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Abstract. Battery lifetime has become one of the top usability con-
cerns of mobile systems. While many endeavors have been devoted to
improving battery lifetime, they have fallen short in understanding how
users interact with batteries. In response, we have conducted a system-
atic user study on battery use and recharge behavior, an important as-
pect of user-battery interaction, on both laptop computers and mobile
phones. Based on this study, we present three important findings: 1)
most recharges happen when the battery has substantial energy left, 2)
a considerable portion of the recharges are driven by context (location
and time), and those driven by battery levels usually occur when the
battery level is high, and 3) there is great variation among users and
systems. These findings indicate that there is substantial opportunity
to enhance existing energy management policies, which solely focus on
extending battery lifetime and often lead to excess battery energy upon
recharge, by adapting the aggressiveness of the policy to match the us-
age and recharge patterns of the device. We have designed, deployed,
and evaluated a user- and statistics-driven energy management system,
Llama, to exploit the battery energy in a user-adaptive and user-friendly
fashion to better serve the user. We also conducted a user study after
the deployment that shows Llama effectively harvests excess battery en-
ergy for a better user experience (brighter display) or higher quality of
service (more application data) without a noticeable change in battery
lifetime.

1 Introduction

It is clear to any mobile user that the reliance on a battery and charging cord
has a significant impact on usability, affecting when, where, and how people
use mobile systems. Despite its importance, we understand little about how
users replenish the energy on their devices. As a result, systems employ ad-hoc
solutions for controlling power consumption, regardless of when users charge
their devices or the lifetime they hope to achieve. Further, solutions are typically
static, ignoring variance in the usage patterns exhibited by different users as well
as differences in usage patterns across different devices. We believe that a better
understanding of user-battery interaction will help us to ensure that systems
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are not overly conservative or aggressive, and adequately adapt to changing user
behavior and device modalities.

To address this deficiency, we present the results of a systematic study of
how users manage batteries. The goal of our efforts is to identify patterns in
user behavior that can be leveraged to build systems that adaptively balance
the quality of the user experience with longevity. We have collected battery
traces using automatic logging tools, conducted a series of user interviews on
battery management, and collected results from an in situ survey that asks
about charging context. We have collected data from users of 56 laptops and 10
mobile phones. To our knowledge, this is the largest public study of battery use
and recharge behavior in mobile systems.

This study has yielded three notable results. The first is that the test sub-
jects frequently recharged their devices with a large percentage of their battery
remaining. The second is that the test subjects’ charging behavior was driven
by one of two factors: context, such as location and time, or battery levels that
are much higher than an empty battery. This can be contrasted with the fact
that they are only occasionally driven by a truly low battery level. The third is
that there are significant variations in patterns exhibited by users and particular
mobile systems. For instance, laptop users typically use either very little of the
battery capacity or almost all of it, whereas the mobile phone users generally
use a greater portion of their battery, but rarely run completely out. These re-
sults highlight the problem of existing energy management policies, which are
designed to extend battery lifetime without considering user-battery interaction.

Based on these observations, we have designed, implemented, and deployed an
experimental adaptive system, named Llama, to help manage energy consump-
tion in mobile systems. Because users frequently have excess energy remaining
in their batteries at recharge, we hypothesize that existing energy management
policies are often too conservative as they are designed to simply extend the
battery lifetime. For instance, a laptop may reduce the brightness of its screen
when unplugged even though the user will charge the device in the near future.
In contrast, Llama estimates, for a particular user and device, how much battery
is likely to go unused and adaptively adjusts the quality of service to meet the
predicted requirement. In a deployment of Llama, we employed display bright-
ness and data synchronization (health monitoring and web browsing data) as
the example services for which Llama will use excess battery energy.

