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Abstract. In this paper we present a new approach for cooperation between 
mobile smart objects and projector-camera systems to enable augmentation of 
the surface of objects with interactive projected displays. We investigate how a 
smart object’s capability for self description and sensing can be used in 
cooperation with the vision capability of projector-camera systems to help 
locate, track and display information onto object surfaces in an unconstrained 
environment. Finally, we develop a framework that can be applied to 
distributed projector-camera systems, cope with varying levels of description 
knowledge and different sensors embedded in an object. 
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1   Introduction 

The interest in embedding sensing, communication and computation in everyday 
physical artefacts is growing. Such smart objects are expected to bridge the gap 
between the physical and digital world, and become part of out lives in economically 
important areas such as retail, supply chain or asset management [29,30,31] and 
safety critical situations in work places [10]. A challenge for the design of such smart 
objects is to preserve their original appearance, purpose and function, thus exploiting 
natural interaction and a user’s familiarity with the object [12]. Consequently adding 
output capability to objects is difficult, as embedding displays would fundamentally 
change an objects appearance. Mobile objects are also typically constrained in terms 
of power, weight and space availability. However, the recent availability of small, 
cheap and bright video projectors makes them practical for augmenting objects with 
non-invasive displays. By adding a camera and using computer vision techniques, a 
projector system can also dynamically detect and track objects [2,4], correct for object 
surface geometry [2,4,16,18], varying surface colour and texture [19] and allow the 
user to interact directly with the projected image [1,30]. 

We can imagine an unconstrained environment in the future containing many smart 
objects. In this environment new objects can arrive, move around or be manipulated 
by users and leave. If we assume projector-camera systems are installed ubiquitously 
in this environment offering a display service, the smart objects can request use of the 
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projection capability to obtain a display on its surface and solve its output problem. 
To realise this vision we have to address the two challenges of how the object can 
make use of the projector-camera system capability to be a). Located and tracked, and 
b). Projected on so the display is undistorted and visible to the user.  

In this paper we investigate a new approach to these challenges by using 
spontaneous cooperation between the smart object and projector-camera system.  In 
particular, we investigate how capabilities of the smart object (such as knowledge 
storage and sensing) can assist projector-camera systems in the object detection, 
tracking and projection tasks.  

In cooperative augmentation there is a division of labour between the projector-
camera system and smart object as follows: 

• The objects themselves are self-describing. They carry information about 
themselves (such as knowledge of their appearance) that is vital to the 
detection process. We call this information the Object Model. 

• The projector-camera system provides a display service that can be used by 
any smart object in the vicinity. The projector-camera system display service 
is generic, as it holds no knowledge about any of the objects. Consequently, it 
could be used by any type of smart object, for example, smart cups [9], smart 
chemical containers [10] or smart tables [11].   

• The Object Model is transmitted to the projector-camera system whenever the 
object enters proximity of the projector-camera system. 

The projector-camera system uses the Object Model to dynamically tailor its 
services to the object.  In contrast to traditional vision-based detection approaches 
where all object knowledge is held in the detection system, no user intervention is 
required to configure the detection and projection system for new objects. Objects 
bring all information with them so system configuration happens automatically in 
response to the Object Model. The object detection task is also made simpler and 
faster as the projector-camera system need not maintain and search a large database of 
object information. With the registration process the cooperative augmentation system 
always knows which smart objects exist in the environment. 

The cooperative augmentation approach is flexible as the dynamic configuration 
process caters for varying amounts of knowledge stored in the object. The projector-
camera system can also use its camera in a learning process to extract more 
appearance knowledge about the object over time and re-embed it within the object.  

The main contribution of the cooperative augmentation approach is a flexible 
framework to allow smart objects to spontaneously use projection capability in an 
environment for output.  Our approach can locate and track mobile objects in the 
environment, determine suitable areas for projection and finally align the projection 
with the object’s surfaces so it appears undistorted, as shown in Figure 1. 

