorithm during training: the mean absolute difference in signal strength (sig-
nal:abs), the mean exponential difference in signal strength (signal:exp), the eu-
clidean difference between signal strength vectors (signal:eucl) and the euclidean
difference between exponential signal strength deltas (signalexp:diff:eucl). These
are the features shown in Table 1.
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Fig. 4. Co-located devices are 5cm apart. The attackers are 1m, 3m, 5m and 10m away.

4.3 The Base Case

After training the classifier, we collected a second set of data for testing our
technique. To allow time for the radio environment to evolve, the testing data
set was collected two months after the training data set was collected. To pre-
vent the classifier from recognizing any anomalies with the particular physical
arrangement of devices, the collection setup was moved from one end of our lab
to the other (approximately 10 meters). Besides changing the location and time
of collecting the testing data, the experimental setup was left unchanged – two
co-located laptops were positioned 5 centimeters apart and 4 other laptops were
positioned 1 meter, 3 meters, 5 meters and 10 meters away from the co-located
laptops. All laptops were positioned at the same height and the attackers had a
line of sight to the co-located devices, a likely best-case scenario for the attackers.

We tested the ability of our classifier to authenticate co-located devices and
reject non co-located device as a function of the classifier’s window size. Since
we are using 1 second segments, the window size represents the amount of time,
in seconds, that a user needs to wait to authenticate the devices. Figure 4(a)
plots the false positive rates of attackers trying to authenticate while located 1
meter, 3 meters, 5 meters and 10 meters away, while Figure 4(b) plots the false
negative rate of not authenticating a co-located device located 5 centimeters
away. The results show that in 5 seconds both the false negative rate falls to 0,
meaning that all attempts of the co-located device to authenticate are successful.
In the same 5 seconds, the false positive rate falls to 0 for the attackers located
3 meters, 5 meters and 10 meters away, meaning that the attacks initiated from
at least 3 meters away were all unable to fool the system. Unfortunately, the
attacker device that is located 1 meter away is able to convince the other device
that it is co-located. Since more than 60% of instances from the attacker 1 meter
away are incorrectly classified as co-located, increasing the window size results
in aggregation of a larger proportion of these instances in every window and
consequentially a more consistent misclassification of the attacker.
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Fig. 5. The false positive and false negative rates for different margin thresholds

To prevent attackers as close as 1 meter from succeeding, we explored a tech-
nique as we proposed [23] to generate localized entropy in the radio environment.
The user that suspects that a possible attacker may be nearby simply needs to
wave their hand in front of the antennas of the two mobile devices during the
pairing. This motion will generate unique fluctuations in the radio environment
perceived only by the co-located devices. We tested the effect of hand waving
on the ability of the 1 meter away attacker to authenticate with a device. In
this case, the false positive rate of the attacker falls to 0 within 5 seconds. Hand
waving is a natural and non-burdensome action for users to perform in order
to pair devices. To provide a more secure pairing, users can be encouraged to
move around and use their preferred hand motions as if invoking some form of
personal sorcery by casting a pairing spell.

4.4 The Effect of Margin Threshold

Recall that the classifier assigns a margin to each valid instance which is com-
pared to a threshold in order to determine a vote. Increasing this threshold makes
the classifier less likely to accept the devices as co-located, increasing the chance
of a false negative but also decreasing the chance of a false positive. Reducing
the threshold has the opposite effect. Figure 5 plots the false negative and false
positive rates for all individual segments as a function of this margin threshold.
As the margin threshold grows, fewer segments belonging to impostors are au-
thenticated and as a consequence the rate of false positives falls. The jumps in
the false positive and false negative rates result from the finite number of values
that the margin can take, since it is the sum of a finite number of constants.
Setting the margin threshold to a value beyond 8 results in no attackers being
authenticated, but also in no co-located devices being authenticated, in which
case the false negative rate rises to 1. The plateau between the margin threshold
of 2 to 8 seems to consistently strike a good balance between false positives and
false negatives. We used margin threshold of 4 for all our experiments.
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Table 2. The effect of different materials on the ability of the attacker to authenticate
with a device