Based on a test deployment of Llama using 10 laptop and 10 mobile phone
users, we present three results. First, Llama rarely caused the system to run
out of energy causing a loss of working time. Second, as intended, users did
recharge their laptops at a lower battery level, although it did cause some users
to recharge their devices more often. This is because many users charge based
on context, and others based on battery levels. Third, Llama provided improved
quality of service, i.e., brighter displays and more health and web data. More
importantly, the users were qualitatively pleased with the system, with only one
user in twenty noting a change in charging behavior.
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Laptop Phone
Users Data Users Data

Trace Collection 56 15–150 days 10 42–77 days
User Interviews 10 N/A 10 N/A
In Situ Survey 10 30 days 10 10–45 days

415 responses 91 responses

Fig. 1. The number of participants and the amount of data for each research method
of the user study

2 User Study of Mobile Battery Use

In this study of user-battery interaction, we primarily wanted to examine where,
when, and why people charge mobile systems. To this end, we have employed
three complementary methods. The first method is an automatic trace collection
tool that samples and records battery related information. This yields quanti-
tative data on recharging behavior, but does not reveal information about why
users do what they do. Thus, we also conducted user interviews to collect qual-
itative experiences with mobile battery use. Finally, as interviews rely on users’
imperfect memories, we developed and deployed an in situ survey tool that de-
livers a questionnaire to participants at the moment they plug in their devices.

In this sectionwedescribe eachof the threedata collectionmethods, thenpresent
a summary of our findings with regard to aggregate and individual user behav-
ior. All of our studies were conducted in parallel on laptop computers and mobile
phones. The total number of participants and amount of data is shown in Table 1.

2.1 Methodology

Trace Collection: Our first method was a passive logging tool that periodi-
cally recorded the battery level and charging status. The laptop implementation
is Java-based, runs on both Microsoft Windows and Apple OS X, and is down-
loadable and installable by the users themselves 1. It samples the state of the
machine every five minutes and the results are reported to our server once per
day. Given the latency, high energy cost, and fragility of suspension and hi-
bernation, we have made the tool completely passive: it records measurements
only when the system is in an active or idle state and does not wake it. This
leaves some gaps in the traces, such as plugging then unplugging the device while
suspended, but we believe these cases are uncommon.

The phone logging tool is written in C++ and runs on Microsoft Windows
Mobile, recording information every minute. We collected the results manually
as not all users had data plans. Due to the well-known difficulties in producing
software portable for mobile phones—especially when using low-level APIs—we
chose to distribute the logging tool pre-installed on T-Mobile MDA phones [12].
In the case of phones, transition to suspension and other low-power modes is
much more reliable, so the logging tool is more aggressive; it wakes the phone ev-
ery 1 minute to record the battery and charging status of the system. The logging

1 http://prisms.cs.umass.edu/llama.html
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tool reduces the phone battery lifetime to approximately two days. Given that
participants had little or no prior experience with this particular phone, they
had no preconceived expectations of its battery lifetime.

For the laptop study, we have made every effort to gather a large pool of
participants. We recruited participants from a large number of academic depart-
ments, friends and relatives, as well as community mailing lists and forums. For
the mobile phone study, we recruited ten engineering undergraduate and gradu-
ate students. All but one were males with ages between 20 and 26. There was no
overlap in participants for the laptop and phone studies. Given the method by
which participants were recruited for each study, we make no claims about the
randomness or represented demographics of the selection process, something we
hope to improve in future work.

To gather information about the type of users in the laptop study, we asked
them to fill out a short survey when downloading the tool. Of the respondents,
75% claimed to use their laptop as their primary machine at home and 52% said
it was their primary machine at work. Only 3% of the participants said that
they used multiple batteries in their laptops.

The total amount of data and number of participants are shown in Table 1.
The laptop users have contributed between 15 and 150 days of data with an
average of 68 days. The phone users have contributed 42 to 77 days of data
with an average of 59 days. Our analysis and experiments are independent of
the amount of data collected per-user, although the results for users with more
data can be used with greater confidence.

User Interviews: Our second method was to interview users for qualitative
data regarding their battery usage. Our goal in the interviews was to obtain more
information about the context of battery usage and the subjective experience. 10
of the 56 laptop users and all 10 phone users participated in the interviews. The
10 laptop users consisted of 3 female and 7 male participants with age ranging
between 20 and 30.

In the interviews, we provided some sample scenarios to think about and asked
the participants about the last time they were in each scenario, what they were
doing with the system, why it happened, how it impacted their future behavior.
We encouraged the interviewees to tell their stories and anecdotes.

In Situ Survey: Our third method was to ask users in situ why they recharge
their system. All 10 phone users and the 10 laptop users that participated in
the interviews were asked to install a tool that displays a pop-up survey, as
illustrated in Figure 2. The window appears each time the system is plugged in.
To minimize the intrusion and encourage users to supply only honest answers,
the window can be easily dismissed and will disappear if there is no response in
60 seconds. We filtered out any intervals between charges that were less than 5
minutes to account for times when users accidentally unplugged the system and
plugged it in again. We collected 415 responses from the 10 laptop users and 91
responses from the 10 mobile phone users over an average period of 30 and 28
days, respectively.