In section 2 we compare our approach to related work. Section 3 follows with an 
analysis of the cooperative augmentation process in detail, with reference to a real 
world example. Sections 4 and 5 explain the visual detection process and projection 
process in more detail. Section 6 validates our concept using an example 
implementation of the cooperative augmentation concept. Finally, section 7 discusses 
the concept evaluation and lessons learned. 
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Fig. 1. Cooperative Augmentation of Smart Objects with Projector-Camera Systems 

2   Related Work 

The question of how to augment mobile objects with projected displays was 
investigated by Bandyopadhyay et al. in [1]. Objects with planar surfaces were 
equipped with a magnetic and infra-red tracking system. Static projectors were used 
to augment the objects in real-time.  However, this work suffered from two key 
problems of latency and limited working volume due to the tracking systems used. 
Our approach uses a projector-camera system with a vision-based object detection 
system. This allows augmentation of objects anywhere within the field of view of the 
system at camera frame-rates, without relying on separate tracking hardware. The use 
of a camera also allows direct interaction with the projection, for example, by visual 
detection and tracking of the user’s fingertips as described by Kjeldsen et al. in [30]. 

Although there is an enormous body of work on detection and location of mobile 
non-smart objects using a camera, there is little work which uses the capabilities of 
smart objects themselves. For example, vision-based detection and tracking 
approaches have been taken by Ehnes et al. in [2], using AR Toolkit fiducial markers 
[3] to track and project on mobile planar surfaces. Borkowski et al. also demonstrate a 
mobile projected interactive display screen object tracked by its black border in [4].  
However, both these systems rely on modifying or engineering the external 
appearance of a non-smart object to enable detection. In contrast, our approach uses 
features of the natural appearance of a smart object for detection. 

The sensing capabilities of smart objects were used by Raskar et al. in [7] to detect 
the location and orientation of static smart objects relative to a handheld projector. 
Here embedded light sensors detected the projection of gray codes (which encode a 
spatial location by changes in brightness over time) onto the object’s surface to 
directly locate the object in the projector’s frame of reference. Projection onto mobile 
planar smart objects was addressed using the same techniques by Summet and 
Sukthankar in [6] and Lee et al. in [5] where a 12Hz location update rate was 
achieved. For these techniques a minimum of one un-occluded light sensor is required 
to be in the view of the projector to enable detection. 3D location and orientation of 
an object can be calculated from a static projector location with three light sensors in 
view of the projector, however, 3D or self-occluding objects require many more light 
sensors to guarantee correct pose calculation. For example, cubical objects require at 
least 3 sensors per face (18 total) to detect all poses. 
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In contrast, our cooperative augmentation approach does not require a minimum 
number of light sensors to operate. Instead, we use appearance knowledge stored in 
the object to visually detect the object with algorithms that offer robustness to partial 
occlusion. Movement sensor information is used to further constrain the detection 
task and distinguish between objects with similar appearances.  

There exist many implementations of projector-camera systems – for example, we 
can decompose existing systems into three categories with respect to display mobility: 

1. Static projector-camera systems 
2. Steerable projection from static system with pan and tilt hardware 
3. Mobile, handheld and wearable projector-camera systems 

All types of projector-camera system have been used for augmenting objects with 
projection, however, static [1], mobile, handheld [7] or wearable [15] projector-
camera systems can only opportunistically detect and project on objects passing 
through the field of view of the projector and camera. 

In contrast, projector-camera systems in the second category with computer 
controlled steerable mirrors or pan and tilt platforms [16][2][4][17] allow a much 
larger system field of view and the ability to track objects moving in the environment.  

Levas et al. first presented a framework for steerable projector-camera systems to 
project onto objects and surfaces in their Everywhere Display framework [8]. 
However, although supporting a distributed architecture, this framework was limited 
to creating displays on static surfaces in locations pre-calibrated by the user.  Our 
cooperative augmentation approach enables spontaneous displays on the surfaces of 
mobile smart objects without user intervention or calibration.  

3   Cooperative Augmentation 

This section expands the concept behind cooperative augmentation by explaining the 
three areas of cooperative augmentation:  

1. The Object Model representation of the smart object. 
2. The projector-camera system.  
3. The cooperative augmentation process. 

