
 Ontologies in Pervasive Computing Environments

Use of Ontologies in Pervasive Computing Environments

Robert E. McGrath, Anand Ranganathan, Roy H. Campbell, M. Dennis Mickunas

Department of Computer Science
University of Illinois, Urbana-Champaign

Urbana, Illinois

Report number: UIUCDCS-R-2003-2332 UILU-ENG-2003-1719

April, 2003

This research is supported in part by the National Science Foundation grant NSF 98-
70736, NSF 9970139, and NSF infrastructure grant NSF EIA 99-72884.

 - 1 -

 Ontologies in Pervasive Computing Environments

 - 2 -

 Ontologies in Pervasive Computing Environments

Contents

1. Introduction... 7

1.1. Semantic Interoperability in Pervasive Computing Systems................................... 7
1.1.1. Object Registries are Insufficient.. 8
1.1.2. Web Services are Insufficient ... 9
1.1.3. Context-Aware Applications .. 10
1.1.4. A Missing Piece: Adding “Semantics” to the Distributed Object System...... 11

1.2. The Semantic Web... 13
1.3. Semantic Infrastructure for Ubiquitous Computing: An Experimental
Implementation ... 13

2. Background... 14
2.1. GAIA: a Pervasive Computing Environment .. 15
2.2. Semantic Web Technology .. 15

2.3.1. The Semantic Web Stack: XML, RDF, DAML+OIL, OWL, and Description
Logic ... 17
2.3.2. Description Logics .. 19
2.3.3. Semantic Web Software... 22

2.4. Ontologies .. 23
3. Kinds of Ontologies in GAIA.. 24

3.1. Ontologies for different entities ... 24
3.1.1. An example of a class in our ontology.. 26

3.2. Ontologies for context information.. 27
3.2.1. An example of using ontologies to describe context 28

4. Use of Ontologies in GAIA.. 28
4.1. Applications of Ontologies and Semantic Services ... 29

4.1.1. Defining terms used in the environment.. 29
4.1.2. Configuration Management: Validating Descriptions 29
4.1.3. Semantic Discovery and Matchmaking ... 30
4.1.4. Specifying Rules for Context-Sensitive Behavior .. 31

4.2. Example Uses of Ontologies and Semantic Services .. 32
4.2.1. Better Interaction with Humans .. 32
4.2.2. Improved Searches.. 32
4.2.3. Allowing Easier Interaction With Components.. 33

5. Implementation Details .. 34
5.1. The Ontology Server.. 34

5.1.1. Architecture... 35
5.1.2. Content and Behavior of the Knowledge Base (KB)...................................... 36

5.2. Integration into GAIA Framework .. 36
5.3. The Ontology Explorer .. 37

6. Discussion and Future Work.. 39
6.1. Important Findings... 39

6.1.1. Limitations of Description Logic.. 40
6.1.2. Development of Ontologies .. 40

 - 3 -

 Ontologies in Pervasive Computing Environments

6.1.3. Standard Interfaces and APIs for Semantic Services...................................... 41
6.1.4. Scalability and Reliability of Semantic Services .. 41

6.2. Future Research ... 42
6.2.1. Semantic interoperability between different environments 42
6.2.3. Vocabulary Translation... 43
6.2.3. Security and Access Control... 43

Acknowledgements... 44
Listing 1... 45
Listing 2... 46
References .. 47

 - 4 -

 Ontologies in Pervasive Computing Environments

Abstract

Pervasive Computing Environments consist of a large number of independent entities that
help transform physical spaces into computationally active and intelligent spaces. These
entities could be devices, applications, services or users. In recent years, advances in
middleware have enabled the different entities to interact with each other. However, it is
still difficult to assure that independent entities can understand the “semantics” of the
environment and other entities when they interact with each other. To tackle this
problem, we have used semantic web technologies to attach semantics to various
concepts in Pervasive Environments. We have developed ontologies to describe different
aspects of these environments. Ontologies have been used to make information systems
more usable. They allow different entities to have a common understanding of various
terms and concepts and smoothen their interaction. They enable semantic discovery of
entities, allowing requests to be semantically matched with advertisements. The
ontologies also describe the different kinds of operations an entity supports like asking
queries and sending commands. This makes it easier for autonomous entities to interact
with one another. It also allows the generation of intelligent user interfaces that allow
humans to interact with these entities easily. The ontologies also allow external agents
(such as new entities that enter the environment or entities that access the environment
over the web) to easily interact with the environment. Finally, we use ontologies coupled
with description logic to ensure that the system is always in a consistent state. This helps
the system meet various security and safety constraints. We have incorporated the use of
ontologies in our framework for pervasive computing, GAIA [63]. While we have used
ontologies in the pervasive computing scenario, many of the issues tackled are applicable
to any distributed system or multi-agent system.

 - 5 -

 Ontologies in Pervasive Computing Environments

 - 6 -

 Ontologies in Pervasive Computing Environments

Use of Ontologies in Pervasive Computing Environments

1. Introduction

Pervasive (or Ubiquitous) Computing Environments are physical environments saturated
with computing and communication, yet gracefully integrated with human users [39].
These environments advocate the construction of massively distributed computing
environments that feature a large number of autonomous entities (or agents). These
entities could be devices, applications, services, databases or users. Various types of
middleware (based on CORBA, Java RMI, SOAP, etc.) have been developed that enable
communication between different entities. However, existing middleware have no
facilities to ensure semantic interoperability between the different entities. Since different
entities are autonomous, it is infeasible to expect all of them to attach the same semantics
to different concepts on their own. In order to enable semantic interoperability between
different entities, we take recourse to methods used in the Semantic Web [6, 83].

When two autonomous entities exchange messages they must have common interfaces
and protocols, including a common message format. In addition, the parties must know or
discover the semantics of the messages: the vocabulary of the messages, which includes
the names and valid values of message elements. Essentially, the parties must have a
shared schema for interpreting the messages. Semantic interoperability is the
establishment of shared schemas for exchanging messages.

1.1. Semantic Interoperability in Pervasive Computing Systems

Open distributed systems face a fundamental challenge: autonomous entities (e.g.,
independent producers and consumers) need to successfully exchange messages
containing descriptions of entities, services, events, and other concepts. The descriptions
take several forms:

• Advertisement: send a description of the offered service or interface to the
Registry or other receiver

• Notification: send a description of an event (e.g., arrival of an entity)
• Query: send a description of the desired entities or services, receive a set of

descriptions of entities or services

In each case, the sender and receiver must be able to interpret the contents of the
messages, i.e., they must know the schema.

For a simple or closed system, all the required schemas are (implicitly or explicitly)
compiled into the components. But in an open system, the parties are autonomous,
heterogeneous, and evolving. In this situation, it is necessary to be able to discover and
use schemas as needed, as the system runs.

 - 7 -

 Ontologies in Pervasive Computing Environments

The driving problems require new techniques for:

• Schema exchange – open publishing and discovery of schemas
• Composing schemas – combining schemas from autonomous sources
• “Semantic Query” – queries and notification using more than simple key word

matching

Thus, besides the message protocols and syntax, the messages must have a machine-
readable schema. In this open system, there must be an open model for defining,
exchanging, and using schemas.

1.1.1. Object Registries are Insufficient

Object registries, such as the CORBA Naming Service [51] and the RMI Registry [68],
provide a basic mechanism for finding well-known (i.e., known in advance) services.
Brokers, such as the CORBA Trading Service [53], provide the capability to locate
services by attributes. Many other services provide similar features, including LDAP
[96], JINI [13], and Microsoft’s Registry [56].

These standards define the interfaces and formats for descriptions, but they leave most of
the specific content—the “semantics” of the descriptions—to publishers, communities,
and applications developers. The communities must create and share standard schemas
for across the open system: this process is typically outside the definition of the registry.

For example, the CORBA Trading Service is a standard interface for a broker, but does
not define the properties of the advertised services, or the legal values of properties [53].
By design, the specification of valid properties and relationships is left to communities,
such as the CORBA Domain Task Forces [52]. The CORBA Trading Service lacks a
number of important features, such as:

• The matching rules are limited, and only explicitly defined attributes can be
matched

• The Service Type (schema) are limited and weakly enforced on Service Offers
(advertisements). For example, any property from any (or no) Service Type can be
used in a Service Offer or query.

• Relations between Service Types and objects are minimally supported (e.g., by
properties), and are not enforced by the Trading Service.

Finally, while the queries have a grammar, there is no declarative language for defining
Service Types (schema) or Service Offers (instances). The contents of the Trading
Service are defined by API calls (i.e., code), which are not easy to publish and maintain
in an open system.

Similarly, the JINI Discovery Service defines an architecture, protocols, and interfaces
for advertisement, notification, and discovery [69]. Services and objects are described by
Service Entry objects, which are sets of attributes. But, as in the case of CORBA, the

 - 8 -

 Ontologies in Pervasive Computing Environments

attributes of objects and the legal values of properties are left to applications and
communities. The JINI Discovery Service also does not define a standard schema
definition language, or standard mechanisms for managing or validating Service Entry
objects.

Chakraborty et al. [8] report an augmented JINI registry, DReggie, which is similar to our
approach. They use DAML+OIL to define schemas for objects that are registered with
JINI.

1.1.2. Web Services are Insufficient

In recent years, the Web Services architecture has emerged as a set of standards for
publishing, discovering, and composing independent services in an open network [87,
89]. Industry (e.g., Microsoft .NET [28, 47], IBM WebSphere [36]) and the Global Grid
Forum “Grid Services” [74] are built on top of the Web Services architecture. This
architecture seeks to improve electronic commerce by enabling open markets using
networks and Web services [88, 92]. A key goal of the Web Services architecture is
“matchmaking”, or mutual discovery by producers and consumers [22, 73, 87].

The Web Services architecture is an abstract framework which defines the problems,
generic architecture, and general approach [87, 88]. Essentially, the Web Services
architecture is a “virtualization” of services, include a generic registry, the UDDI [76].
There may be different technical realizations of this architecture, but the current work has
focused on a solutions based on XML, which may be implemented with any underlying
database or registry.

The message passing protocol uses SOAP [84], the content of the messages is delivered
in the Web Services Description Language (WSDL) [89, 90]. WSDL is a language for
describing a network connection which responds to certain messages (a portType) [89].
WSDL does not specify how portTypes are discovered.

In the current Web Services technology, discovery is implemented with the Universal
Description, Discovery, and Integration (UDDI) specification [75, 76]. The UDDI’s
“purpose is the representation of data and metadata about Web services” ([76], p. 19).
The UDDI defines a standard registry and protocols, designed for, but certainly not
limited to, business-related Web Services. This specification defines a language and APIs
for publishing descriptions of network services, including their protocol and interface
requirements.

The UDDI descriptions can use vocabularies from many classification and identification
schemes. The schemes include official standards such as United Nations Standard
Products and Services Code (UNSPSC) [77] or application specific classification scheme
or vocabulary. The UDDI descriptions use “technical models” (tModels), which are a
reference to a specification of the scheme used in the description, i.e., the schema ([76],
p. 46). The UDDI defines a few standard tModels, but most tModels are references to
specifications outside UDDI, i.e., a pointer to some other standard. Furthermore, the

 - 9 -

 Ontologies in Pervasive Computing Environments

UDDI does not define the format or description language for tModels. These are left to
publishers ([76], p. 47), and many are paper documents. Thus, each tModel may be
implemented differently, and must be programmed case by case.

The Web Services architecture attempts to meet the challenges of service discovery,
including the need to manage descriptions of services from multiple autonomous sources
[88, 91, 92]. But the Web Services standards have not yet defined the “semantic” layer—
standards for specifying, validating, and exchanging schemas. The Semantic Web is
designed to fill this role (e.g., [1, 7, 60, 73]), but the integration of Semantic Web and
Web Services has yet to be specified.

1.1.3. Context-Aware Applications

A successful ubiquitous computing environment must have context-aware behavior.
Context plays a huge role in ubiquitous environments – applications in pervasive and
mobile environments need to be context-aware so that they can adapt themselves to
rapidly changing situations. Applications in ubiquitous environments use different kinds
of context information, such as location of people, activities of individuals or groups,
weather information, etc.. Distributed infrastructure, such as the Context Toolkit [12]
provide useful middleware for constructing context-aware applications. The
infrastructure must also manage context information and provide mechanisms to ensure
that the different entities that use context have the same semantic understanding of
contextual information.

There are different types of contexts that can be used by applications. These include
physical contexts (location and time), environmental contexts (weather, light and sound
levels), informational contexts (stock quotes, sports scores), personal contexts (health,
mood, schedule, activity), social contexts (group activity, social relationships, whom one
is in a room with), application contexts (email, websites visited) and system contexts
(network traffic, status of printers).