Users and Batteries: Interactions and Adaptive Energy Management 221

The window will disappear in 60 seconds if no action taken. You can dismiss it anytime before that.

Close

Why are your charging the system? Select all that apply
� Reminded by the system to recharge
� It is convenient to charge at this time of the day 
� It is convenient to charge at this location
� Concerned with limited charging opportunities ahead
� Battery is low
� I am using the system with the docking station
� Others (type in optional) ______________________

(a) Laptop (b) Phone

Fig. 2. In situ survey design for (a) laptops and (b) mobile phones

2.2 Findings Regarding Battery Use and Recharge Behavior

Battery use and recharge behavior is an important aspect of user-battery inter-
action. Using a combination of data from the trace study, survey, and in situ
questionnaire, we have reached several conclusions about the recharging behavior
of the participants in the study. When attempting to correlate a combination of
interviews, trace collection, and in situ questionnaires, we were often faced with
difficulties in correlating large amounts of imperfect data, resolving discrepancies
between collected and quoted information, and a seemingly unlimited number
of questions and conclusions. In each instance, we have attempted to distill
the highest confidence conclusions and those with the greatest implications for
building systems.

The conclusions are as follows: First, when users plug in their devices to
charge them, there is typically a significant amount of energy left in the battery.
Second, charging of both laptops and phones was mostly and equivalently driven
by context and battery levels significantly greater than empty, rather than low
battery alarms. Third, there is significant variation among users and between
devices. For instance, laptop users typically use very little of the battery capacity
or almost all of it, whereas the mobile phone users generally use a greater portion
of their battery but rarely run completely out.

The majority of recharges occur with a significant portion of the bat-
tery remaining: Figure 3, drawn from the automatic traces, shows the his-
togram and cumulative distribution of the battery remaining at recharge for
both laptops and mobile phones. For each type of device, more than 50% of
recharges occur when the battery is more than 50% full. Further, nearly 70% of
laptop recharges and nearly 80% of phone recharges occur when the battery is
more than 20% full.

Charging is mostly and equally driven by context and battery levels
rather than low battery alarms: The automatic traces cannot explain why
users charge their devices, so we must draw results from the in situ questionnaire
and user interviews. The results from our questionnaires are shown in Figure 4.
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(a) Laptops
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(b) Mobile phones

Fig. 3. Histograms and cumulative distribution of remaining battery upon recharge in
the collected traces

The results indicate that around half of all recharges are triggered by context,
including location, time of day, and for the case of phones, to synchronize with
a PC. This was corroborated by our interviews; most laptop interviewees stated
they usually recharge at the office, at home, and/or at night, driven by context,
or based on the battery reaching a certain level. From the phone interviews,
four out of ten participants claimed they charge the phone once or twice per
day, without even looking at the battery level indicator. This is unsurprising,
as many mobile phone users do not typically carry the phone charger thus only
charge in a single location. For instance, mobile phone users said:

“I always recharge every night.”
“I recharge every night, unless I forget.”
“I usually recharge every night, or the other night if I have forgotten.”
“I always keep my phone connected [to the USB/charge cable] when I’m
working behind my computer.”

Conversely, 28% of the laptop and phone responses indicated the reason for
charging was a “low battery”. At first this seems incongruent with the trace data
shown in Figures 3(a) and 3(b). However, a cross examination of the responses
and battery traces shows that when users select “low battery” as their reason for
recharging, the average remaining battery level was actually 40%. This indicates
that although users indicated that they weren’t concerned with limited recharge
opportunities ahead (7% and 5% of responses for laptops and phones), they were
still acting in a very conservative manner. Six of the ten phone users indicated
similar behavior, such as:

“I usually charge in the office, when the indicator shows 1 [of 2] bars.”
“I check the extra battery information screen and recharge around 40%,
or when I want to sync”
“I recharge when I get the low battery warning, [since] I still have plenty
of time left after that.”
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Fig. 4. In situ survey results

In contrast, it is less common for laptop users to charge triggered by low bat-
tery alarms. Figure 5 illustrates, for each user, the number of times the device
was recharged when the battery was below 5%. These scenarios are likely the
result of a low battery warning or automatic system hibernation. Users reported
that such scenarios occurred only during elongated trips without recharge oppor-
tunities. In these scenarios, the users took all measures to elongate the battery
lifetime to focus on accomplishing key tasks, for example minimizing display
brightness and turning off the network interface. Most users indicated that they
usually mitigated the effects of these situations by fully charging their device
beforehand.