3.1   Object Model 

The Object Model is a description of the object and its capabilities, allowing the 
projection system to dynamically configure its detection and projection services for 
each object at runtime. We assume the Object Model knowledge is embedded within 
the object during manufacture. 

The model consists of five components: 

1. Unique Object Identifier 
This allows an object to be uniquely identified on the network as a source and 
recipient of event messages and data streams. 
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2. Appearance Knowledge 
This knowledge describes the appearance of the smart object. The description is 
specific information extracted by computational methods from camera images 
of the object. For example, colour histograms, an image of the object itself, or 
locations of features detected on the object. 

3. 3D Model 
A 3D model of the object is required in VRML representation to allow the 
projector-camera system to compute the object’s pose.  

4. Sensor Knowledge 
The sensor model is a description of the data delivered by the object’s sensors. 
The data type is classified into three groups with regard to the originating 
sensor: movement sensor data, light sensor data and others.  The data is further 
classified into streaming or event-based, depending on the way sensor data is 
output from the smart object.  The model contains associated sensor resolutions, 
and sensor range information to allow the projector-camera system to interpret 
sensor events. 

5. Location and Orientation of the Object 
When an object enters an environment, it does not know its location and 
orientation. The projector-camera system provides this information on detection 
of the object to complete the Object Model. 

3.2   Projector-Camera Systems 

A projector-camera system consists of a co-located projector and camera.  We assume 
they are mounted so the respective projection and viewing frustums overlap, allowing 
objects detected by the camera system to be projected on by the projector.  

In this work we use an intelligent steerable projector-camera system, composed of 
a computer-controlled pan and tilt platform on which the projector and camera are 
mounted. This platform is ceiling mounted for a greater view of the environment and 
can rotate the projector-camera system hardware in two dimensions – horizontal (pan) 
and vertical (tilt) about the centre of projection. 

The projector-camera system has six main capabilities: 

1. To provide a service allowing smart objects to register for detection and 
projection. 

2. To search an environment for smart objects by automatically rotating the pan 
and tilt platform. 

3. To detect smart objects in the camera images and calculate their location and 
orientation based on the knowledge and sensing embedded in the object, as 
explained in section 3.3. 

4. To track detected objects by automatically rotating the pan and tilt platform to 
centre the detected object. 

5. To project an image onto an object in an area specified by the smart object, or 
choose the area most visible to the projector.  This image is geometry corrected 
so that the image appears to be attached to the object’s surface and is 
undistorted. 

6. To further correct an image before projection for variations in an object’s 
surface colour and texture so that the image appears more visible. 
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3.3   Cooperative Augmentation Process 

To illustrate the cooperative augmentation process in action, we can imagine a goods 
warehouse scenario, in which objects are stored for distribution. In this scenario the 
objects are augmented with computing, giving them knowledge of their contents and 
sensors allowing them to monitor themselves and the local environment to ensure 
integrity and to maintain the authenticity of the goods [20]. Such sensing allows them 
to detect rough handling based on sensed movement and automatically report their 
position and status wirelessly for goods tracking and inventory purposes. 

We can decompose the cooperative augmentation of an object such as a chemical 
container into five steps: 

1. Registration 
As the container enters the warehouse it detects the presence of a location and 

projection service through a service discovery mechanism. The object sends a 
message to the projector-camera system requesting registration for the projection 
service to display messages. On receipt of the registration request, the projector-
camera system requests the Object Model from the smart object. 

Projector
B) Camera captures image

C) System detects location
     of Smart Object

A) Send Object Model & Sensor Data

D) Update Location

Camera

 

Fig. 2. Detection Sequence Diagram 

2. Detection 
Following registration, the object begins streaming sensor data to the projector-

camera system, as shown in Figure 2 (A). This data is used in combination with the 
Object Model to constrain the visual detection process and generate location and 
orientation hypotheses (B and C). When an object is located with sufficient accuracy, 
the 3D location and orientation hypothesis is returned to the smart object (D). This 
process is explained in more detail in section 4. 