We represent contexts as predicates. The structure of the context predicate depends on the
type of context. The infrastructure must define the vocabulary and types of arguments
that may be used in the predicates. The various types of contextual information that can
be used in the environment must be well-defined so that different entities have a common
understanding of context. Also, there must to be mechanisms for humans to specify how
different applications and services should behave in different contexts.

Context-aware applications need to discover and interpret aspects of the environment
relevant to their goals, the “vocabulary” of the context. Thus, context-aware applications
need semantic services as well. We use the same Ontology Server for ontologies for
context information.

A lot of work has been done in the area of context-aware computing in the past few years.
However, not much effort has been spent in developing ontologies for context
information.

 - 10 -

 Ontologies in Pervasive Computing Environments

Seminal work has been done by Anind Dey, et al. in defining context-aware computing,
identifying what kind of support was required for building context aware applications and
developing an infrastructure that enabled rapid prototyping of context-aware applications
[12] . While the Context Toolkit does provide a starting point for applications to make
use of contextual information, it does not provide much help in organizing the wide range
of possible contexts in some structured format. It also doesn’t provide ways of defining
the different kinds of contexts available to applications.

Ontologies have been used in Multi-Agent Systems. MyCampus [64], which is an agent-
based environment for context-aware mobile services uses ontologies for describing
contextual attributes, user preferences and web services, making it easy to accomodate
new task-specific agents and web services. It, however, does not make use of reasoning
mechanisms to ensure logical consistency of the ontologies.

Rcal [59] is a Distributed Meeting Scheduling software that negotiates meeting times
based on user's availability and preferences. RCal can reason about schedules published
on semantic web (written in RDF, based on some ontology) and automatically
incorporate them in user's schedules.

The RETSINA Multi-Agent System Infrastructure [70] uses ontologies based on
WordNet to enable mappings between similar words or synonyms. This allows agents to
communicate with each other more effectively.

Tamma, et al. [71] describes the use of ontologies to enable automated negotiation
between agents. The ontologies used describe various terms used in the negotiation
process.

1.1.4. A Missing Piece: Adding “Semantics” to the Distributed Object System

Interoperability, context-awareness, and discovery face similar fundamental challenges:
enabling autonomous entities (e.g., independent producers and consumers) to exchange
messages successfully. These messages may contain descriptions of entities, services,
events, context information, and other concepts.

In a discovery protocol, the messages take several forms:

• Advertisement: send a description of the offered service or interface to a
Registry or another receiver

• Notification: send a description of an event (e.g., arrival of an entity that
matches a subscription)

• Query: send a description of the desired entities, services or other concepts,
receive a set of descriptions of entities or services or other concepts.

When two or more autonomous entities (e.g., users, agents, services, or applications)
interact, they need to determine the interfaces and protocols required to communicate
with the other parties. The interacting entities must share a common set of terms and

 - 11 -

 Ontologies in Pervasive Computing Environments

concepts on which their interaction can be based. Descriptions and messages required for
this operation include:

• Service/interface description: A description of the interfaces provided by
components and services

• Notification message: a description of an event (e.g., service availability)
• Negotiation messages: an exchange of messages describing proposed interfaces,

services or other concepts, offered or requested

A context-aware application must obtain current context information, from whatever
sources are available in the current space. Context events are implicitly or explicitly
descriptions of changes in environmental conditions. Context-aware services require
meta-level information: definitions of the types of contexts that can be used and their
structures. The context will be used in several operations, including:

• Discovery: Entities discover sources of context information
• Notification of context events: When environmental conditions change, certain

entities must be notified
• Interrogation: Entities can request a description of certain context information

and they receive descriptions of the context of the current space.

In each case, the sender and receiver must be able to interpret the contents of the
messages, i.e., they must know the schema of the messages.

If these services may be viewed as one or more abstract database, it is clear that an
additional component is needed, namely the schema or information model which defines
the structure for the contents of the database, queries, and notifications. Basically, the
entities of the ubiquitous computing environment need to know or determine:

• What objects exist
• What their attributes are
• What questions can be asked
• What answers may be returned
• What the questions and answers mean

Standard schemas are needed to describe many kinds of entities, including people, places,
and things. Furthermore, the system has policies, constraints, and relationships which
may need to be discovered as well. For a robust system, it is necessary to have a flexible
mechanism for exchanging descriptive information of many kinds.

For a simple or closed system, all the required schemas are compiled into the components
(implicitly or explicitly). But, in an open system, the parties are autonomous,
heterogeneous, and evolving. In this situation, it is necessary to be able to discover and
use schemas as needed, as the system runs. To do this, besides the message protocols and
syntax, the messages must have a machine readable schema. In this open system, there

 - 12 -

 Ontologies in Pervasive Computing Environments

must be an open model for defining, exchanging, and using schemas. This requires new
techniques for:

• Schema exchange – open publishing and discovery of schemas
• Composing schemas – combining schemas from autonomous sources, e.g., two

different vendors
• “Semantic Query” – queries and notification other than key word matching (i.e.,

semantic equivalence between concepts rather than just syntactic equivalence)

The “Semantic Web” is designed to address these challenges for the World Wide Web.
This study applies Semantic Web technology to Ubiquitous Computing.

1.2. The Semantic Web

The so-called “Semantic Web” is a set of emerging technologies mostly adopted from
earlier work on intelligent agents [6, 83]. The essence of the Semantic Web is a set of
technology-independent, open standards for the exchange of descriptions of entities and
relationships [14, 17, 27, 40, 46, 50] This includes XML-based languages and formal
models for Knowledge Bases. While the “Semantic Web” was designed to enhance Web
search and agents, we show that it is well suited to some of the requirements of a
ubicomp system.

In this study, ontologies written in DAML+OIL XML documents [9] to describe various
parts of the GAIA environment. An Ontology Server manages a system ontology and
operations on DAML ontologies. The ontologies are loaded into a Knowledge Base (KB),
built on the FaCT Server [4, 32]. The KB implements automated reasoning algorithms to
prove the ontology is consistent with the KB, and to answer logical queries about the KB.

An ontology is a formal vocabulary. Ontologies establish a joint terminology between
members of a community of interest. These members can be humans or automated
agents. The DAML+OIL provides a language to share ontologies via XML documents,
and the Ontology Server provides a common interface for using the ontologies.

Each entity in our environment uses the vocabulary and concepts defined in one or more
ontologies. When two different entities talk to each other, they know which ontology the
other entity uses and can thus understand the semantics of what the other entity is saying.
The use of Semantic Web technologies to describe these environments also allows web-
based entities to access and interact with these environments.

1.3. Semantic Infrastructure for Ubiquitous Computing: An Experimental
Implementation
Ontologies can be used for for describing various concepts in a Pervasive Computing
Environment. We have developed ontologies that describe the different kinds of entities
and their properties. These ontologies define different kinds of applications, services,
devices, users, data sources and other entities. They also describe various relations

 - 13 -

 Ontologies in Pervasive Computing Environments

between the different entities and establish axioms on the properties of these entities
(written in DAML) that must always be satisfied.

We have an ontology that describes the different types of contextual information in
GAIA. Context plays a huge role in pervasive environments – applications in pervasive
and mobile environments need to be context-aware so that they can adapt themselves to
rapidly changing situations. Applications in pervasive environments use different kinds
of contexts (like location of people, activities of individuals or groups, weather
information, etc.).

The ontologies that describe the pervasive environment greatly help in the smooth
operation of the environment. Some of the ways in which we use ontologies in our
pervasive environment are:

• Checking to see if the descriptions of different entities are consistent with the
axioms defined in the ontology. This also helps ensuring that certain security and
safety constraints are met by the environment

• Enabling semantic discovery of entities
• Allowing users to gain a better understanding of the environment and how

different pieces relate to each other
• Allowing both humans and automated agents to perform searches on different

components easily
• Allowing both humans and automated agents to interact with different entities

easily (say, by sending them various commands)
• Allowing both humans and automated agents to specify rules for context-sensitive

behavior of different entities easily
• Enabling new entities (which follow different ontologies) to interact with the

system easily. Providing ways for ontology interoperability also allows different
pervasive environments to interact with one another.

In this report, we describe how ontologies have been incorporated in our pervasive
computing environment, GAIA. Section 2 describes the different kinds of ontologies we
have in our system. Section 3 gives details on some of the ways in which we use
ontologies to ease the interaction between different entities in the system. Section 4 gives
some implementation details. Section 5 describes our experiences with using ontologies.
Section 6 describes related work in the field and Section 7 concludes the paper.

2. Background

We have integrated semantic services into our prototype Pervasive Computing
Environment, GAIA. The infrastructure provides a standard and ubiquitous service that
may be used by any entity of the system. In particular, the infrastructure enables any
entity of the system to use of ontologies written in standard DAML+OIL XML [9]. The
infrastructure maintains a system ontology and Knowledge Base that integrates
knowledge about the software, hardware, environment, and physical entities of the
Pervasive Computing Environment.

 - 14 -

 Ontologies in Pervasive Computing Environments

Ontologies are used for describing various concepts in the GAIA Environment. We have
developed ontologies that describe the different kinds of entities and their properties. The
ontologies define different kinds of applications, services, devices, users, data sources
and other entities. They also describe various relations between the different entities and
establish axioms on the properties of these entities that must always be satisfied.

Another important use of ontologies is to describe different types of contextual
information in GAIA. The ontology defines standard descriptions for locations, activities,
weather information, and other information that may be used by context-aware
applications.

2.1. GAIA: a Pervasive Computing Environment
GAIA is our infrastructure for Smart Spaces, which are ubiquitous computing
environments that encompass physical spaces [63]. GAIA converts physical spaces and
the ubiquitous computing devices they contain into a programmable computing system. It
offers services to manage and program a space and its associated state. GAIA is similar
to traditional operating systems in that it manages the tasks common to all applications
built for physical spaces. Each space is self-contained, but may interact with other spaces.
GAIA provides core services, including events, entity presence (devices, users and
services), discovery and naming. By specifying well-defined interfaces to services,
applications may be built in a generic way so that they are able to run in arbitrary active
spaces. The core services are started through a bootstrap protocol that starts the GAIA
infrastructure. starts the GAIA infrastructure. GAIA uses CORBA to enable distributed
entities to communicate with one another.

We have used GAIA to manage rooms in our Computer Science building. GAIA helps
make these rooms smart and responsive to the needs of different users. There are a wide
variety of devices that exist in these rooms. These include authentication devices like
fingerprint sensors and smart card readers, display devices like large plasma screens,
video walls, handheld devices, wearable devices like smart watches and smart rings,
various input devices like touch screens and microphones, etc. Besides, there are large
number of applications and services like music-playing applications, presentation
applications and drawing applications. Ontologies provide an easy way to manage this
diversity in our environments.

GAIA has served as our test-bed for the use of ontologies in ubiquitous computing
environments. We have incorporated the use of ontologies and Semantic Web technology
into the GAIA infrastructure, to provide semantic services for applications, services, and
users of the GAIA environment. The implementation is described in section 5 below.

2.2. Semantic Web Technology

The so-called “Semantic Web” is a set of emerging technologies based on the Web
standard XML [6, 83], but based on the Web standard XML. The essence of the Semantic
Web is a set of technology independent, open standards for the exchange of descriptions
of entities and relationships using XML-based languages and formal models for

 - 15 -

 Ontologies in Pervasive Computing Environments

Knowledge Bases [14, 15, 17, 50]. While the Semantic Web technology was developed
to support Web search [15, 45, 50] and intelligent agents [27, 44, 46, 73], it turns out to
be well suited to the requirements of a ubicomp system, as will be shown below. This
section briefly introduces the Semantic Web.

Semantic Web technology is a set of standards for open exchange of resource
descriptions. In the Web community, a “resource” is a generic term for any document,
object, or service that can be accessed via the WWW. The objects and services of a
ubicomp system can be considered to be instances of such resources.

The Semantic Web has developed technology for managing standard descriptive
vocabularies, ontologies. The DAML+OIL specification provides an XML standard
format for ontologies, which makes it much easier to publish, import, and reuse standard
vocabularies, and to create specialized vocabularies. Furthermore, DAML+OIL are
mapped to a formal logical model which can be used to ensure logical consistency and to
answer logic queries including satisfiability, equivalence, and subsumption [17, 25, 26,
32].

Together, these technologies support the creation and formal validation of ontologies for
specific domains, which can be combined into larger systems. The general approach is
for relatively small groups of “experts” to develop small, tractable vocabularies for
specific topics, presumably reusing and extending more general standard vocabularies.
The domain experts represent the key concepts and relations in a formal vocabulary
which is formally verified and published in an XML file.