Users and devices demonstrate significant variation in battery use
and recharge behavior: Figure 6 is a box-and-whiskers plot of the remaining
battery upon recharge for each participant. The graph shows the median, 25th
& 75th percentiles, max-min values within 1.5x of the interquartile range, and
outliers. We observe that not only is there significant variation across users, each
user demonstrates variation in her own recharge pattern as well. We also note
that there are significant differences between laptop and mobile phone charging
patterns, as Figures 6 and 3 clearly show. Laptop users tend to use a larger
portion of their energy and, as shown in Figure 5, they encounter low battery
scenarios more commonly than mobile phone users. We suspect this is due to
the fact that mobile phones often have a longer battery lifetime offering more
physical opportunities for charging.

2.3 Summary and Motivation for Adaptive Energy Management

The findings from our traces, interviews and questionnaire indicate several oppor-
tunities to provide an adaptive energy management system for mobile systems.
The most compelling conclusion is the first one: users frequently charge their sys-
tems with a significant amount of energy remaining. If the system can perfectly
predict how much energy the user will leave in the battery at recharge, it can
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(a) Laptop users
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(b) Mobile phone users

Fig. 5. The fraction of the time the battery falls below 5% for our participants

proactively use the remaining energy to improve the quality of service given to the
user. Such a system must be adaptive across users and systems, a necessity dictated
by the third set of conclusions that such variations are common. By increasing the
quality of service, fueled by so-called “excess energy”, systems can deliver better
usability such as increased screen brightness or lower latency responses.

However, such a system forms an implicit feedback loop with the user: if it uses
extra energy, the user may recharge earlier. Even worse, it may cause the system
to run out of energy prematurely, frustrating the user with an unexpectedly
short battery lifetime. From the second set of conclusions, we see that there are
primarily three kinds of behavior: charging based on context, charging based on
conservative battery levels, and charging based on true low-battery conditions.
Before designing an adaptive system, one can speculate that for context charging,
an adaptive system will have little or no effect on the users—they will charge
at the same times regardless of the adaptive system. In the case of charging
based on battery levels, the system may have more of an effect, causing the
user to charge the device more frequently. However, the adaptive system must
carefully avoid the third case, true low-battery conditions, as they will be the
most frustrating to the user.

Along the same lines, one should not interpret our findings as showing that
longer battery lifetime is not desirable. Instead, longer battery lifetime will help
users better deal with the current true low-battery conditions. More importantly,
users will adapt to it with different battery use and recharge behavior, as our user
study showed that they deal with laptops and mobile phones in very different
ways. Most recharges happen with substantial battery because mobile users have
developed realistic expectations and learn to effectively deal with the limited
battery lifetime. The goal of an energy adaptive system is to find how long the
user needs the device to last, and conform to that expectation. We certainly do
not consider this a closed subject, and our work is a step along a new direction
of research in user-centric power management.
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(a) Laptops
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(b) Phones

Fig. 6. Boxplot of remaining battery upon recharge for each participant. The middle
dark line shows the median value, the boxes show the 25 & 75th percentiles, while
the whiskers show the max and min values within 1.5x of the interquartile range. The
circles show outliers.

In the next section we describe the design of a novel adaptive energy man-
agement system, named Llama, that addresses all of these requirements.

3 Llama: User-Driven Energy Management

Based on the results of our user-study, we have designed a system, named Llama,
to manage battery energy on mobile computing systems. Llama tracks how much
of the battery is typically used on a system, and uses it to predict the excess
battery energy of the system, or how much energy will be left in the battery when
the system begins its next recharge cycle. One other system has attempted to use
this excess energy, SMERT [15], an energy-efficient multimedia messaging system
on mobile phones. However, unlike Llama, it is based on pre-set knowledge of
expected battery lifetime without automatically tuning to a user’s patterns.