3. Projection 
When an object has knowledge of its location and orientation it can request a 

projection onto its surfaces. For example, if it detects it has been dropped, it can 
request a message is projected onto it requesting employees visually inspect it for 
damage. This projection request message contains both the content to project  
and location description of where on the object to project the content, as shown in 
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Figure 3 (A). The projector-camera system automatically corrects the projection of 
the message for the object’s geometry based on the 3D model stored in the Object 
Model and the calculated object location and orientation, so that it appears undistorted 
(B).  The projection is also corrected for the surface colour of the object to make it 
more visible to the user [19]. The projector system starts displaying the corrected 
content on the objects surfaces immediately on receipt of the request, if the object is 
in view and the projector system is idle (C).  

Camera

B) Calculate Projection with
     with Geometry and Colour
     Correction

A) Request Projection

C) Projection

 

Fig. 3. Projection Sequence Diagram 

4. Manipulation of Smart Object 
A requested projection is active as long as the object is detected, including during 

movement or manipulation of the object. Consequently, smart objects can give direct 
feedback to the user in response to the manipulation or movement of the object by 
changing their projection. For example, as the projector sends location information to 
the object, if an employee places an object in the wrong storage area of the warehouse 
it could request a warning message is projected until moved to the correct location. 

5. Update Appearance 
If an object does not enter the environment with much appearance knowledge (see 

Table 1 in section 4), additional knowledge about the appearance of its surfaces is 
extracted once the object has been detected and its pose calculated. As part of the 
cooperative process this new knowledge can be re-embedded into the Object Model 
for faster and more robust detection on next entry to an augmented environment.  

4   Visual Object Detection 

The projector-camera system dynamically configures its visual object detection 
processing based on the type of appearance knowledge in the Object Model, and the 
sensors the object possesses. 

Objects in the real world have appearances that vary widely, for example, in 
colour, texture, shape and the features that appear on their surfaces. Their appearance 
can also be easily changed by influences in the surrounding environment such as 
lighting conditions (including changes in intensity, colour and direction of lighting) or 
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scene changes (such as partial occlusion by other objects or background changes). An 
object’s appearance also changes with the relative location and orientation of the 
object to the viewer. 

To cope with these changes we use four different detection algorithms: 

i.) Colour Histograms 
Swain and Ballard [27] first proposed the use of colour histograms to describe an 

object by its approximate colour distribution. Objects can be detected by matching a 
colour histogram from a camera image region to a histogram from a training sample 
of the object using histogram intersection and statistical divergence measurements 
such as chi-square (χ2). Colour histograms offer a simple and fast object recognition 
method which has been shown to be robust to many transformations of an objects 
appearance, such as orientation, scale, partial occlusion and even shape. However, 
colour histograms are sensitive to changes in light intensity and colour.  

ii.) Multidimensional Receptive Field Histograms 
As many objects cannot be described by colour alone (for example, black objects), 

the histogram approach has been generalised by Schiele and Crowley [28] to 
multidimensional receptive field histograms. The histograms encode a statistical 
representation of the appearance of objects based on vectors of joint statistics of local 
neighbourhood operators such as image intensity gaussian derivatives (Dx,Dy) or 
gradient magnitude and the local response of the laplacian operator (Mag-Lap). 
Experimental results show the histograms are robust to partial occlusion of the object 
and are able to recognise multiple objects in cluttered scenes in real-time using the 
probabilistic local-appearance hashing approach proposed by Schiele and Crowley.  

iii.) Shape Context 
Shape detection compares the silhouette contours of an object to a pre-computed 

database of object appearances with the object in different poses. The database of 
object appearances can be calculated directly from the 3D model of the object stored 
in the Object Model by rendering the model in different poses and extracting the 
silhouette contour using the Canny edge detection algorithm. We use the Shape 
Context descriptor described by Belongie et al. in [29] to enable scale and rotation 
invariant matching of the contours. 

iv.) Local Features 
Local feature based detection algorithms aim to uniquely describe (and therefore 

detect) an object using just a few key points. To extract features, training images of an 
object are searched for a set of interest points (such as corners, blobs or lines) that can 
be repeatably detected under transformations of an objects appearance.  The local 
image area immediately surrounding these interest points can then be used to 
calculate a feature vector which we assume serves to uniquely describe and identify 
that point. The feature descriptor can be a simple colour histogram of the local area, 
or as complex as the gaussian derivative histogram based SIFT algorithm, described 
by Lowe in [22].  Object detection now becomes a problem of matching a feature set 
between the training image and camera images. A comparison of different feature 
detection and descriptor algorithms can be found in [21]. 