An application or service may well use components, services, or other entities from
several domains, each of which may have an ontology defined for it. These domain-
specific ontologies can then be imported into a larger system as needed, i.e., as the
domain becomes relevant. The combined ontology needs to be validated, and
correspondences between different vocabularies (e.g., multiple terms for the same
concept) must be recognized and used. Also, the combined vocabularies may create

Table 1. Information Models for Discovery

Technology Schema or Vocabulary Model
CORBA Service Type Left to communities [51],

e.g., CORBA Domain Task
Forces [50]

JINI ServiceInfo Not Specified ([66])
UDDI (ebXML, etc.) tModel, Classification Left to publishers ([73], p.

47), e.g., OASIS Technical
Committees [49]

WSDL (.NET, Grid,
etc.)

serviceDescripton,
portType

Not specified ([86, 87])

Semantic Web Ontology (RDF,
DAML+OIL, OWL)

Description Logic
specification [25, 26]

 - 16 -

 Ontologies in Pervasive Computing Environments

implicit relationships not stated in any of the individual vocabularies. The DAML+OIL
XML language is specifically designed to meet these requirements.

The Semantic Web fills an important gap in distributed object technology. Conventional
distributed object systems and emerging standards such as Web Services define interfaces
and protocols for registries, advertising, and discovery, but do not provide standards for
defining the content of these services, i.e., descriptions of entities. The ontologies of the
Semantic Web fill this role

Table 1 lists several distributed system standards which describe entities. Each provides a
mechanism to specify a classification or vocabulary to be used as a schema for the
contents of the descriptions used in the service, but a formal model and language,
services must rely on manual coding. The Semantic Web standard provides ontologies
that may be used by any of these standards.

2.3.1. The Semantic Web Stack: XML, RDF, DAML+OIL, OWL, and Description
Logic
The Semantic Web standards of interest include the XML languages which, with their
formal underpinnings, are designed to be an open language for exchanging information
between Knowledge Bases. This section reviews the Semantic Web standards “stack”
(Figure 1).

The World Wide Web standards provide a universal address space (URIs [5]), and the
XML language is a universal standard for content markup. The XML standard assures a
universal (and multilingual) namespace and syntax ([78, 80, 94, 95]): an XML document
is guaranteed to be parseable, but there is no constraint on how to interpret the tokens.
The same information can be encoded in many ways using XML.

The Resource Description Framework (RDF) defines an XML language for expressing
entity-relationship diagrams [82]. Essentially, RDF defines standard tags for expressing a
network of related objects. However, RDF does not specify a single logical model of
entities or relationships: the same relationship could be encoded in many ways. XML and
RDF are necessary but not sufficient for the exchange of complex information in open
systems. The additional requirement is one or more standard logical models, to constrain
the use and interpretation of tags.

 - 17 -

 Ontologies in Pervasive Computing Environments

The DARPA Agent Markup Language (DAML) and Ontology Interchange Language
(OIL) are XML languages (combined as DAML+OIL) are designed to provide the
required models. The OIL is a language for describing formal vocabularies (ontologies),
essentially a meta-format for schemas [17, 30, 32]. The DAML is a language for
describing entity-relationship diagrams that conform to a schema (i.e., an OIL ontology)
[2, 24-26]. The DAML+OIL XML language will be standardized for the Web as the Web
Ontology Language (OWL) [79, 81, 85, 86, 93]. For most purposes, OWL will be
identical to DAML+OIL.

The DAML+OIL language is an XML binding to a formal logical model. Specifically,
DAML+OIL is bound to a Description Logic [19, 32]. Description Logics are a general
class of logic are specifically designed to model vocabularies [11, 19, 32]. Unlike most
XML documents, a DAML+OIL XML document is a set of statements in a formal logic:
essentially the DAML+OIL language uses the mechanisms of XML to deliver well-
defined logic programs. Therefore, unlike XML and RDF alone, a DAML+OIL
document has a single, universal interpretation. While there may be many ways to
express the same idea in DAML+OIL, a given DAML+OIL document has only one
correct interpretation.

The DAML+OIL language, with its formal underpinnings, is designed to be an open
language for exchanging information between Knowledge Bases. A Knowledge Base
(KB) is a database augmented with automated reasoning capabilities. A KB not only
answers queries by match, it also can deduce results using automated reasoning. The
automated reasoning also can maintain the consistency of the KB as new information is
added or modified.

Figure 1. The Semantic Web standards “stack”.

Figure 2. The logic, logic language, and XML markup.

- 18 -

 Ontologies in Pervasive Computing Environments

The logic and reasoning can be implemented by different systems. For example, FaCT
(Fast Classification of Terminologies) [30-32], Protege-2000 [49, 50], CLASSIC [45],
OntoMerge [55], and DReggie [8] have been used to implement a Knowledge Base that
can load and verify DAML+OIL. When fully deployed, the standard DAML+OIL XML
language (or OWL) will be able to be used as a common format to load, update and query
KBs implemented with different logic engines.

This experiment uses the FaCT (Fast Classification of Terminologies) [30-32] reasoning
engine, implements the SHIQ(D) logic, a specific Description Logic which is expressive
but can be implement efficiently [31, 32]. Figure 2 illustrates the relationship between
the logics, the reasoning engine, and the XML languages. Description Logic is discussed
in next section, and DAML+OIL are explained in the following section.

2.3.2. Description Logics

There are many approaches to automated reasoning; the Semantic Web has focused on
Description Logics (also known as Terminological Logics or Concept Languages).
Description Logics are a general class of logic are specifically designed to model
vocabularies (hence the name) [11, 18-20, 23, 24, 32, 33, 35, 57, 62]. A Description
Logic represents classes of individuals and roles are binary relationships used to specify
properties or attributes.

Description Logics are descendants of Semantic Networks [61] and related to frame
theory [48]. Description Logics are also related to object-oriented languages: the classes
and types (but not behaviors) of an object-oriented language can be stated in a
Description Logic as hierarchies of concepts and roles. When a class hierarchy is
expressed in a Description Logic, the model is proved satisfiable if and only if the class
hierarchy is correct (i.e., type checking is correct). (Of course, it is not necessary to
implement a general-purpose logical system to implement type checking.)

Systems built using Description Logic are used to create a Knowledge Base, composed of
two components:

• intensional: a schema defining classes, properties, and relations among classes
(the terminological knowledge, termed the ‘Tbox’)

• extensional: a (partial) instantiation of the schema, containing assertions about
individuals (the assertional knowledge, termed the ‘Abox’).

A Knowledge Base (KB) is a pair, (Tbox, Abox). Basically, the Tbox is the model of
what can be true, the Abox is the model of what currently is true.

A Description Logic has a formal semantics, which can be used to automatically reason
about the KB. The reasoning includes the ability to deduce answers to important
questions including [19, 20, 22, 23, 32, 34, 57, 62]:

• Concept satisfiability – whether concept C can exist

 - 19 -

 Ontologies in Pervasive Computing Environments

• Subsumption – is concept C is a case of concept D
• Consistency – is the entire KB satisfiable
• Instance Checking – is an assertion satisfied.

These questions can represent important logical requirements for ubicomp systems.

For example, Gonzalez-Castillo [22] defines a semantic match for a query (service
request) to a service (advertisement) can be implemented as logic operations on two
concepts (C1, C2). C1 matches C2 if:

• C1 is equivalent to C2, or
• C1 is a sub-concept of C2, or
• C1 is a super-concept of a concept subsumed by C2, or
• C1 is a sub-concept of a direct super-concept of C2 whose intersection with C2 is

satisfiable

Among formal logics, Description Logics have been demonstrated to provide substantial
expressive and reasoning power with real and effective implementations.

This study uses the the FaCT reasoning engine which has a CORBA interface and
implements the SHIQ(D) logic [4, 29]. SHIQ(D) logic is a specific Description Logic
which is expressive but can be implement efficiently. The FaCT system is programmed in
the OIL language [16, 17, 30]. The OIL program is compiled into a set of assertions
which are used to construct a Knowledge Base (KB). The KB can be tested with FaCT to
prove satisfiability and subsumption.

The SHIQ logic supports the concepts required for the definition of ontologies (the
Tbox), but cannot express individuals (needed for the Abox). For this reason, Gonzalez-
Castillo, et al. [22] argue that the SHOQ(D) logic should be used instead. Algorithms to
implement subsumption and satisfiability are known for SHOQ(D) ([33, 57]), although
implementations are not available at this writing.

Table 2 gives a summary the logical concepts and the DAML tags that represent them
[22, 62] (for alternative statements, see also [18, 24-26]). The SHIQ(D) logic includes the
concepts in all the rows except nominals and value restrictions (labeled “O”). These
concepts are necessary to define sets of instances of concepts, and to define properties
with specific values. In contrast, the SHOQ(D) language has all the rows of the Table 2
except inverse (labeled “I”).

The key reasoning for these logics is the determination of concept satisfiability, concept
subsumption, and KB consistency. Table 3 gives a formal statement of these conditions.

 - 20 -

 Ontologies in Pervasive Computing Environments

 - 21 -

Table 2. Correspondence of Description Logic and DAML (see also [19, 22, 24, 26, 60]).
(Concepts A, C, D; Roles R, S; type T, D; instance o, p, d)

DL
Expressiveness

DL Syntax DAML/XMLS Syntax Serv. Descript.
Lang.

A daml:Class Concept
T daml:Thing Thing (Top)
⊥ daml:Nothing Nothing (Bottom)
(C ⊆ D) daml:subClassOf Subsumption
(C ≡ D) daml:sameClassAs Equivalence
R daml:Property Role:

Properties
R daml:ObjectProperty ObjectProperties
(C ∩ D) daml:intersectionOf Conjunction
(C ∪ D) daml:disjunctionOf Disjunction
¬C daml:complementOf Negation
∀R.C daml:toClass Universal Role Rest.

ALC, also called S
when transitively
closed primitive
roles are included

∃R.C daml:hasClass Existential Role Rest.
≤ nR.T daml:maxCardinality
≤ nR.T daml:minCardinality Non-Qualifed Card.

N

= nR.T daml:cardinality
daml:hasClassQ ≤ nR.C
daml:minCardinalityQ
daml:hasClassQ ≤ nR.C
daml:maxCardinalityQ
daml:hasClassQ

Q

= nR.C
daml:cardinalityQ

Qualifed Cardinality

I R¯ daml:inverseOf Inverse Roles
(R ⊆ S) daml:subPropertyOf Role Hierarchy:

Subsumption of
Roles

H

(R ≡ S) daml:samePropertyOf Equivalence of Roles
{o, p, …} XML Type + rdf:value Nominals (Collection

of values)
O

∃T.{o, p, …} daml:hasValue Value Restrictions
D daml:Datatype +

XMLS
Datatype System

T daml:datatypeProperty Datatype Property
∃T.d daml:hasClass +

XMLS Type
Exist. Datat. Rest.

(D)

∀T.d daml:toClass + XMLS
Type

Univ. Datat. Rest.

 Ontologies in Pervasive Computing Environments

On
su
Fi
in
Fa
im

Br
se
ar
alg
in
alg

Th
sta
ca
fir
an

Th
in
re
Ta
ot

2.

Th
in
[4
an
th
to

Table 3. Definition of logical queries for a description logic (e.g., see also [19, 24, 60]).
Concepts C, D, instance a.

Query For a KB, Σ = < Tbox, Abox >
Concept satisfiability Σ |≠ C ≡ ⊥
Concept subsumption Σ |= C ⊆ D (i.e., Σ |≠ C int ¬D ≡ ⊥)
Consistency Σ |≠ ⊥
Instance satisfiability Σ |= C(a)
e of the important reasons for using a description logic is that the satisfiability and
bsumption can be computed efficiently. These questions are undecidable for general
rst Order Logic, and many otherwise desirable logics are also computationally
tractable. Efficient algorithms for SHIQ are given in [34], and implemented in the
CT server [4, 31]. Similar algorithms are proven for SHOQ [33, 57] , and
plementations should be forthcoming.

iefly, these algorithms convert the assertions to a normal form, and construct a (large)
t of constraints, which are then analyzed to prove a contradiction or not. The constraints
e propagated through the graph, which must be pruned by careful heuristics. These
orithms can provide good performance for typical cases, though the problems are

tractable in the worst case. See [34] and [57] for more detailed explanation of efficient
orithms.

e Tbox (the terminological knowledge) is the intensional knowledge. The Tbox
tements are typically definitions such as: C, A ⊆ C, and so on. The Tbox assertions
n be reasoned on used to prove the KB is consistent, concepts are subsumed, as in the
st three rows of Table 3. These proofs are used to implement automatic classification
d matching [15, 62, 67].

e Abox (the assertional knowledge) is the extensional knowledge, statements about
dividuals and properties. The assertions are typically C(a) (a is-a C), and R(a,b) (a is
lated to b by role R). The assertions can be checked for instance satisfiability (as in
ble 3). This proof implies that the instance does not conflict with the schema or any

her assertions currently in the KB.