Llama, in its current incarnation, assumes that the default system power man-
agement decides the minimum acceptable level of power consumption. Llama
then devotes the predicted excess battery energy to extra, non-critical services
or applications. Such a Llama application can be anything that has a fidelity-
power tradeoff. Examples include increased screen brightness, periodic synchro-
nization with a distributed file server, periodic collection and transfer of sensor
readings, providing services to peers in a cooperative system, and web prefetch-
ing. Llama applications can either be continuous in their use of energy, such as
screen brightness, or discrete, such as periodic sensor readings.

3.1 Energy-Adaptive Algorithm

First, we formally define the optimization problem that the Llama algorithm
solves. If Eb and Ef are the energy consumed by the Llama application and
all other applications between two consecutive recharges, the algorithm tries to
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maximize Eb—subject to Pr[Eb + Ef > C] ≤ p—where C is the total battery
capacity and p is the confidence of Llama not exceeding the battery capacity.
Though we have used the number of times the user runs out of battery as the
optimization constraint on Llama, other criteria could also be used to quantify
the effect of Llama on user behavior.

There are two key features in the Llama system design. First, Llama uses a
probabilistic algorithm, ensuring that the Llama application impacts the user-
perceived lifetime of the system only a small percentage of the time. Second,
Llama is adaptive; it responds to short-term and long-term changes in user be-
havior. The main component of Llama is a predictor that estimates the excess
battery energy using a histogram of previous battery usage and the current bat-
tery capacity. The histogram is measured using the same technique used in the
user-study—when the system is awake, Llama periodically records the battery
level and tracks when a recharge begins. Using the predicted excess battery
energy, the predictor can decide how much energy to devote to the Llama ap-
plication. The process is adaptive: it recalculates the energy to devote to Llama
tasks periodically, as the battery drains.

As an example of how the Llama algorithm operates, suppose a user wants
to assure with a confidence of 95% that their battery will not run out before
the next expected recharge. Llama determines the current battery capacity to
be 30%. It consults the histogram of recharges and determines that 95% of the
time that the battery drains below 30% the user recharges at or above 10%. It
then allows the Llama application to use up to 10% of the battery.

Algorithm 1. Energy-Adaptive Algorithm
Confidence of not exceeding battery capacity = p
Histogram for CDF of recharges given present battery remaining Cp = H
Size of Histogram bin = ΔH
Find x such that H(x) ≤ (1 − p) ≤ H(x + ΔH)
Excess energy for Llama tasks = x
Energy for foreground tasks Ef = 100 − x

The algorithm, shown as Algorithm 1, tracks the probability distribution of
when the user recharges to determine the amount of energy that can be spent on
the Llama application. For a continuous application, such as screen brightness,
the application spreads this energy usage over the remaining time before the next
recharge, and uses energy at the rate Eb

Td
, where Td is the expected time before

the next recharge. Llama currently uses the mean time between past recharges
as the measure for Td.

3.2 Supporting Discrete Background Tasks

Llama also enables a new kind of functionality not typically used in laptops,
PDAs, and portable music players: adaptive, self-initiated wake-up. Generally,
once a system places itself in a low-power state, such as suspension, hibernation,
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or off, it requires user intervention to start again. However, Llama can schedule
wake-sleep cycling to proactively run background tasks while the user is not
actively using the system. Note that at a hardware level this is already well-
supported, but concerns over using excess energy has kept it from being widely
adopted. Thus, Llama can execute a background task, such as taking sensor
readings, or checking for new email, on a periodic basis by waking up the system
and executing the task.

As the transition cost from sleeping to awake can be significant in any plat-
form, Llama must take this cost into account when deciding how often to initiate
a wake-up. In such cases, the interval after which a background operation should
occur is calculated as Td

Eb
· (eb + Et), where eb is the energy for one background

task, and Et is the cost to transition the system to the active state to complete
the task. The system has a predetermined set of time intervals after which a task
can be executed. These intervals determine how aggressive the task is. For exam-
ple, the intervals could determine how often a perfecting occurs. Td is mapped to
the closest time interval. However, Et will vary depending on the beginning state
of the system; it costs more to transition a system from suspended to active than
from idle to active. Since we do not know what state the system will be in when
we execute a task, we predict it will be in the same state as the last time a task
was executed. If the the last time Llama initiated a background operation the
system was active, then Et = 0. Otherwise we use the energy needed to resume
and then suspend the system, which can be measured online using information
provided by the operating system.