The different detection methods are shown in Table 1, corresponding to different 
aspects of an objects possible appearance.  
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Table 1. Appearance knowledge levels and detection methods with associated processing cost 

Appearance 
Knowledge 

Detection Method 
Discriminative 
Power 

Cost in 
Time 

Colour Colour histogram comparison Low Medium 

Texture  
Multidimensional Receptive Field 
Histograms 

Medium Medium 

Shape Contour detection and Shape Context Medium Medium 

Local Features 
Interest point detection and feature 
descriptor comparison 

High High 

These methods form a flexible layered detection process that allows an object to 
enter the environment with different levels of appearance knowledge.  As we descend 
the table, the power of the detection methods to discriminate between objects with 
similar appearances increases, however, at the cost of increased processing time.  We 
consider higher discriminative methods to hold more knowledge about the object.  

Where an object holds more than one piece of appearance knowledge, one of two 
strategies can be followed. The first is using the most discriminative (least abstract) 
information to increase the probability of an accurate detection. The second strategy is 
to fuse the results of multiple detection methods to make the detection more robust. 
However, detection method selection is always a trade-off, as both the use of multiple 
methods and the more discriminative individual methods (such as local features) share 
the cost of increased processing requirements. 

Our cooperative augmentation method can also serendipitously use any movement 
sensors the object possesses to constrain the detection process. Common sensors that 
can be used for movement detection on objects are accelerometers, ball-switches and 
force sensors which detect pick-up and put-down events. If an object is moving, we 
use visual differences generated between the camera image and a gaussian-mixture 
model of the background [14] to provide a basic figure-ground segmentation for the 
detection algorithms, increasing the probability of correct detection. 

Maintaining a background model also allows us to take the object’s context into 
account when performing the method selection step, for example, we can compare the 
object’s colour histogram to the global environment colour histogram and if they are 
too similar we would not use the colour method as the probability of detection is low. 

The detection method selection step forms part of the visual detection pipeline 
shown in Figure 4. Here, following each camera frame acquisition the method 
selection step is performed based directly on the appearance knowledge embedded in 
the object.  If the object is successfully detected a 2D location result is generated.  
This can take the form of correspondences between extracted image features and 
features in the Object Model, or a 2D image region in which the object has been 
detected, 

Following 2D location of the object in the camera image, a pose computation step 
is performed. The object pose is calculated either directly from matched local feature 
correspondences or by fitting the 3D model to edges detected in the 2D image region 
from the detection step. RANSAC is used for robust model parameter estimation [26] 
and eliminates incorrectly matched correspondences. Typically the pose computation  
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Fig. 4. Detection method selection based on smart object knowledge 

step achieves a mean location error under 5mm in the X and Y axes, 2cm in distance 
to object and mean orientation error under 1 degree with an object at 3m distance. 

Sensing can also be used in the pose computation step if a smart object contains 3D 
accelerometer sensors. Here the sensed gravity vector can be directly used to 
constrain the number of 3D model poses that must be tested to match the edges 
detected in the 2D image region from the detection step. 

5   Object Projection Processing 

When the smart object requests a projection its message includes both the content to 
project (which can be images, text or video or a URL where content can be found) 
and the location to project it. We can project onto any object surface visible to the 
projector.  The location description refers to the projection location abstractly or 
specifically. Abstract locations refer to faces of the object’s 3D model. For example, a 
projection can be requested on the top or front face.  A more specific location can also 
be specified as coordinates in the 3D model coordinate system, allowing exact 
placement and sizing of the projection on an object. 