3.3. Semantic Web Software

is experiment is made possible by the use of available free software with open
terfaces. The FaCT reasoning engine is a stand-alone server with a CORBA interface
, 29, 31]. The interface is essentially the OIL language, plus logic queries (satisfiability
d subsumption). The OIL program is compiled into a set of assertions which are sent to
e FaCT server to construct a Knowledge Base (KB). The KB can be tested with FaCT
 prove satisfiability (logical consistency) and subsumption (logical equivalence).

- 22 -

 Ontologies in Pervasive Computing Environments

The uk.ac.man.cs.img.oil package is available as part of the OILed tool [54]. This
package implements reading and writing DAML+OIL XML documents. A DAML
document is translated into an internal data structure (Ontology). The oil package can
verify the ontology by converting it to a series of assertions in OIL, which are sent to the
FaCT reasoner to create a Knowledge Base (KB). The oil package then queries to test
that the classes and individuals (instances) in the ontology are satisfiable in the KB. If
every class and instance in the FaCT KB is satisfiable, then the KB is consistent and the
ontology is correct.

Figure 3 shows the main components used. Together, these packages are capable of
validating any OIL ontology from a DAML XML file. In addition, the OILed tool [54]
can be used to create and validate DAML files. Furthermore, ontologies can import other
ontologies (using XML namespaces), and the oil package can create and validate an
ontology composed from multiple DAML files retrieved from the Internet.

2.4. Ontologies

The terminology or vocabularies used by a domain is developed to express the concepts
that the experts in this domain need to exchange information on the topic. The terms
represent the essential concepts of the domain. However, the specific terms used are, of
course, arbitrary. This leads to the classic problems of vocabulary control in information
systems [38]: in many cases, the same concept or very similar concept may have many
different terms applied to it in different domain contexts. Humans are quite used to
quickly switching and matching words from different contexts. Indeed, specialized
technical training involves learning domain vocabularies and mapping them to other

Figure 3. The logic programming components.
- 23 -

 Ontologies in Pervasive Computing Environments

domain vocabularies. Unfortunately, this process is very difficult for machines [65].

Domain experts and standards bodies will define the concepts develop the formal
vocabulary for domains reusing higher-level vocabularies and vocabularies from other
domains when they are available and apply. An important goal of an ontology is to
formalize this process, and to generate a formal specification of the domain-specific
vocabulary.

An ontology is a formal vocabulary and grammar of concepts [14, 23, 81]. The Semantic
Web XML languages addresses this process with schemas based on formal ontologies.
The Ontology Information Language (OIL) language is an XML-based language that
enables such information to be retrieved in an open network [10, 17, 66]. The OIL is not
simply a record format, it defines logical rules to enable the document to be validated
(proved correct) and then interpreted into a specific local schema.

Using the DARPA Agent Markup Language (DAML), a query can refer to the ontology
used to construct it, with a URL for an OIL document [1, 9]. In turn, the receiver can
retrieve the ontology if needed, parse it, and interpret the query into its own preferred
vocabulary. Similarly, the OIL can be used to publish the schema (ontology) of the
library as an XML document. This mechanism enables the parties to share their schemas
at run time, using a standard machine interpretable format.

The next section explains how ontologies are used in out Pervasive Computing
Environment.

3. Kinds of Ontologies in GAIA

We use ontologies to describe various parts of our pervasive environment, GAIA. In
particular, we have ontologies that have meta-data about the different kinds of entities in
our environment. We also have ontologies to describe the different kinds of contextual
information in our environment. In future work, we will investigate other uses of
ontologies, including generic descriptions of tasks and policies.

3.1. Ontologies for different entities

Pervasive computing environments have a large number of different types of entities.
There are different kinds of devices ranging from small wearable devices and handhelds
to large wall displays and powerful servers. There are many services that help in the
functioning of the environment. These services include Lookup Services, Authentication
and Access Control services, Event Services, etc. There are different kinds of
applications like music players, PowerPoint viewers, drawing applications, etc. Finally,
there are the users of the environment who have different roles (like student,
administrator, etc.). Ontologies provides a standard, machine-readable, taxonomy of the
different kinds of entities. We have developed ontologies that define the different kinds
of entities, provide meta-data about them and describe how they relate to each other.
These ontologies are written in DAML+OIL.

 - 24 -

 Ontologies in Pervasive Computing Environments

In addition to ontolog
each instance (or indi
properties of this inst
meta-data description
called MP3File and it
artist, genre, album, l
fields. The descriptio
concepts defined in th

Entity

Service

CommandableSe

SearchableServic

MP3Server

Application

PowerPointAppli

User

Device

Some of the classes in
of them) are shown in

Table 4, Some of the classes in the ontology

Class of all objects in the system - includes all
applications, services, devices and users
Subclass of “Entity”, the Service Class
encompasses all those components that provide
some form of service (!!) It includes both kernel
services like Space Repository, etc. as well as
other services like Context Providers.

rvice A subclass of “Service”, it includes all those
services to which you can send a command to be
executed

e A subclass of “Service”, it includes all those
services to which you can send a query and then
get a set of results in return
A subclass of both CommandableService and
SearchableService, it maintains a list of songs -
this list can be searched by certain attributes and
it can also be sent commands to play songs
Subclass of Entity, this represents the class of all
applications in the environment - eg. powerpoint,
scribble applications, etc.

cation Subclass of Application, this class describes the
different kinds of PowerPoint Applications
Subclass of entitiy, this is the class of all users
(or people) in the environment
Subclass of entitiy, this is the class of all devices
ies that provide meta-data about the different classes of entities.
vidual) also has a description in DAML+OIL that gives the
ance. This DAML+OIL description must be consistent with the
 of the class in the ontology. For example, the ontology has a class
 requires all instances of this class to have certain attributes like
ength, etc.. Thus, every description of an MP3 file has to have these
n of every instance is checked to see that it is satisfiable with the
e ontology.

in the system - UOBHosts, cameras, fingerprint
recognizers, etc.

 our ontology that describe entities (along with a brief description
 Table 4. Figure 4 shows the logical hierarchy of these classes.

- 25 -

 Ontologies in Pervasive Computing Environments

A Perv
added
and pr
the ne
ontolo
existin
in sub
entitie
bridge

F

3.1.1.

Each t
proper
can be

As an
below
entitie
song, e

igure 4. The logical hierarchy of classes from Error! Reference source not found..
asive Computing Environment is very dynamic. New kinds of entities can be
to the environment at any time. The Ontology Server allows adding new classes
operties to the existing ontologies at any time. For this, a new ontology describing
w entities is first developed. This new ontology is then added to the shared
gy using bridge concepts that relate classes and properties in the new ontology to
g classes and properties in the shared ontology. These bridge concepts are typically

sumption relations that define the new entity to be a subclass of an existing class of
s. For example, if a new kind of fingerprint recognizer is added to the system, the
 concept may state that it is a subclass of “AuthenticationDevices”.

An example of a class in our ontology

ype of entity in GAIA is described a class in our ontology. This class defines all
ties of the entity like the search interfaces it exposes, the types of commands that
 sent to it, the data-types it deals with, etc.

example, we have included a part of the description of an MP3 Server in Listing 1,
. This entity maintains a set of songs in MP3 format in its database. It allows other
s to search this set of songs using various parameters like name of artist, type of
tc. It can also be sent commands for playing songs – other entities can either

- 26 -

 Ontologies in Pervasive Computing Environments

request a particular song to be played or a random song to be played. In addition, there is
a human-understandable description about the entity. This is specifically meant for the
average user who wants to know more about the entity in a simple language.

The entity is described in terms of restrictions on various properties. The superclasses of
an entity also give more of an idea about the entity. In the case of the MP3 Server, it is
declared as a subclass of SearchableService (Listing 1, lines 12-16) and of
CommandableService (lines 17-21) – this means it supports searches and execution of
commands. Other properties of the MP3Server according to its description are that it
executes MP3Files (lines 22-33), it’s search schema is defined in the class
MP3Attributes (lines 34-45), and that there are two types of commands that can be sent to
it – MP3ServerPlay (lines 46-57) and MP3ServerRandomPlay (lines 58-69). In addition,
there is a human-understable description of the class (lines 5-8).

The DAML XML maps to statements of Description Logic (e.g., see [18, 25, 26, 62]),
which can be asserted to a Knowledge Base and logically validated.

3.2. Ontologies for context information

GAIA has a context infrastructure that enables applications obtain and use different kinds
of contexts. This infrastructure consists of sensors that sense various contexts, reasoners
that infer new context information from sensed data and applications that make use of
context to adapt the way they behave. We use ontologies to describe context information.
This ensures that the different entities that use context have the same semantic
understanding of contextual information.

The use of ontology to describe context information is useful for checking the validity of
context information. It also makes it easier to specify the behavior of context-aware
applications since we know the types of contexts that are available and their structure.

There are different types of contexts that can be used by applications. These include
physical contexts (like location, time), environmental contexts (weather, light and sound
levels), informational contexts (stock quotes, sports scores), personal contexts (health,
mood, schedule, activity), social contexts (group activity, social relationships, whom one
is in a room with), application contexts (email, websites visited) and system contexts
(network traffic, status of printers).

We represent contexts as predicates. We follow a convention where the name of the
predicate is the type of context that is being described (like location, temperature or
time).

The structure of the context predicate depends on the type of context. This structure is
defined in the ontology. For example, location context information must have three fields
- a subject that is a person or object, a preposition or a verb like “entering,” “leaving,” or
“in” and a location like a room or a city. For instance, Location (Chris , entering , room

 - 27 -

 Ontologies in Pervasive Computing Environments

3231) is a valid location context. Each type of context corresponds to a class in the
ontology. The fields of the context are defined as restrictions on this class.

Other example context predicates are:

• Temperature (room 3231 , “=” , 98 F)
• Sister(venus , serena)
• StockQuote(msft , “>” , $60)
• PrinterStatus(srgalw1 printer queue , is , empty)
• Time(New York , “<” , 12:00 01/01/01)

3.2.1. An example of using ontologies to describe context

Each type of context is defined by a class in the ontology. As an example, we give the
DAML+OIL description of temperature context in Listing 2, below. According to this
description, the “Temperature” context is a subclass of the more generic
“WeatherInformation” context (Listing 2, lines 10-15). Other information about this
context is that it consists of a subject, which can be either a “PhysicalPlace” or a
“Person” (lines 16-50); it has a relater which is a “ComparisonOperator” (lines 51-64);
and it has an object which is of type “TemperatureValue” (i.e. either in Centigrade or in
Fahrenheit) (lines 65-78). An instance of a temperature context based on this description
is Temperature (Champaign, “>” , 40F).

4. Use of Ontologies in GAIA

The Semantic Web technologies (Ontologies in DAML+OIL XML, a Knowledge Base,
wrapped with a standard Ontology Server interface) are applied to the problems discussed
above.

The ontologies that describe entities and context information are used to enable different
parts of the pervasive environment interact with each other easily. In this section, we
describe some of the ways in which ontologies are used in our pervasive environment,
GAIA.

The Ontology Server can be used by any application, component, or service in the GAIA
environment. For example, the CORBA Trading Service [37, 53] was augmented to use
the Ontology Server in three ways:

• to generate CORBA Service Types (schemas)
• to create templates for CORBA Service Offers (advertisements)
• to check proposed Service Types and Service Offers against the ontologies

(validation)

In this use, the ontologies provide a formal schema definition language for the CORBA
Trading Service.

 - 28 -

 Ontologies in Pervasive Computing Environments

Other entities in the environment can query the Ontology Server to get descriptions and
properties of classes. The Ontology Explorer supports queries like getting properties of
other entities, definitions of terms, descriptions of different types of contextual
information.

4.1. Applications of Ontologies and Semantic Services

The ontologies that describe entities and context information are used to enable different
parts of the pervasive environment interact with each other easily. In this section, we
describe some of the ways in which ontologies are used in our pervasive environment,
GAIA.