3.3 Measuring Energy Usage

Llama’s calculation relies upon knowledge of the power consumption of the
Llama application and the rest of the system, as well as the measured histogram
of recharges collected by the logging tool. Llama measures the power consump-
tion of the system and the Llama application by observing the power or energy of
the system as it executes the Llama application at different rates. For example,
if the screen brightness level of the system is mapped to an interval [0, 1], where
0 is totally dark and 1 is fully bright, Llama measures the power consumption
at 0, 0.25, 0.5, 0.75 and 1.0. It can then set the brightness according to its esti-
mate of excess battery energy and Td. If the task is periodic it must measure the
energy to execute the task once, and use that to estimate the power at different
intervals.

Recall that Llama may create a feedback loop with the user, causing them
to recharge their device earlier, rather than accepting the excess energy use.
However, due to the obvious complexities and ambiguities introduced by trying
to factor the user into the algorithm, we have designed the algorithm based on an
idealized system that does not contain such feedback. Only through deployment
and experimentation, the subject of the next section, can one discover how this
relationship bears out.
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4 Llama Evaluation

To evaluate the efficacy of the Llama system, we built a working implementation
and deployed it on 10 laptops and 10 mobile phones for approximately one
month. Before the addition of Llama, mobile systems are already set with a
default energy management policy, or one previously tuned by the user. For
the purposes of this evaluation we take this policy as the minimum acceptable
quality of service and Llama will only use more energy than this policy, not less.

4.1 Llama Deployment

To test the Llama algorithm, we tried a variety of applications, some noticeable
to the user and some invisible.

Laptop Screen Brightness application: For Mac laptops we employed a
screen brightness adjustment application. We chose screen brightness levels in
discrete intervals of 0.25, 0.5, 0.75, 1.0 where 0.25 is the least amount of back-
light and 1 is full brightness. After installation, the application trains itself to
learn the amount of power consumed by the laptop at each level. From then
on, the predictor wakes up every 5 minutes to estimate the amount of battery
capacity that will remain in the battery when the next recharge takes place.
The predictor does so through the history of recharges stored on the machine
from the readings taken by our tracing tool. The scheduler then calculates what
the screen brightness level should be such that the laptop does not run out of
battery with a probability p = 0.9. Consequently, the scheduler sets the screen
brightness to the level using a script.

Laptop Web Prefetching application: For Windows laptops, we used a web
prefetching application that downloads a random webpage from a set of 10 pre-
configured choices. The application only runs when the device is active or idle
and does not wake it from a suspended state. In this case, the user did not inter-
act with the application and we did not serve prefetched pages to the user. The
downloading interval determines the aggressiveness of the application, chosen as
once every 30, 60, 120, or 180 seconds. Similar to the screen brightness applica-
tion the predictor determines the battery capacity at the next recharge. It then
uses the excess energy to determine how often the web prefetching application
should run given the excess energy.

Mobile Phone background task: For the mobile phones, we employed a
remote health monitoring application used in a previous projectthe original ap-
plication periodically uploaded data from a wireless electrocardiogram (ECG)
sensor.We have replaced the sensor with preprogrammed data, and adapted it to
report at variable intervals from once every 5 minutes to once every 60 minutes.
This leads to an average extra phone power consumption of 3.3 to 40mW. These
intervals reduce the two-day idle battery lifetime of the phone by 1.5 to 14 hours
respectively.
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4.2 User Studies After Llama Deployment

We deployed Llama for both laptop and phone users, and collected battery usage
and Llama operation traces for approximately 30 days. We interviewed partici-
pants to gather additional subjective experience regarding Llama. The interviews
were semi-structured and were conducted in very casual fashion, focusing on elic-
iting stories from our participants to gauge the effectiveness and user-friendliness
of Llama. We first asked the same set of questions regarding different charging
scenarios, as described in Section 2.1. For the laptop participants, we then asked
whether the interviewee was comfortable with automatic adjustment of bright-
ness and whether they were concerned with its battery impact. At the end, we
asked both laptop and phone participants whether Llama had impacted their
battery lifetime, charging behavior, and their work.

Effectiveness of Llama in Using Excess Energy: Figure 7 shows the energy
use of Llama per recharge for the laptop and mobile phone applications. Figure
8 shows the cumulative distribution of the recharges for approximately 30 days
before and 30 days after installation of Llama software.