Obstruction False Positive Rate
None (1m) 0.81
Drywall (10cm) 1.00
Human (1m) 0.12
Concrete Wall (30cm) 0.00

4.5 The Effect of Obstacles

In all the experiments described above, the attacker had a clear line of sight to
the co-located devices. In reality, that might not be the case as different kinds of
materials may block or obstruct the path between the attacker and the target.
We looked at the effect of three common materials blocking the line of sight
between the attacker and co-located devices, including drywall, concrete and a
human body. Table 2 summarizes our findings in terms of false positives.

For the attacker 1 meter away and with a 5 second window, the false positive
rate is about 80% as was shown in Figure 4(a). In contract, when the attacker is
separated from the co-located devices by two sheets of gypsum drywall, a wall
about 10 centimeters thick, the false positive rate climbs to 1. This has the impli-
cation that drywall does not protect users from an attacker who is immediately
behind the wall. This is in line with other signal propagation studies that have
shown that dry wall does not have a profound effect on radio signal propagation
in the 2.4GHz range [20]. When a human being is standing between the the
attacker and the two co-located laptops located 1 meter away, the false posi-
tive rate falls to just above 10%. This is encouraging, as it means that humans,
being basically bags of water, by just the sheer blocking of the authentication
with their buddies, may make it significantly more secure. Finally, when a 30
centimeter-thick concrete wall separates the attacker from the co-located devices,
the false positive rate is 0. When passing through a concrete wall, radio signals
attenuate strongly enough to make it extremely hard for the simple attacker to
authenticate without more sophisticated attacks.

4.6 Stretching Co-location

Up until now, we used a classifier trained with data that indicated that two
devices were co-located if they were 5 centimeters apart. In this section, we study
the effects of extending the notion of co-location to include devices located up
to 1 meter away. We retrained our classifier on the same training data, but this
time we marked the segments belonging to the device located 1 meter away as
also co-located. Figures 6(a) and 6(b) plot the false positive and false negative
rates as a function of time the user needs to wait to authenticate the devices. The
results show that after 5 seconds the false positive rate falls to 0 for all attackers
located 3 meters or more away, while the false negative rate falls to 0.05. This
means that in 5% of cases a user will not succeed to pair co-located devices in
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Fig. 6. Co-located devices are up to 1m apart. The attackers are 3m, 5m and 10m
away.

5 seconds from the first attempt, and will need to retry again. However, waiting
for 20 seconds always results in a correct pairing.

4.7 Sophisticated Attacks

A powerful attacker could have surveyed the location where the two legitimate
devices are attempting to pair, and could attempt to use this knowledge to
convince the legitimate devices that he is currently present at that particular
location. We implemented a simulated powerful attacker for the purpose of eval-
uating the robustness of our system under such a threat.

We conducted an experiment where the attacker had access to a distribution
of received signal strength measurements for each radio source, sampled by the
target device itself at the pairing location only a few hours prior to the current
authentication. During the authentication, when the attacker receives a packet
from a radio source that he has observed before, he substitutes the signal strength
value in this packet with a sample from the recorded distribution of packets
previously observed at the pairing location from that transmitter. Whenever
the attacker receives a packet from a source that he has no distribution for,
the attacker has a choice of either pretending he never received the packet
in the first place, thereby potentially decreasing the percent of common packets if
the target device did get this packet, or simply leaving the signal strength in the
packet as is. Experiments showed that not discarding these packets is beneficial
to the attacker.