 4.1.1. Defining terms used in the environment

One of main uses of ontologies in a Pervasive Computing Environment is that it allows
us to define all the terms that can be used in the environment. Ontologies allow us to
attach precise semantics to various terms and clearly define the relationships between
different terms. It, thus, prevents semantic ambiguities where different entities in the
environment have different ideas of what a particular term means. Different entities in the
environment can refer to the ontology to get a definition of a term, in case they are not
sure.

For example, we have defined the term “meeting” as a subclass of “GroupActivity”. A
meeting is defined to have a location, a time, an agenda (optional) and a set of
participants. It has a human-understandable comment that goes as follows
“A meeting is an activity that is performed by a group of people. A meeting involves
different people coming together at a particular time or place with a common purpose in
mind”. Thus, both humans and automated entities in the environment can get a clear
understanding of the term “meeting” by looking it up in the ontology.

4.1.2. Configuration Management: Validating Descriptions

A key advantage of using ontologies for describing entities and contextual information is
that we can determine whether these descriptions are valid with respect to the schema
defined by the ontology. When a new entity is introduced into the system, its description
can be checked against the existing ontology to see whether it is satisfiable. If the
description is not consistent with the concepts described in the ontology, then either the
description is faulty (in which case the owner of the entity/context has to develop a
correct description of the entity/context), or there are safety or security issues with the
new entity or context. For example, the ontology may dictate that the power of a bulb in
the environment should have a value between 20 and 50 Watt. In that case, if somebody
tries to install a new 100 Watt bulb, then the description of the new bulb would be
inconsistent with the ontology and a safety warning may be generated.

When a new entity is first introduced into the environment, it is described in
DAML+OIL, which is sent to the Ontology Server to assure that the description of this

 - 29 -

 Ontologies in Pervasive Computing Environments

instance is logically consistent with the definition of the class of the entity and all the
logical relations of the current Knowledge Base. If there is a logical inconsistency, then
the developer of that entity is required to revise the description of the entity (or change
the properties of the entity) to ensure that it does meet the constraints defined in the
ontologies. The operation of checking the logical consistency of the description of an
entity is computationally intensive; and hence is performed only the first time the entity is
introduced into the environment (or whenever the description of the entity changes). It is
not performed every time the Space is bootstrapped.

Formal ontologies increase the ability to use descriptions from different, autonomous
sources. The DAML+OIL ontologies can be published, to enable autonomous developers
and service providers to describe their products with the correct vocabulary. Conversely,
autonomous entities can specify the correct formal vocabulary to be used to interpret their
descriptions by referring to the relevant DAML+OIL ontology. These actions require
more than the URL: the formal semantics defined for DAML+OIL ensures that
ontologies from different sources can be used together.

 4.1.3. Semantic Discovery and Matchmaking

A Pervasive Computing Environment is an open system, in which the components are
heterogeneous and autonomous. Before entities can compose and collaborate to deliver
services, they must discover each other. Conventional object registries provide a limited
capability for object discovery, and so-called discovery protocols (such as Salutation [58]
or JINI [13]), support limited ability to spontaneously discover entities on a network. For
a pervasive system, these protocols must be enhanced to provide semantic discovery [41]:
it must be possible to discover all and only the “relevant” entities, without knowing in
advance what will be relevant. This process has also been termed “matchmaking” [73].

Semantic discovery can involve several related activities: advertising, querying, and
browsing. In each case, the parties exchange structured records describing the offered
service (advertising, response to query) or the desired service (querying). The exchange
may be manual (browsing), real-time (a query to discover the current local state of the
system), persistent (a standing query, i.e., to be notified). The exchange may be a push
(advertisement, notification), pull (query), or some combination. In all cases, it is critical
that the data is filtered, to select a set that best matches the intentions of the parties. [73]
summarizes these requirements.

Object registries, such as the CORBA Naming Service [51], provide a basic mechanism
for finding well-known (i.e., known in advance) services. Brokers, such as the CORBA
Trader Service [53], provide the capability to locate services by attributes. Many other
services provide similar features, including LDAP [96], JINI [13], and Microsoft’s
Registry [56].

In the case of a Pervasive Computing Environment, the entities of interest are the active
components of the system, which includes devices, services, and physical entities in the
environments. We define ontologies for describing different categories of entities, and

 - 30 -

 Ontologies in Pervasive Computing Environments

use the Semantic Web technologies to enable semantic discovery and matchmaking
across the many kinds of entities.

One of the main issues with traditional discovery services is that in a massively
distributed environment with a large number of autonomous entities, it is unrealistic to
expect advertisements and requests to be equivalent, or even that there exists a service
that fulfills exactly the needs of the requester. Advertisers and requesters could have very
different perspectives and knowledge about the same service. Semantic discovery aims to
bridge this semantic gap between advertisers and requesters. A service that tries to
provide semantic discovery would use its knowledge of the environment and its semantic
understanding of the advertisement and the request to recognize that the two are related,
even if they, say, use different terms or different concepts.

DAML+OIL is based on description logics, that supports some of the operations required
for semantic discovery like classification and subsumption. DAML+OIL also allows the
definition of relations between concepts.

Variations of discovery and matchmaking are required for many functions of a ubiquitous
computing environment. This section discusses three different kinds of discovery: human
interaction, searches, and interaction of components.

4.1.4. Specifying Rules for Context-Sensitive Behavior

A key feature of applications in pervasive computing environments is that they are
context-aware, i.e. they are able to obtain the current context and adapt their behavior to
different situations. For example, a music player application in a smart room may
automatically play a different song depending on who is in the room and it may decide
the volume of the song depending on the time of day. GAIA allows application
developers to specify different behaviors of their applications for different contexts. We
use ontologies to make it easier for developers to specify context-sensitive behavior.

Context-aware applications in GAIA have rules that describe what actions should be
taken in different contexts. An example of a rule is :

IF Location(Roy, Entering, Room 2401) AND Time(morning) THEN play a rock
song.

A rule consists of a condition, which if satisfied, leads to a certain action being
performed. The condition is a Boolean expression consisting of predicates based on
context information.

In order to write such a rule, an application developer must know the different kinds of
contexts available as well as possible actions that can be taken by the application. We
have ontologies that describe the different kinds of context information – location, time,
temperature, activities of people, etc.. We also have ontologies that describe different
applications and what commands can be sent to them. The ontologies greatly simplify the
task of writing rules. We have a GUI which allows developers to write rules easily. The
GUI allows him to construct conditions out of the various possible types of contexts

 - 31 -

 Ontologies in Pervasive Computing Environments

available. It then allows him to choose the action to be performed at these contexts from
the list of possible commands that can be sent to this application as described in the
ontology. Developers can, thus, very quickly, impart context-sensitivity to applications.

4.2. Example Uses of Ontologies and Semantic Services

The use of ontologies can improve several aspects of the Pervasive Computing System.
In general, communication between autonomous entities is improved by the use of
ontologies. This section discusses several examples of such communications: human
interaction, search, and interaction of components.

4.2.1. Better Interaction with Humans
An important part of pervasive computing environments are the humans in the
environment. These environments automate several tasks and proactively perform various
actions to make life easier for the humans. Ontologies can be used to make better user
interfaces and allow these environments to interact with humans in a more intelligent
way. Very often users, especially novice users, do not know what various terms used in
interfaces mean or how different parts of the system are related to each other. The
problem is especially acute in pervasive environments with its myriad devices,
applications and services. It is very easy for users to get lost in these environments
especially if they do not have a clear model of how the system works. Ontologies can be
used to alleviate this problem. Ontologies describe different parts of the system, the
various terms used and how various parts interact with each other. All classes and
properties in the ontology also have documentation that describe them in greater detail in
user-understandable language. Users can thus browse or search the ontology to better
understand the system. Ontologies enable semantic interoperability between users and the
system.

We have developed a GUI called the Ontology Explorer that allows users to browse the
ontology describing the environment. Users can search for different classes in the
ontology. He can then browse the results–for example, he can get documentation about
the classes returned, get properties of the class, etc.. He can also get instances of the
class. For example, if the user searches using the string “MP3”, he gets all classes in the
Ontology that deals with “MP3” – this includes an MP3 Server, MP3 Files, MP3
Attributes, etc. He can then get more details about the classes. He can get instances of
MP3 Files and interact with the MP3 Server, as described in the next sections. More
details about the Ontology Explorer as well as screenshots can be found in the
Implementation section.

4.2.2. Improved Searches
One of the most frequent activities in computing is search. Both users as well as
computer programs need to search data sources for relevant information. Components
that allow searches to take place expose their schemas in the ontology. They can also
specify which fields in the query are required and which are optional. Thus any entity can
browse the ontology to learn the schema and query formats supported by the searchable
component. They can then frame their query and get the results. We also generate search

 - 32 -

 Ontologies in Pervasive Computing Environments

interfaces based on the schema which humans can use to enter queries. This greatly
speeds development time, since each component that allows searches need not have a
separate GUI for users. Instead, all they have to do is to specify their schema in an
ontology – the schema is then used to automatically generate the interface.

These ontology-driven user interfaces makes query formulation easier. The user can’t
make a mistake by, say, using unknown terms. All available attributes and fillers are
automatically loaded and presented dynamically depending on the query-template
specified in the ontology. The user frames his query by just choosing reasonable values
for the given attributes.

For example, the MP3 Server supports searches based on attributes like name of song,
genre of song, length of song, etc. This schema is described in the Ontology. Other agent
can, thus, get the schema from the Ontology Server and send queries to the MP3 Server.
Users can also send queries to the MP3 Server using the Ontology Explorer. The
Ontology Explorer gets the schema from the Ontology Server and generates a dialog
(based on the schema) where the user can enter the query. For example, the user can
search for all songs by Elvis Presley. The Ontology Explorer submits the query to the
MP3 Server and displays the results for the user. More details about how the Ontology
Explorer is used to let users perform searches as well as screenshots can be found in the
Implementation section.

Similarly, automated agents can also make use of the search schemas defined in the
ontology to frame queries to other entities and get the results. This smoothens the
interactions between different entities.

A more difficult problem is to provide context-sensitive queries and responses: the user
frames the request in the vocabulary of his application task and context, but this may not
match the vocabulary of the system. It will be necessary to translate requests to
equivalent vocabularies, and to translate responses to the vocabulary of the consumer. In
general, such translations are very difficult and cannot be done automatically. But when
translations are known (e.g., between two standard vocabularies), ontologies can be used
to automatically transform queries and responses.

4.2.3. Allowing Easier Interaction With Components
Search is just one of the activities that users and computer programs can perform on
various components in a pervasive environment. Different components allow different
types of actions to be performed on them. For example, a music player allows different
commands to be send to it –start, stop, pause, change volume, etc.. In our framework,
components specify the commands they support and the parameters of these commands
in an ontology. Thus, other entities can learn what commands can be sent to a particular
component and can thus easily interact with this component. As in the case of search, we
can easily generate GUIs where users can specify commands to be sent to a particular
component.

 - 33 -

 Ontologies in Pervasive Computing Environments

The ontology, thus, provides a generic way of interacting with different agents. The
ontology describes the different commands that can be sent to an agent. For each
command, it also describes what arguments or parameters are needed. Other agents, as
well as users, can thus send these commands with the correct parameters to the agent.

The Ontology Explorer also allows users to send commands to different agents. For
example, the MP3 Server supports commands like play, stop, pause, increase volume, etc.
If the user wants to send a command to this MP3 Server, the Ontology Explorer opens up
a dialog that lists the commands available. Once the user chooses a command, it gets the
list of required parameters for the command from the Ontology Server and allows the
user to fill in these parameters. For example, if the user chooses the “play” command, the
Ontology Explorer discovers that the play command needs one parameter – the name of
the song. It then presents the user with a list of songs (obtained from the MP3 Server) and
allows the user to either choose a song or enter the location of a new song. It then sends
the play command to the MP3 Server. More details about how the Ontology Explorer is
used to let users send commands as well as screenshots can be found in the next section.

Similarly, automated agents can also make use of the commands defined in the ontology
to send commands to other entities. This smoothens the interactions between different
entities.

5. Implementation Details

We have integrated the use of ontologies in our smart spaces framework, GAIA. All the
ontologies in GAIA are maintained by an Ontology Server. Other entities in GAIA
contact the Ontology Server to get descriptions of entities in the environment, meta-
information about context or definitions of various terms used in GAIA. It is also
possible to support semantic queries (for instance, classification of individuals or
subsumption of concepts). Such semantic queries require the use of a reasoning engine
that uses description logics like the FaCT reasoning engine. We plan to provide support
for such queries in the near future.

One of the key benefits in using ontologies is that it aids interaction between users and
the environment. With that aim in mind, we have developed an Ontology Explorer which
allows users to browse and search the ontologies in the space. The Ontology Explorer
also allows users to interact with other entities in the space through it. The interaction
with other entities is governed by their properties as defined in the ontology.