For laptops, users 2 through 9 correspond to the web prefetching application
while users 0 and 1 had the screen brightness application installed on their Mac
laptops. Llama used variable amounts of energy, varying from 2depding on the
amount of battery remaining at recharge.

From Figure 8(a) we find that the percentage at which users recharge their
laptop goes down after installation of Llama. For example, for more than 50of the
recharges, users recharge their laptops at 5installation of Llama. Beneficially, the
use of Llama led to an average of 629 webpages of average size 90 KB prefetched
each day for the Windows laptop participants and a 3 times brighter display for
16the two MAC participants. Though we do not directly evaluate improved user
experience as a result of Llama, these results strongly indicate that Llama can
provide significant benefit to the user.

For mobile phones, Figure 7(b) shows that Llama effectively employed exces-
sive battery energy and enabled the reporting of an average 23 MB of data per
recharge for each participant. The average Llama transfer interval for different
participants was between 13 and 59 minutes. The average among all phone par-
ticipants was 26 minutes, corresponding to a power consumption of 7.6mW or
about 5% of the battery capacity per day.

User-perceived effect: During the interviews, we found that none of the laptop
users had noticed a change in battery life after Llama deployment. After we
suggested that Llama may induce extra battery usage, we noted two comments:

“It must have been small, since I didnt notice it.” “Even though I didn’t
notice it, I would definitely care in situations where I require maximum
battery life.”

These and other similar comments confirm that Llama has been successful in
only employing excessive battery energy, although in the second case the user
expressed some concern over using the system.
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(a) Laptops
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(b) Mobile phones

Fig. 7. The figure shows the amount of energy used by Llama for the web-prefetching
and screen brightness applications for the laptop, and the health monitoring application
for the phones

The mobile phone users also expressed similar satisfaction. Only one mobile
phone participant noticed a shorter battery lifetime. He also indicated in the
user interview that he always checks the extra battery information screen and
charges at around 40%. He offered the only negative comment about the system:

“The battery lifetime was better last month. I have to recharge it every
day now, but it used to be every day and a half.”

It is important to note that no participants noticed increase in the time taken
to fully recharge the battery, although the average remaining battery level is
lower after Llama deployment. One reason is that the difference in remaining
battery level often leads to much smaller difference in the time required to fully
recharge. For example, 10% lower battery level may only need 3% longer charge
time. The second reason is that participants typically keep their devices plugged
in for more than 3-4 hours, enough time to recharge any battery, as we observed
from the field-collected battery traces.

Recharge behavior change: Table 9 shows the average number of recharges
per week, pre- and post-Llama. As Llama employed considerable battery energy,
we did observe an increase in the recharge frequencies in laptops, but not so in
mobile phones. Further, the pre-Llama traces show that show 1% of recharges
for laptops and 4% for mobile phones occur with the battery below 5%. In
contrast, after Llama was installed the battery ran below 5%, in 1% of recharges
for laptops and 7% for mobile phones. We have more confidence in the laptop
results, but in both cases the number of instances of an empty battery is small.

We believe that this increase in charging activity is due to users charging
their laptops driven by the battery indicator. This is an example of the feedback
loop we speculated at the end of Section 2.2. For users that are primarily driven
by context such an effect does not occur, and for those primarily driven by
the battery indicator, it will cause an increase in charging activity, but not an
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(a) Laptops

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Percentage at which Battery is Recharged

F
ra

ct
io

n
 o

f 
R

ec
h

ar
g

es

Post−llama
Pre−llama

(b) Mobile phones

Fig. 8. The figure shows the cumulative distribution of all recharges before and after
installation of Llama

Before Llama After Llama
All Laptop Users 6.5 7.8

All phones 10.1 8.9

Fig. 9. Average charge attempts per week on phones and laptops before and after
Llama

increase in dead batteries. It is our view that users have learned over time to
be quite conservative with their batteries because the default, static policies
of mobile systems have trained them to be so. We feel that users will adapt
to Llama to charge their systems at lower levels over a long term. The results
also motivate the need for further study to determine if Llama can be more
aggressive without the increased recharging rate frustrating the users, or if there
are ways to improve the prediction capabilities of Llama to use battery power
without increasing recharges. Our interview results also suggested the need of a
“maximum battery mode” for a user to override Llama when they anticipate a
scenario like air travel.