Figure 7 shows that attackers located 1 meter and 5 meters away can suc-
cessfully authenticate in 15% and 45% of the cases using 5 second windows,
respectively. The adversary positioned 5 meters away actually performed better
in our experiments than the laptop positioned 3 meters away, due to the fact
that the laptop at a distance of 5 meters generally shared a slightly larger num-
ber of packets with the target. The laptops positioned 3 meters and 10 meters
away were not able to authenticate because a large portion of their instances
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Fig. 7. False positive rate for a simulated attacker who samples from the distribution of
co-located devices and then uses that signal strength to impersonate one of the devices

were rejected due to insufficient common packets before moving to the second
stage of classification.

In order to defend against the attacker who has gone to the measure of rigor-
ously surveying the environment in this way, we propose to use the hand waving
enhancement discussed earlier. Even equipped with a location-specific distribu-
tion, the system has a false positive rate of 0 within all 5 second windows of the
experiment for all attackers.

In a worst-case scenario, an attacker could also be powerful enough to have
complete control over the radio environment. We assume that such an attacker
has injected every packet into the environment, and that he knows exactly
what packets the target device receives. Also, for our simulation, the attacker is
equipped with an oracle, that allows the attacker to sample from the distribution
of signal strength values as perceived by the target device over the duration of
the experiment.
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Fig. 8. Hand waving allows Amigo to prevent even the most sophisticated attack, when
the attacker can predict the signal strength of the current distribution of packets
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We tested whether hand waving will prevent this attacker from authenticat-
ing with the target device in this case. Figure 8 shows the false positive rate
of authentications with the oracle attacker. The figure shows that with hand
waving, after 5 seconds, the attacker is able to authenticate successfully in only
30% of the cases. If the user is willing to pair the devices for 60 seconds, the
false positive rate falls to 0%! This is encouraging given the small likelihood of
encountering an attacker this powerful.

4.8 Discussion

So far, we evaluated Amigo using homogeneous WiFi cards. Although using
WiFi cards with different chipset designs or antenna configurations will have
an effect on received signal strengths, we believe that it will be possible to
generalize Amigo by normalizing the received signal strength values and make
Amigo antenna and chipset agnostic. As a preliminary test of this hypothesis, we
hooked an external omnidirectional antenna onto the WiFi card of one of the co-
located laptops and collected a 10 minute trace. Using a simple gain-correction,
wherein RSSI measurements of the antenna-equipped laptop are adjusted by
a small, constant amount, Amigo was still able to achieve a low level of false
negatives with zero false positives after only a few seconds using the standard
classifier presented in Section 4.3.

Hardware heterogeneity is not the only factor that requires further explo-
ration. The success of our technique may also depend on physical or network
conditions. For example, the location of our experiments had moderate to heavy
WiFi usage. It would be interesting to evaluate the system in quieter environ-
ments, such as at a small café. All of our experiments were also conducted on
flat, stable surfaces. Experimenting with small devices held by shaky hands is a
topic for our future research.

5 Related Work

SWAP-CA [21] is a specification that gives users a way to associate devices by
pressing a button on two devices simultaneously, but does not provide security.
In Bluetooth, users pair devices by providing each device with a secret PIN
number. While the PIN provides for device authentication, it requires active user
involvement and interaction with both devices. Moreover, Bluetooth pairing has
been shown to be susceptible to attack by eavesdroppers equipped with sensitive
directional antennas, which enable attackers to breach the security of the system
from more than a mile away [5,17]. LoKey [14] uses SMS messages as an out-
of-band channel to authenticate a key exchanged over the Internet. While this
approach is secure, SMS delivery is slow and may incur monetary cost.