 5.1. The Ontology Server

The Ontology Server is a CORBA service maintains a single, cumulative “current
ontology” for an Active Space. Each Active Space has one Ontology Server running in
it.. As described above, the ontology is a logical schema for all the entities of the system.
The Ontology Server implements algorithms to load and validate ontologies from
DAML+OIL XML files, compose ontologies into a combined system ontology, and serve

 - 34 -

 Ontologies in Pervasive Computing Environments

logica
ontolo

5.1.1.

Figure
interfa

•

•

The O
and in
interfa
structu
implem

The O
update

Figure 5. Overview of the OntologyService.
l queries to a Knowledge Base (KB) representing the dynamically composed
gy [42].

Architecture

 5 shows the key components of the Ontology Server. The service has a CORBA
ce, and two main components:
The OntolServer, which implements the interface, maintains the current ontology
and other state information, and executes the algorithms defined in the previous
section.
The OntoKB, a private class which is a generic wrapper for the logic engine and
KB.

ntology Server interface uses DAML+OIL XML documents to define ontologies
dividual objects (as well-formed fragments of ontologies). The Ontology Server
ce uses only open, public objects and formats, hiding the details of the data
res, logic engine, and KB. This makes it possible to substitute alternative
entations of the ontology data structures, logic engine, and KB.

ntoKB class implements a generic interface for a Knowledge Base, including load,
, validate, and query.

- 35 -

 Ontologies in Pervasive Computing Environments

5.1.2. Content and Behavior of the Knowledge Base (KB)

In this implementation, the KB managed by the Ontology Server only has class
information: the types or classes of different entities or terms, not descriptions of actual
instances of entities (i.e., the current state of the system). This class information is
sufficient for carrying out most of the tasks we are interested in (which will be described
in the following sections).

A KB of description of instances would be far more dynamic than description of classes.
Since instances can enter and leave the environment at any time, the Knowledge Base
may have to be continuously updated to keep it synchronized with the current state of the
space. Also, there potentially may be a very large number of instances of entities
(compared to the number of classes). It would be very challenging to implement a KB
that could efficiently handle large numbers of updates in real time. A KB of instances
also requires a naming scheme so instances can be reliably recognized and distinguished,
and would need robust error handling and recovery. The KB of class information is
smaller and less volatile, so it could be implemented.

The information about existing entities is managed by other components of GAIA. GAIA
has a service called the Space Repository which maintains information about the entities
in the space at any time. Each entity has an XML description which is written in
accordance to the meta-information about the entity as described in the ontology. The
Space Repository maintains the descriptions of all entities that are currently in the space.
More details about the Space Repository can be found in [63]. Instances of context
information are distributed among different sensors and other entities that use context.
The Ontology Server manages a unified ontology so that these distributed services can
interoperate.

5.2. Integration into GAIA Framework

The Ontology Server has been integrated into the GAIA framework, to create a prototype
semantic infrastructure. Figure 6 shows the interaction of the Ontology Server, GAIA
entities, and the Ontology Browser.

The Ontology Server has access to the ontologies described in Section 3. These
ontologies are loaded into the Ontology Server when it is started. The Ontology Server
also asserts the concepts described in the ontologies in the FaCT Reasoning Engine to
make sure that they are logically consistent. It registers with the CORBA Naming Service
so that it can be discovered by other entities in the environment.

Other entities in the environment can query the Ontology Server to get descriptions and
properties of classes. The Ontology Explorer supports queries like getting properties of
other entities, definitions of terms, descriptions of different types of contextual
information. Since the Ontology Server is a CORBA Object, it is easy for other CORBA-
Based entities to get a reference to it from the CORBA Naming Service and then interact
with it.

 - 36 -

 Ontologies in Pervasive Computing Environments

5.3. T

One o
the en
allows
also a
with o
Ontolo
entitie

The O
entitie
search
results
proper
contac
entitie
classes

If the c
querie
search
Ontolo
examp

Figure 6. Overview of the Semantic Infrastructure in GAIA
Figure 7. The results of a search for “MP3”.
he Ontology Explorer

f the key benefits in using ontologies is that it aids interaction between users and
vironment. With that aim in mind, we have developed an Ontology Explorer which
 users to browse and search the ontologies in the space. The Ontology Explorer
llows users to interact with other entities in the space through it. The interaction
ther entities is governed by their properties as defined in the ontology. This
gy Explorer is similar to a class browser, except it has information about all the

s of the system, not just the software classes.

ntology Explorer GUI allows searching the ontology and interacting with different
s in the environment with the help of the ontology. It can perform a keyword-based
 on all the classes and properties in the ontology. The user can then browse the
 returned – for example, he can get documentation about the classes returned, get
ties of the class, etc. He can also get instances of the class. This is done by
ting a repository that maintains information about the instances of the class of
s. Figure 7 shows the result of a query on the keyword “MP3”. The result is a set of
 that are related to MP3 files and services.

lass supports searches (for example, if they are databases), the user can enter
s that are sent to an instance and the results are then displayed. To support such
es, the Ontology Search Engine gets the schema for searching the instance from the
gy Server and generates a GUI where the user can enter values for the query. For
le, Figure 8 shows the query form for searching the MP3 Service for MP3 files.

- 37 -

 Ontologies in Pervasive Computing Environments

f
f

S
c
O
i
l

F
c
c
t
t
r
f

Figure 8. The search dialog for MP3 files (automatically generated from ontology
information)
The attributes of the MP3 that may be searched (Artist, MusicType, etc.) were
automatically retrieved from the ontology. If new or different attributes are added in the
uture, the ontology will be changed and the Explorer will automatically pick up the new
ields.

ome entities support commands being sent to them. The Explorer gets the type of
ommands that an entity supports as well the parameters for these commands from the
ntology Server. It then displays a GUI where the user can frame his command and send

t for execution to the entity. For example, the MP3 Server supports various commands
ike Play, Pause, Stop, etc.

igure 9 shows an example of how a command can be sent to the MP3Server. The user
an choose the command he wants to send from a list of available commands. Once he
hooses the command (say “Play”), the Ontology Explorer queries the Ontology Server
o see if this command requires any parameters, and if it does what the of values should
hose parameters be. In the example below, the “Play” command has been defined to
equire one parameter–the name of the song. The Ontology Explorer asks the MP3 Server
or a list of songs in its database; it then displays the list of songs to the user and the user

can choose the song he wants to play.

 - 38 -

 Ontologies in Pervasive Computing Environments

The GUI was developed using C++, and it uses CORBA to communicate with other
entities in GAIA.

Figure 9. The command dialog for an MP3 Player (automatically generated from
ontology information.)

6. Discussion and Future Work

This study has integrated semantic web technology into the GAIA infrastructure. This
study has shown the need for future work in several areas. Some of these issues are
briefly discussed here.

6.1. Important Findings

This study has shown that the Semantic Web technology can be used with CORBA-based
infrastructure to solve some problems for a Pervasive Computing Environment. The
Ontology Server provides a standard interface to a Knowledge Base and logic engine.
Ontologies for descriptions of entities and relationships are developed with knowledge
engineering environment and written as DAML+OIL XML files. Components of the
system use the CORBA-based infrastructure to update and query the Ontology Server.

The DAML+OIL (and in the future, OWL) languages exploit the advantages of XML,
and add a standard logical model, to make each DAML+OIL XML document a logic
program. The logical model allows DAML+OIL to be loaded into a Knowledge Base,
which can apply automated reasoning. This study integrated DAML+OIL and an example
Knowledge Base into our CORBA-based Pervasive Computing Environment.

Conventional distributed systems and the emerging Web Services architecture require
standards for defining, managing, and exchanging schemas. The Semantic Web
technology can be used to solve some of these problems. Furthermore, our study shows
that the same technology can be used to solve critical problems for Pervasive Computing.

The DAML+OIL language adds the advantages of the XML standard: a universally
parseable representation, a universal standard for namespaces, widely available software
support across many platforms, and so on. These features are especially important for
implementing multiple vocabularies (schemas) from autonomous sources: XML provides
the critical interoperability that enables the publication and exchange of vocabularies.

 - 39 -

 Ontologies in Pervasive Computing Environments

Again, the DAML+OIL language uses the mechanisms of XML to deliver well-defined
logic programs.

6.1.1. Limitations of Description Logic

The DAML and the Description Logic (DL) underlying DAML are necessary but not
sufficient for ubiquitous computing applications. Specifically, Description Logics are not
suited for some critical aspects of ubiquitous computing: DL does not deal well with
quantitative concepts; including order, quantity, time, or rates. Unfortunately, this kind of
reasoning is essential to certain aspects of ubiquitous computing, including, for instance,
Quality of Service management [97], resource scheduling, and location tracking.
Ontologies for pervasive computing environments will require logical models that
include spatial and temporal logic, geometry, and other quantitative reasoning.

More fundamentally, Description Logics are not suited for some critical aspects of
ubiquitous computing. Description Logic (DL) (also know as Terminological Logic) can
reason about names, which can include objects and relations. DL does not deal with
quantitative concepts; including order, quantity, time, or rates. Unfortunately, this kind of
reasoning is essential to certain aspects of ubiquitous computing, including, for instance,
Quality of Service management, resource scheduling, and location tracking. Future
research should seek to extend DAML+OIL with additional logical models from spatial
and temporal logic, geometry, and so on.

The DAML+OIL language is inadequate in describing concepts that deal with time,
space, quantities, probabilities and certain other concepts. It might be useful to extend
DAML+OIL so that such concepts can also be described within the same umbrella as
terminological hierarchies. At the same time, issues of performance and decidability
come into play while developing extensions. One of the powerful points in favor of
description logics is that it is completely decidable, even though it may be too simple and
limited for some purposes. So, there is a case in favor of not extending DAML+OIL to
help it keep these properties. Other languages and logics would then have to be used to
describe concepts involving time, quantities or probabilities. These issues will require
further research in the future.

6.1.2. Development of Ontologies

Ontology development is not yet integrated with software development. The OILed tool
and other similar tools (such as Protégé [50]) simplify the creation of ontologies for the
pervasive computing environment. However, the deciding the contents of an ontology is
still “Knowledge Engineering”, and creating even a simple ontology is a challenging
intellectual effort.

The OILed tool and other similar tools (such as Protégé [50]) simplify the creation of an
ontology. However, the deciding the contents of an ontology is still “Knowledge
Engineering”, and even simple concepts can be represented more than one way. While

 - 40 -

 Ontologies in Pervasive Computing Environments

this may not matter for a self-contained system, relatively minor differences in expression
of the same concept can make two ontologies difficult to use together.

For example, consider the concept of a Web page which is identified by a URL. This can
be modeled several ways, such as:

Class URL
 type:string

Class WebPage
 type: text
 url_of: URL

or, alternatively
Class
WebPage
 type: text
 URL:string

These two definitions are essentially the same, but are very difficult to automatically map
to each other. It would be very useful to define standards, patterns, and tools for creating
“standard interoperable” ontologies.

6.1.3. Standard Interfaces and APIs for Semantic Services

In our study, we created a CORBA service that imports and exports DAML+OIL XML,
and defines a generic interface for a Knowledge Base. The Ontology Server is available
to any service or application in the GAIA environment, which has enabled us to
experiment with different uses of ontologies within the system. This experience shows
the strong advantage that would emerge from the availability of a standard API for
DAML+OIL (or preferably, OWL), and a standard CORBA interface for Knowledge
Base services. The latter should use a standard XML-language, but be implemented by
alternative logic engines and Knowledge Bases, such as Protégé [49], CLASSIC [45],
OntoMerge [55] or a new version of FaCT [33, 57].

6.1.4. Scalability and Reliability of Semantic Services

The Pervasive Computing Environment is a long-running, open, real-time system.
Maintaining an ontology in real-time as the system evolves presents important challenges
for the design and implementation of ontologies and Knowledge Bases. In particular, the
system needs to address the issues of:

• Large scale (many thousands of concepts and relations), many hundreds of
services using the ontology and KB).

• Federation across autonomous locales
• Incremental updates (add, delete, or modify a few concepts in a large, active

KB).
• Persistence and fault-tolerance

 - 41 -

 Ontologies in Pervasive Computing Environments

As discussed above, in this prototype implementation, the KB managed by the Ontology
Server only has class information: the types or classes of different entities or terms, not
descriptions of actual instances of entities (i.e., the current state of the system). This class
information is sufficient for carrying out most of the tasks we are interested in (which
will be described in the following sections).