5 Related Work

Extensive research has been devoted to energy-efficient design of mobile systems;
however, little is known about why and when users recharge their batteries.
Froehlich and Chen presented a small-scale battery study on four participants
for two weeks as a case study of their in situ survey tool MyExperience [6]. While
limited in scope and scale, they also found there was still significant battery
upon recharge and less than 30% of the recharges were driven by “low battery”.
With a focus on understanding mobile battery use and recharge behavior, we
present a systematic study at a much larger scale with multiple research methods,
including trace logging, interviews as well as in situ surveys for both laptops and
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mobile phones. We reported a complementary study of user-battery interaction
on mobile phones with a focus on revealing mobile phone design problems that
lead to ineffective user-battery interaction [10]. In this work, however, our focus
is on understanding how mobile users decide to recharge and on applying the
new knowledge to user-adaptive system energy management, for both mobile
phones and laptops.

Related to our strategy of considering human factors in energy management,
HP Labs researchers selectively darkened part of organic light-emitting diode
(OLED) displays for energy reduction [9] and evaluated the user acceptance
for this technology [7,1]. Cheng et al. [2] exploited limitations in human visual
perception to reduce the power consumption of traditional LCDs and Vallerio et
al. studied the effect of user-interface design on energy efficiency [13]. All of these
projects focus on improving the battery lifetime of mobile systems. In contrast,
our work focuses on understanding mobile battery use and how to make better
use of the available battery energy.

Similar research methodologies have been developed as studies on tools for
studying mobile users in their natural settings [3,4,8,6]. In particular, Demu-
mieux and Losquin presented a mobile phone logging tool for studying human-
computer interaction on mobile phones [4]. We have employed similar logging
to specifically to capture battery use and recharge behavior. MyExperience de-
scribed an in situ survey tool, similar to the one employed in our work. In situ
survey tools make event-based user experience assessment possible by delivering
inquiries at the time of interest [3] . While each of these have contributed to the
development of tools, our focus is on the use of these tools for studying mobile
battery use. More importantly, we employ a triangulation of research methods,
including logging, interviews, and in situ surveys, to provide a combined strength
in studying how mobile users deal with the limited battery lifetime. Our work
presents an example of leveraging the complementary strengths of both quan-
titative measurements and qualitative inquiries as well as both monitoring and
self-reporting.

We note that many projects, including Odyssey [5], ECOSystem [14], and work
by Simunic et al. [11], attempt to balance performance and system-wide energy
usage. The general problem of how to allocate energy, or power, to competing
system components and applications, is orthogonal to our work. Ultimately, we
envision the integration of Llama with such systems to provide a power man-
agement solution that adapts to individual user behavior and can appropriately
allocate energy based on competing needs.

6 Future Work

We wish to expand our work in several ways: (i) a larger number of test subjects,
particularly mobile phone users, (ii) a less biased subject selection method, or
perhaps one that is demographically weighted, (iii) more types of mobile systems
including portable music players, (iv) linking user behavior, thus adaptive energy
management, with other contextual clues, such as location, mobility, and work
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patterns, and (v) longer-term studies of Llama to see if users can be retrained
to use adaptive systems more effectively. We also hope that researchers will use
the results of our study in building new systems and designing new user studies.

7 Conclusions

In this paper we have presented the results of an extensive trace collection and
user study that provides a first glimpse into the battery use and recharge behav-
ior of mobile systems, in particular laptops and mobile phones. We have made
three key observations in three comprehensive user studies: (i) many users fre-
quently leave excess energy in the battery when recharging devices, (ii) charging
behavior is more often than not driven by opportunity, context, and conservative
behavior, rather than low battery conditions, and (iii) significant variations oc-
cur across mobile users and systems. Based on these three observations, we have
created an adaptive energy management system, named Llama that can scale
energy usage to user behavior, probabilistically matching energy consumption
with the expected recharge time. We have deployed this tool on a number of
laptops and mobile phones and received generally positive feedback.

We fully realize that the concept of “excess energy” in a mobile device is not
without controversy. After extensive casual conversations with many users on
the pros and cons it is clear that, prima facie, such a system may work well
for some, but perhaps not all users. However, we believe that our research on
user behavior and the Llama system is a first step in discovering better adaptive
energy policies in mobile systems.
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