Physically shaking two devices together for authentication has recently re-
ceived significant attention in the research community. Smart-It [9] used com-
mon readings from accelerometers to establish an association between devices
shaken at the same time. Mayrhofer and Gellersen extended this technique to
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provide secure authentication between the shaken devices [12]. Both of these
techniques use the accelerometer readings as the basis of the authentication. In
Shake Them Up! [4], two devices establish a shared secret over an anonymous
broadcast channel by taking turns transmitting parts of the key. Shaking the
devices randomizes the reception power of their packets by a potential eaves-
dropper and makes it hard for attackers to exploit power analysis to break the
channel anonymity. Unfortunately, this approach is vulnerable to attack by an
eavesdropper that exploits the differences in the baseband frequencies of the two
radio sources, which result from differences in their crystal clock oscillators, to
differentiate between packets sent by the two transmitters. In general, shaking
techniques are easy for users to understand and when accelerometers are avail-
able, provide intuitive and reliable device pairing. The obvious drawback with
shaking techniques is that there are objects such as ATM machines and vending
machines that are too large or too heavy to be shaken vigorously. This inspired
our hand waving technique as it does not require both objects to be shaken to-
gether and only requires hands to be waved or shaken near the antennas of the
two co-located devices to generate localized entropy.

Numerous research projects have suggested the use of physically constrained
channels as a means of establishing secure association between devices in close
proximity. Some examples include the use of a direct electric contact [19], infrared
beacons [2,18], ultrasound [11], and laser beams [10]. Unfortunately, physically
constrained channels often require extra hardware (e.g., an extra cable), and
can be susceptible to attacks by sensitive receivers that can detect dim signal
refractions and reflections [5,17].

Another technology that can be used for secure device pairing is Near Field
Communication or NFC. Unlike radio-transmission based wireless communica-
tion like 802.11 and GSM, NFC transmits data via inductive loading. This lim-
its the working range of NFC links to a few centimeters [1]. While obviously a
good fit for many use cases, NFC is not without issues: like traditional radio
transmissions, the range of the inductive loading can be drastically increased by
eavesdropping with a large antenna – a large loop of wire in the case of NFC.
It is also the case that for cultural or hygiene reasons, there are situations in
which the “almost touching” nature of NFC may be inappropriate and for which
the notion of proximity may be better suited by a larger distance. Lastly, NFC
does add additional cost, size and weight to a mobile device in addition to the
far-field communication already present.

Another solution to establishing trust between mobile devices is to use a
public key infrastructure. In this case, every mobile device is uniquely named
and certified by a trusted authority. Even if the effort is spent to grant every
device a unique and certified name, pairing may still require significant user
involvement since there may be multiple nearby devices to choose from.

Several projects proposed to delegate the verification of whether the two in-
tended devices have been paired to the user. McCune et al. [13] and Saxena et
al. [16] proposed to use the visual channel for verification, while Goodrich et
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al. [8] proposed to use the audio channel. Uzun et al. [22] recently performed a
comparative evaluation of a number of user-driven verification methods.

In contrast, we propose to use the common radio environment as a basis to the
shared secret between co-located devices – if two devices perceive a similar radio
environment they are probably very close to each other. A key advantage of our
approach is that it makes use of the existing radio interfaces already present on
mobile devices and does not require any additional hardware. The approach is
also automatic and does not require user involvement to verify the correctness
of the pairing.

6 Conclusions

In this paper we showed that it is possible to securely pair devices that come
within close proximity by using knowledge of dynamic characteristics of their
common radio environment as proof of physical proximity. We introduced Amigo,
an algorithm that extends the Diffie-Hellman key exchange with verification of
device co-location. Amigo has three key advantages: it does not requirement ad-
ditional hardware beyond the wireless interface used for normal communication,
it does not require user involvement to verify the pairing, and it is not susceptible
to eavesdropping.

We evaluated Amigo using WiFi-enabled laptops and showed that within 5
seconds it is possible to recognize attackers located as close as 3 meters away
from the co-located laptops. However, if the user is willing to wave their hands
in front of the antennas of the two co-located devices in order to generate some
localized entropy, Amigo is resilient to an attacker located 1 meter away, even
in the unlikely case of an attacker that controls all ambient radio sources and
is using the signal strength values from a distribution collected at the exact
location of the current pairing.
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