There are cases where projection cannot begin immediately, such as where the 
system is busy, the object is occluded or the object is out of the field of view of the 
projector.  Here the display requests are cached at the projector-camera system and 
the projection commences when the object is in view and the projector is available. 
Projection requests are displayed sequentially and can be ended by the object 
requesting a null content projection. Simultaneous projection onto multiple objects 
can be accomplished if all are detected within the field of view of the projector-
camera system. 

A rectangular image projected on to a non-perpendicular or non-planar surface 
exhibits geometric distortion. We compensate for this distortion by warping our 
projected image if we know both the surface geometry of the object and the 
orientation angle of the surface with respect to the projector.  We obtain the  
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Table 2. Projection geometric correction methods based on object geometries [18] 

Object Geometries Correction Method 
Planar 
Rectilinear 

Planar Homography 

Cylindrical 
Spherical 

Quadric Image Transfer 

Irregular Discretised Warping 

orientation of the object from the object detection step, and the surface shape from the 
geometric 3D model contained within the Object Model.  The surface shape directly 
configures the projection geometric correction method [18], as shown in Table 2. 

The projector-camera system uses a real-time colour correction algorithm 
developed by Fujii et al. [19] to correct for the colour of the object’s surface and make 
the projection more visible. This entails an initial one-time projection of four colour 
calibration image frames (red, green, blue and grey) to recover the reflectivity 
response of the surface followed by calculation of the adaptation algorithm for each 
frame to be projected. 

6   Concept Validation 

This section uses the scenario outlined in section 3 to present a concrete detection and 
projection process for two smart chemical containers in a warehouse.  

6.1   Registration 

Objects enter proximity of the projector-camera system; detect the presence of a 
projection service and register.  This process transfers Object Model knowledge from 
the smart object to the projector-camera system. Here, an employee enters the 
environment with two smart chemical containers, as seen in Figure 5. 

The projector-camera system registers the objects, and returns a confirmation 
message to the containers. On receipt of this message the containers begin sending 
sensor events to the projector-camera system. In this case, they are being carried by 
the employee so embedded accelerometer sensors generate movement events. 

6.2   Detection  

The registering objects trigger the detection process in the projector-camera system. 
Here the challenge is to simultaneously detect mobile or static objects and distinguish 
between objects with similar appearances. 

The steerable projector now rotates from its current position to search the 
environment. As the objects have just entered, the system does not know their 
location. Consequently, the projector system uses a creeping line search pattern with a 
horizontal major axis to thoroughly search the whole environment. 

The projector uses the appearance knowledge embedded in the Object Model and 
the sensor events to configure its detection process. In this case the containers store  
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Fig. 5. Left: New objects arrives in environment, Centre: An employee walks with containers, 
Right: The employee places one object on the floor 

knowledge of a colour histogram, and sense they are moving. This knowledge triggers 
the method selection step to choose colour and movement detection processes. The 
movement process generates a motion mask which is used by the colour detection 
process to constrain its search for the object by masking the back-projection result of 
the object’s colour histogram. 

As the two chemical containers look identical, two possible objects are identified 
in the image.  It is not currently possible for the camera to distinguish between the 
objects. Consequently the steerable projector tracks the moving areas in the camera 
image by centring their centre of gravity. 

Both objects generate movement event messages while they are being carried by 
the employee. However, when an employee places one of the containers on the floor 
(see Figure 5) the container‘s movement sensors stop sending movement events. The 
projector-camera system now only detects one moving area and the system can 
differentiate between the objects directly based on sensing. A 3D location and pose is 
now calculated and sent wirelessly to the containers, completing the Object Model. 

6.3   Projection 

Once an object’s 3D location and orientation is calculated by the projector-camera 
system, objects can request projection of content on their surfaces. Here the challenge  
 

       

Fig. 6. Left: Warning message projection on two chemical containers, Right: Scale and rotation 
invariant local features detected on chemical containers 
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is to correct the projection for the orientation of the object, and variations in its 
surface colour to ensure the most undistorted and visible projection. 