A KB of description of instances would be far more dynamic than description of classes.
Since instances can enter and leave the environment at any time, the Knowledge Base
may have to be continuously updated to keep it synchronized with the current state of the
space. Also, there potentially may be a very large number of instances of entities
(compared to the number of classes). It would be very challenging to implement a KB
that could efficiently handle large numbers of updates in real time. A KB of instances
also requires a naming scheme so instances can be reliably recognized and distinguished,
and would need robust error handling and recovery. The KB of class information is
smaller and less volatile, so it could be implemented.

The information about existing entities is managed by other components of GAIA. GAIA
has a service called the Space Repository which maintains information about the entities
in the space at any time. Each entity has an XML description which is written in
accordance to the meta-information about the entity as described in the ontology. The
Space Repository maintains the descriptions of all entities that are currently in the space.
More details about the Space Repository can be found in [63]. Instances of context
information are distributed among different sensors and other entities that use context.
The Ontology Server manages a unified ontology so that these distributed services can
interoperate.

6.2. Future Research

6.2.1. Semantic interoperability between different environments

Different pervasive environments use their own set of ontologies. So, to enable entities in
two different environments need to interact with each other, we need to establish some
common semantic ground to enable correct interaction. This common semantic ground
takes the form of a shared ontology that includes concepts in the ontologies of both the
environments along with bridge concepts that relate concepts in the two sets of ontologies
together.

Pervasive environments are inherently very dynamic and need to support mobility of
entities. Thus, new entities can enter or leave these environments at any time. If the
entities use different ontologies to describe their concepts, they make use of axioms
which describe how concepts in one ontology are related to concepts in the other
ontology. This allows new entities to enter the environment and take part in it seamlessly.

One way of tackling the problem is by using a shared upper ontology under which other
ontologies can be attached. This will require improved “Knowledge Engineering”
environments, which is an area of active research [14, 15, 43, 45, 67].

 - 42 -

 Ontologies in Pervasive Computing Environments

Merging ontologies from multiple autonomous sources is critical for the Pervasive
Computing Environment. In particular, it is necessary to merge in descriptions of new
classes of entities (devices, services, components, and so on) and context information
(e.g., new sensors) as they are introduced. It should be possible to develop frameworks
and editors to assure that the creators of new entities can create descriptions that can be
easily merged into system ontologies.

In recent work, the DAML-S profile has been proposed [1, 60]. The profiles seeks to
define the “Upper Ontology for Services,” which will be “grounded” in specific Web
Service description, e.g., using WSDL. In future work, we will extend this concept to
explore ontological descriptions of different tasks in the Ubiquitous Computing
Environment. This would allow us to map abstract tasks (like playing music) into
appropriate concrete implementations of these tasks (like using a specific application to
play the music and headphones to listen to the music). The mapping function would make
use of ontological descriptions of tasks and entities, as well as the current context.

6.2.3. Vocabulary Translation

Description Logics can be useful for vocabulary mapping—translating similar concepts
with different names (e.g., [38, 65, 67]). For example, consider the ontology for MP3
files, which might be defined to have properties “artist”, “label”, and so on. In a library,
the MP3 file would be a sub-class of “library resource” (e.g., the Dublin Core standard
(dces) [72]), with properties “creator”, “publisher”, and so on. It is likely that we would
like to declare that our MP3 class is equivalent to the appropriate library resource, and
that the property MP3.artist is equivalent to dces.creator, MP3.label is equivalent to
dces.publisher, and so on.

These relations can be asserted as DAML axioms. For example, the MP3 class from the
GAIA ontology can be declared to be the same class as Recording from the library
ontology:

 <daml:Class rdf:about="http://somewhere.net/GAIA/mp3.daml#MP3">
 <daml:sameClassAs>
 <daml:Class rdf:about="http://library.net/resources.daml#Recording"/>
 </daml:sameClassAs>
 </daml:Class>

A more complex declaration could declare the logical equivalence of the properties.

This study did not consider how to discover or develop mappings between vocabularies,
which is known to be extremely difficult (see, perhaps [21, 65, 67]). But the DAML+OIL
XML language can be used to implement mappings when they are available.

6.2.3. Security and Access Control

 - 43 -

 Ontologies in Pervasive Computing Environments

Another area that requires investigation is security, privacy, and access control. The
Semantic Web as a whole is largely conceived as a completely open system, in which
everything is published for everyone to see. It is far from clear how access control could
or should be applied, e.g., to the information in an ontology or a KB. Reasoning engines
typically can’t enforce security policies, and the DAML language, for instance, has no
facility to limit visibility of concepts or attributes. This topic must be addressed in future
research.

Acknowledgements

This research is supported in part by the National Science Foundation grant NSF 98-
70736, NSF 9970139, and NSF infrastructure grant NSF EIA 99-72884.

Important aspects of this study used software from Iona [37] and University of
Manchester [3, 54].

 - 44 -

 Ontologies in Pervasive Computing Environments

Listing 1
 1 <daml:Class rdf:about="file:C:/ActiveSpaces/Semantics/MyOntology/ActiveSpace.daml#MP3Server">
 2 <rdfs:label>MP3Server</rdfs:label>
 3 <rdfs:comment><![CDATA[An MP3Server maintains a list of songs - this list can be searched by certain attributes and it can also
be sent commands to play songs]]></rdfs:comment>
 4 <oiled:creationDate><![CDATA[2002-11-09T17:10:52Z]]></oiled:creationDate>
 5 <oiled:creator><![CDATA[ranganat]]></oiled:creator>
 6 <rdfs:subClassOf>
 7 <daml:Class rdf:about="file:C:/ActiveSpaces/Semantics/MyOntology/ActiveSpace.daml#SearchableService"/>
 8 </rdfs:subClassOf>
 9 <rdfs:subClassOf>
 10 <daml:Class rdf:about="file:C:/ActiveSpaces/Semantics/MyOntology/ActiveSpace.daml#CommandableService"/>
 11 </rdfs:subClassOf>
 12 <rdfs:subClassOf>
 13 <daml:Restriction>
 14 <daml:onProperty rdf:resource="file:C:/ActiveSpaces/Semantics/MyOntology/ActiveSpace.daml#executesDataType"/>
 15 <daml:hasClass>
 16 <daml:Class rdf:about="file:C:/ActiveSpaces/Semantics/MyOntology/ActiveSpace.daml#MP3File"/>
 17 </daml:hasClass>
 18 </daml:Restriction>
 19 </rdfs:subClassOf>
 20 <rdfs:subClassOf>
 21 <daml:Restriction>
 22 <daml:onProperty rdf:resource="file:C:/ActiveSpaces/Semantics/MyOntology/ActiveSpace.daml#searchableBy"/>
 23 <daml:hasClass>
 24 <daml:Class rdf:about="file:C:/ActiveSpaces/Semantics/MyOntology/ActiveSpace.daml#MP3Attributes"/>
 25 </daml:hasClass>
 26 </daml:Restriction>
 27 </rdfs:subClassOf>
 28 <rdfs:subClassOf>
 29 <daml:Restriction>
 30 <daml:onProperty rdf:resource="file:C:/ActiveSpaces/Semantics/MyOntology/ActiveSpace.daml#commandableBy"/>
 31 <daml:hasClass>
 32 <daml:Class rdf:about="file:C:/ActiveSpaces/Semantics/MyOntology/ActiveSpace.daml#MP3ServerPlay"/>
 33 </daml:hasClass>
 34 </daml:Restriction>
 35 </rdfs:subClassOf>
 36 <rdfs:subClassOf>
 37 <daml:Restriction>
 38 <daml:onProperty rdf:resource="file:C:/ActiveSpaces/Semantics/MyOntology/ActiveSpace.daml#commandableBy"/>
 39 <daml:hasClass>
 40 <daml:Class rdf:about="file:C:/ActiveSpaces/Semantics/MyOntology/ActiveSpace.daml#MP3ServerRandomPlay"/>
 41 </daml:hasClass>
 42 </daml:Restriction>
 43 </rdfs:subClassOf>
 44 </daml:Class>

 - 45 -

 DRAFT: Ontologies (4/16/2003)

Listing 2

 1 <daml:Class

rdf:about="file:C:/ActiveSpaces/Semantics/MyOntology/file:C:\ActiveSpaces\Semantics\MyOntology\ActiveSpace.daml#
Temperature">

 2 <rdfs:label>TemperatureInformation</rdfs:label>
 3 <rdfs:comment><![CDATA[]]></rdfs:comment>
 4 <oiled:creationDate><![CDATA[2002-10-06T19:18:06Z]]></oiled:creationDate>
 5 <oiled:creator><![CDATA[ranganat]]></oiled:creator>
 6 <rdfs:subClassOf>
 7 <daml:Class rdf:about="file:C:/ActiveSpaces/Semantics/MyOntology/ActiveSpace.daml#WeatherInformation"/>
 8 </rdfs:subClassOf>
 9 <rdfs:subClassOf>
 10 <daml:Restriction daml:cardinalityQ="1">
 11 <daml:onProperty rdf:resource="file:C:/ActiveSpaces/Semantics/MyOntology/ActiveSpace.daml#subject"/>
 12 <daml:hasClassQ>
 13 <daml:Class>
 14 <daml:unionOf>
 15 <daml:List>
 16 <daml:first>
 17 <daml:Class rdf:about="file:C:/ActiveSpaces/Semantics/MyOntology/ActiveSpace.daml#PhysicalPlace"/>
 18 </daml:first>
 19 <daml:rest>
 20 <daml:List>
 21 <daml:first>
 22 <daml:Class rdf:about="file:C:/ActiveSpaces/Semantics/MyOntology/ActiveSpace.daml#Person"/>
 23 </daml:first>
 24 <daml:rest>
 25 <daml:nil/>
 26 </daml:rest>
 27 </daml:List>
 28 </daml:rest>
 29 </daml:List>
 30 </daml:unionOf>
 31 </daml:Class>
 32 </daml:hasClassQ>
 33 </daml:Restriction>
 34 </rdfs:subClassOf>
 35 <rdfs:subClassOf>
 36 <daml:Restriction daml:cardinalityQ="1">
 37 <daml:onProperty rdf:resource="file:C:/ActiveSpaces/Semantics/MyOntology/ActiveSpace.daml#relator"/>
 38 <daml:hasClassQ>
 39 <daml:Class rdf:about="file:C:/ActiveSpaces/Semantics/MyOntology/ActiveSpace.daml#ComparisonOperator"/>
 40 </daml:hasClassQ>
 41 </daml:Restriction>
 42 </rdfs:subClassOf>
 43 <rdfs:subClassOf>
 44 <daml:Restriction daml:cardinalityQ="1">
 45 <daml:onProperty rdf:resource="file:C:/ActiveSpaces/Semantics/MyOntology/ActiveSpace.daml#object"/>
 46 <daml:hasClassQ>
 47 <daml:Class rdf:about="file:C:/ActiveSpaces/Semantics/MyOntology/ActiveSpace.daml#TemperatureValue"/>
 48 </daml:hasClassQ>
 49 </daml:Restriction>
 50 </rdfs:subClassOf>
51 </daml:Class>

 - 46 -

 DRAFT: Ontologies (4/16/2003)

References

1. Ankolekar, Anupriya, Burnstein, Mark, Hobbs, Jerry R., Lassila, Ora, Martin, David,

McDermott, Drew, McIlraith, Sheila A., Narayanan, Srini, Paolucci, Massimo, Payne,
Terry, and Sycara, Katia, “DAML-S: Web Service Description for the Semantic
Web,” First International Semantic Web Conference (ISWC), Sardinia, 2002.

2. Bechhofer, Sean, Goble, Carole, and Horrocks, Ian, “DAML+OIL is not enough,”
Second International Workshop on the Semantic Web, Stanford, 2001.

3. Bechhofer, Sean, Horrocks, Ian, Patel-Schneider, Peter F., and Tessaris, Sergio, “A
proposal for a description logic interface,” International Workshop on Description
Logics (DL'99), Las Vegas, 1999.

4. Bechhofer, Sean, Horrocks, Ian, and Tessaris, Sergio, “CORBA interface for a DL
Classifier,” 1999.

5. Berners-Lee, T., Fielding, R., and Masinter, L., “Uniform Resource Identifiers (URI):
Generic Syntax,” IETF , RFC 2396 , 1998. http://www.ietf.org/rfc2398.txt

6. Berners-Lee, Tim, Hendler, James, and Lassila, Ora, “The Semantic Web,” Scientific
American, vol. 284, no. 5, pp. 35-43, 2001.
http://www.sciam.com/2001/0501issue/0501berners-lee.html

7. Bryson, Joanna J., Martin, David L., McIlraith, Sheila A., and Stein, Lynn Andreas,
“Toward Behavioral Intelligence in the Semantic Web,” IEEE Computer, vol. 35, no.
11, pp. 48-54, 2002.