The container detects it was put down in the wrong storage area based on the 
location it was sent and requests a warning message is projected (see figure 6). The 
projector-camera system projects the warning message on the front surface of the 
container objects so as to appear undistorted by drawing the text and images with the 
calculated transformations applied.  

6.4   Manipulating the Object 

When projecting onto objects, the object can respond to sensed manipulation or 
network events by dynamically modifying the projected content. The challenge here 
is to keep the projection aligned with the object as it is manipulated or moved. 

The employee sees the projected message and picks up the object. The detection 
process continues to track it and generate 3D location and pose information. 
Consequently, the message appears to remain fixed to its surface as long as the 
surface is visible to the projector system. When the object is in the correct area it 
requests the projection stops. The employee puts down the container when they see 
the message disappear. The projector-camera system keeps tracking the objects. 

6.5   Knowledge Updating 

If objects enter the environment with only partial knowledge of their appearance, their 
knowledge can be increased over time by performing extra detection processes and 
re-embedding the result into the Object Model.  The challenge is how to make the 
knowledge extraction accurate, given that the initial knowledge was incomplete. 

The two containers entered the environment only with knowledge of their colour, 
so the projector-camera system extracts more appearance knowledge over time.  In 
this case, the SIFT algorithm [22] is used to detect scale and rotation-invariant 
features on the object just put down, as shown in Figure 6. The SIFT descriptors are 
calculated on small image patches around the detected interest points. The resulting 
128 value feature vectors are mapped to locations on the object’s 3D model using the 
known 3D location and orientation of the container.  

If the object is manipulated so it is rotated from its original pose new features will 
be detected as they come into view. The projector-camera system manages the Object 
Model local feature database to merge new features or update the database if the 
object appearance is changed. The new local feature appearance knowledge is sent to 
the smart containers to be embedded in the Object Model and used for faster, more 
accurate detection in future. 

6.6   Objects Departing the Environment 

When objects depart the proximity of the projector-camera system, their virtual object 
representation is removed by the projector system and the projector is free to track 
other objects. Here, the employee moves to the exit with the container that was never  
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Fig. 7. A container leaves the environment with the employee 

put down. This container continues to generate motion events. As there are no other 
moving objects or projections active, the projector system tracks the carried object, as 
shown in Figure 7.  

As the employee exits through the door with the object, the system looses sight of 
the object and it no longer responds to messages from the projector-camera system. 
The system assumes it has departed the environment after a short time-out. 

The projector-camera system then returns to the last-known position of the other 
container objects. If no objects can be detected the projector system begins an 
expanding square search pattern centred on their former locations. 

7   Discussion 

This section discusses issues arising from the concept validation in terms of the five 
cooperative augmentation steps presented in section 6. 

7.1   Registration 

Currently, smart object registration and communication is performed over a wireless 
network, implemented using Smart-Its sensor nodes [23]. The wireless network 
bandwidth requirements for smart objects depend on where the sensor data is 
abstracted to events.  If a sensor node is not powerful enough to perform this 
processing then raw sensor data must be streamed to another device on the network. 
Due to the 13ms timeslots used for each node with the Smart-Its AwareCon protocol 
[23], only a maximum of 2 smart devices can stream sensor data simultaneously and 
remain synchronised with a 30Hz (33.3ms) camera refresh rate. 

The use of active smart objects with sensing provides three benefits over passive 
technologies such as RFID: 

1. Active sensing (such as movement or light sensing) can constrain the detection 
process to make it more robust and differentiate between objects. 

2. Objects whose appearance or geometry changes can update the projector-camera 
system dynamically with new appearance knowledge. (For example, if a user 
opens a smart book the appearance is updated and tracking is un-interrupted). 
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3. The object itself can be modelled as a state machine which requests projections 
based on sensed changes in its environment, location or direct interaction with the 
projection. (For example, a message about how to assemble two smart objects can 
be projected only when they are moved together into the same location). 

7.2   Detection 

It has been reported by Brooks in [24] that users of projector based interactive 
systems routinely accept total system latencies of 150ms. There are three main 
sources of latency in the detection and projection framework – camera frame 
acquisition, image processing for object detection and projection. For a camera 
running at 30Hz the frame acquisition takes up to 33.3ms, while for a 60Hz projector 
a frame is projected every 16.7ms.  Maximum latency before image processing is 
50ms; consequently, the object detection step should be performed below 100ms. 

The use of complex or multiple computer vision methods in the object detection 
step is CPU intensive. For example, a CPU optimised version of the SIFT local 
feature algorithm takes approximately 333ms to detect a single object in a 640x480 
pixel image [22]. Our approach is to make use of the ability of the Graphics 
Processing Unit (GPU) on the graphics card to process pixels in parallel, allowing our 
system to achieve detection and augmentation of objects in near real-time. 

7.3   Projection 

As we do not change the appearance of smart objects, their surfaces can present a 
challenge to projection. Generally, a smooth, diffuse, light coloured object is ideal for 
projection; however, few objects exhibit these characteristics. Certain combinations of 
projected content and object surface colour can make the projection almost invisible 
to the human eye. For example, when projecting a yellow font on a deep red 
background. Conversely, with a smooth, diffuse, light coloured object, projection 
illumination on the object can significantly alter its appearance, causing the object 
detection step to fail. 

Consequently, the use of colour correction techniques in the projection step was 
chosen, as it goes part way to solving these competing problems.  Colour correction 
algorithms can change the projected image to correct for non-uniform and non-white 
surface colours. An image of the object without projection can also be calculated as 
part of this process and used for object detection.  

Despite the large body of work on photometric correction, the algorithm by Fujii et 
al. [19] was chosen for this step as it is the only algorithm demonstrated to perform in 
real-time. However, this correction does have the cost of a one camera frame delay to 
allow the camera image to be used in the algorithm. The algorithm also cannot 
completely correct very saturated surfaces, as the dynamic range of typical projectors 
is not sufficient to invert the natural surface colour. 

7.4   Manipulation of Objects 

The maximum speed a smart object can move is limited by the camera frame rate and 
object detection step processing time. For an average camera acquisition and 
processing step of 133.3ms and a typical human walking speed of 5kph a handheld 
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object could move 18cm. As the lack of projection would be very obvious to a user 
during a move of this distance, we can de-couple the projection from the detection 
step. By using a Condensation algorithm particle filter [25] to predict the 3D location 
and orientation of the smart objects between detections we can exploit the faster 
frame rate of the projector.  The benefit of using a particle filter over a Kalman filter 
is that it allows us to model multiple alternative hypotheses; it can integrate detection 
results from multiple distributed cameras and better suits the non-linear movement 
typically seen in handheld objects.   

7.5   Knowledge Updating 

When the projector-camera system updates or merges new knowledge about an 
object, constraints on smart object sensor node memory limit the amount of 
knowledge that can be stored in a smart object. For example, the particle Smart-Its 
sensor node [23] currently only has 512KB of flash memory which can be used for 
Object Model storage. Our solution for larger models is to only store a URL link to 
the actual Object Model in the smart object (which assumes a network connection). 

8   Conclusion 

In this paper we have presented the concept of cooperative augmentation and 
validated our approach with an implementation using a warehouse scenario. We 
discussed issues arising from the implementation and the lessons learned. 

Our contribution is a new approach to augmenting smart objects with a display 
capability without changing their natural appearance, by using projector-camera 
systems. Our approach can locate and track mobile objects in the environment, align 
the projection with the object’s surfaces and correct for surface colour so the display 
appears undistorted and visible to a user. 

The main challenges in our approach are real-time visual detection of smart 
objects, keeping the projection synchronised when the object is moved or manipulated 
and correcting the projection for non-ideal surface colours and textures.  

More research is required in how different levels of knowledge change the 
detection performance, what impact sensing has on the robustness of detection and 
which computer vision algorithms are best suited to detecting the objects.  Open 
questions remain in the area concerning location of projections on an object. 
Specifically, how can we determine the best strategy to ensure the most visible, 
readable and useable projection location on an object’s surfaces for the user? Also, if 
an object is in view of multiple distributed projector-camera systems, what is the best 
strategy to decide which system should project onto each object surface? 
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