8. Chakraborty, Dipanjan, Perich, Filip, Avancha, Sasikanth, and Joshi, Anupam,
“DReggie: Semantic Service Discovery for M-Commerce Applications,” Symposium
on Reliable Distributed Systems, 2001. http://daml.umbc.edu/papers/dreggie.pdf

9. daml.org, "The DARPA Agent Markup Language Homepage," http://www.daml.org.
10. daml.org, "Ontologies," http://www.daml.org/ontologies/.
11. Decker, Stefan, Fensel, Dieter, Harmelen, Frank van, Horrocks, Ian, Melnik, Sergey,

Klein, Michel, and Broekstra, Jeen, “Knowledge Representation on the Web,”
International Workshop on Description Logics, 2000.
http://www.ontoknowledge.org/iol/downl/DL00-oil.pdf

12. Dey, Anind K., “A Conceptual Framework and a Toolkit for Supporting Rapid
Prototyping of Context-Aware Applications,” Human-Computer Interaction, vol. 16,
, 2001.

13. Edwards, W. Keith, Core JINI. Upper Saddle River, NJ: Prentice Hall, 1999.
14. Fensel, Dieter, Ontologies: A Silver Bullet for Knowledge Management and

Electronic Commerce. Berlin: Springer, 2001.
15. Fensel, Dieter, “Ontology-Based Knowledge Management,” IEEE Computer, vol. 35,

no. 11, pp. 56-59, 2002.
16. Fensel, Dieter, Horrocks, Ian, Harmelen, Frank Van, Decker, Stefan, Erdmann, M.,

and Klein, Michel, “OIL in a Nutshell,” European Knowledge Acquisition
Conference, 2000. http://www.cs.vu.nl/~ontoknow/oil/downl/oilnutshell.pdf

17. Fensel, Dieter, Horrocks, Ian, Harmelen, Frank van, McGuinness, Deborah L., and
Patel-Schneider, Peter F., “OIL: An Ontology Infrastructure for the Semantic Web,”
IEEE Intelligent Systems, vol. 16, no. 2, pp. 38-45, 2001.

 - 47 -

 DRAFT: Ontologies (4/16/2003)

18. Fikes, Richard and McGuinness, Deborah I., "An Axiomatic Semantics for RDF,
RDF-S, and DAML+OIL," http://www.daml.org/2001/03/axiomatic-semantics-
071601.html.

19. Franconi, Enrico, "Description Logics and Logics,"
http://www.cs.man.ac.uk/~franconi/dl/course.

20. Franconi, Enrico, "Propositional Description Logics,"
http://www.cs.man.ac.uk/~franconi/dl/course/propositional-dl.ps.gz.

21. Furnas, George W., Deerwester, Scott C., Dumais, Susan T., Landauer, Thomas K.,
Harshman, Richard A., Streeter, Lynn A., and Lochbaum, Karen E., “Information
Retrieval Using A Singular Value Decomposition Model of Latent Semantic
Structure,” Eleventh International ACM/SIGIR Conference on Research and
Development in Information Retrieval, Grenoble, 1988.

22. Gonzalez-Castillo, Javier, Trastour, David, and Bartolini, Claudio, “Description
Logics for Matchmaking Services,” HP Laboratories Bristol , Bristol , HPL-2001-
265 , 2002. http://www.hpl.hp.com/techreports/2001/HPL-2001-265.html

23. Guarino, Nicola, “Formal Ontology and Information Systems,” Formal Ontology and
Information Systems, Trento, IT, 1998.
http://www.ladseb.pd.cnr.it/infor/Ontology/Papers/FOIS98.pdf

24. Harmelen, Frank van, Patel-Schneider, Peter F., and Horrocks, Ian, "A Model-
Theoretic Semantics for DAML+OIL," http://www.daml.org/2001/03/model-
theoretic-semantics.html.

25. Harmelon, Frank, Pael-Schneider, Peter F., and Horrocks, Ian, "Annotated
DAML+OIL (March 2001) Ontology Markup,"
http://www.daml.org/2001/03/daml+oil-walkthru.html.

26. Harmelon, Frank van, Patel-Schneider, Peter F., and Horrocks, Ian, "Reference
description of the DAML+OIL (March 2001) ontology markup language,"
http://www.daml.org/2001/03/reference.html.

27. Hendler, James, “Agents and the Semantic Web,” IEEE Intelligent Systems, vol. 16,
no. 2, pp. 30-37, 2001.

28. Hoffman, Kevin, Gabriel, Jeff, Gosnell, Denise, Hasan, Jeff, Holm, Cristian, Musters,
Ed, Narkiewickz, Jan, Schenken, John, Thangarathinam, Thiru, Wylie, Scott, and
Ortiz, Jonothan, Professional .NET Framework. Birmingham: WROX Press Ltd.,
2001.

29. Horrocks, Ian, "CORBA-FaCT," http://www.cs.man.ac.uk/~horrocks/FaCT/CORBA-
FaCT.html.

30. Horrocks, Ian, "A Denotational Semantics for Standard OIL and Instance OIL,"
http://www.ontoknowledge.org/oil/downl/semantics.pdf.

31. Horrocks, Ian, “The FaCT system,” Automated Reasoning with Analytic Tableaux
and Related Methods, 1998.

32. Horrocks, Ian, “Reasoning with Expressive Description Logics: Theory and Practice,”
: University of Leipzig, 2001. http://www.cs.man.ac.uk/~horrocks/Slides/leipzig-jun-
01.pdf

33. Horrocks, Ian and Sattler, Ulrike, “Ontology Reasoning with SHOQ(D) Description
Logic,” International Joint Conference on Artificial Intelligence, Seattle, 2001.

 - 48 -

 DRAFT: Ontologies (4/16/2003)

34. Horrocks, Ian, Sattler, Ulrike, and Tobias, Stephan, “Practical Reasoning for
Expressive Description Logics,” International Conference on Logic for Programming
and Automated Reasoning (LPAR'99), Tbilisi, 1999.

35. Horrocks, Ian and Tessaris, Sergio, “Querying the Semantic Web: A Formal
Approach,” International Semantic Web Conference, Sardinia, 2002.

36. IBM, "IBM WebSphere SDK for Web Services (WSDK) Version 5.0," http://www-
106.ibm.com/developerworks/webservices/wsdk/.

37. IONA Technologies Inc., "ORBacus Trader, Version 2.0.0,"
http://www.iona.com/products/orbacus_trader.html.

38. Lancaster, F. W., Vocabulary Control for Information Retrieval. Arlington, VA:
Information Retrieval Press, 1986.

39. Lyytinen, Kalle and Yoo, Youngjin, “Issues and Challenges in Ubiquitous
Computing,” Communications of the ACM, vol. 45, no. 12, pp. 62-65, 2002.

40. Maedche, Alexander and Staab, Stephen, “Ontology Learning for the Semantic Web,”
IEEE Intelligent Systems, vol. 12, no. 2, pp. 72-79, 2001.

41. McGrath, Robert E., “Discovery and Its Discontents: Discovery Protocols for
Ubiquitous Computing,” Department of Computer Science University of Illinois
Urbana-Champaign , Urbana , UIUCDCS-R-99-2132 , March 25 2000.

42. McGrath, Robert E., A Model for Physical Objects in a Ubiquitous Computing
Environment (Ph. D thesis, to appear), Ph. D. Thesis in Computer Science,
University of Illinois, Urbana-Champaign, Urbana, 2003.

43. McGuinness, Deborah L., “Conceptual Modeling for Distributed Ontology
Environments,” International Conference on Conceptual Structures, Logical,
Linguistic, and Computational Issues, Darmstadt, 2000.

44. McGuinness, Deborah L., “Ontologies and Online Commerce,” IEEE Intelligent
Systems, vol. 16, no. 1, pp. 8-14, 2001.

45. McGuinness, Deborah L., Fikes, Richard, Rice, James, and Wilder, Steve, “An
Environment for Merging and Testing Large Ontologies,” International Conference
on Principles of Knowledge Representation and Reasoning, Breckenridge, CO, 2000.

46. McIlraith, Sheila A., Son, Tran Cao, and Zeng, Honlei, “Semantic Web Services,”
IEEE Intelligent Systems, vol. 16, no. 2, pp. 46-53, 2001.

47. Microsoft, "XML Web Services Developer Center Home,"
http://msdn.microsoft.com/wevservices/index.aspx.

48. Minsky, Marvin, “A Framework for Representing Knowledge,” in The Psychology of
Computer Vision, Winston, P., Ed. New York: McGraw Hill, 1975.

49. Noy, Natalya Fridman, Fergerson, Ray W., and Musen, Mark A., “The Knowledge
Model of Protege-2000: Combining Interoperability and Flexibility,” Twelfth
International Conference on Knowledge Engineering and Knowledge Management,
2000.

50. Noy, Natalya F., Sintek, Michael, Decker, Stefan, Crubezy, Monica, Fergerson, Ray
W., and Musen, Mark A., “Creating Semantic Web Contents with Protege-2000,”
IEEE Intelligent Systems, vol. 16, no. 2, pp. 60-71, 2001.

51. Object Management Group, “CORBAservices: Common Object Services
Specification,” Object Management Group , 1999.
ftp://ftp.omg.org/pub/.docs/formal/98-07-05.pdf

 - 49 -

 DRAFT: Ontologies (4/16/2003)

52. Object Management Group, "TC Plenaries and Subgroup Directory,"
http://www.omg.org/technology/documents/domain_spec_catalog.htm.

53. Object Management Group, “Trading Service Specification,” 2000.
54. OilEd, "OilEd," http://oiled.man.ac.uk/.
55. OntoMerge, "OntoMerge: Ontology Translation by Merging Ontologies," http://cs-

www.cs.yale.edu/homes/dvm/daml/ontology-translation.html.
56. Orfali, Robert and Harkey, Dan, The Essential Distributed Objects Survival Guide.

New York: John Wiley and Sons, Inc., 1996.
57. Pan, Jeff Z. and Horrocks, Ian, “Reasoning in the SHOQ(D) Description Logic,”

Workshop on Description Logics (DL-2002), 2002. http://dl-
web.man.ac.uk.~panz/Zhilin/download/Papers/Pan-Horrocks-shoqdn-2002.pdf

58. Pascoe, Bob, “Salutation Architectures and the newly defined service discovery
protocols from Microsoft and Sun,” Salutation Consortium , White Paper June 6
1999. http://www.salutation.org/whitepaper/JINI-UPnP

59. Payne, Terry R., Singh, Rahul, and Sycara, Katia, “RCal: A Case Study on Semantic
Web Agents,” First International Conference on Autonomous Agents and Multi-
Agent Systems, 2002.

60. Peer, Joachim, “Bringing Together Semantic Web and Web Services,” First
International Semantic Web Conference, Sardinia, 2002.

61. Quillian, M. Ross, “Semantic Networks,” in Semantic Information Processing,
Minsky, Marvin, Ed. Cambridge: MIT Press, 1968.

62. Reynolds, Dave, “Semantic Web Chalk Talk: Amateur Intro to Decription Logics,” .
Bristol: HP Laboratories, 2001.
http://www.hpl.hp.com/semweb/dwonload/DescriptionLogicsIntro.pdf

63. Roman, Manuel, Hess, Christopher K., Cerqueira, Renato, Ranganathan, Anand,
Campbell, Roy H., and Nahrstedt, Klara, “GAIA: A Middleware Infrastructure to
Enable Active Spaces,” IEEE Pervasive Computing, vol. 1, no. 4, pp. pp. 74-83,
2002.

64. Sadeh, Norman, Chan, Enoch, Shmazaki, Yoshinori, and Van, Linh, “MyCampus: An
Agent-Based Environment for Context-Aware Mobile Services,” Workshop on
Ubiquitous Agents on Embedded, Wearable, and Mobile Devices, Bologna, 2002.

65. Schatz, Bruce, “Information Retrieval in Digital Libraries: Bringing Search to the
Net,” Science, vol. 275, pp. 327-334, 1997.

66. semanticweb.org, "Markup Languages and Ontologies,"
http://www.semanticweb.org/knowmarkup.html.

67. Stuckenschmidt, Heiner, Harmelen, Frank van, Fensel, Dieter, Klein, Michel, and
Horrocks, Ian, “Catalogue Integration: A Case Study in Ontology-Based Semantic
Translation,” 2000. http://www.ontoknowledge.org/oil/downl/CatIntegr.pdf

68. Sun Microsystems, "Java Remote Method Invocation (RMI),"
http://java.sun.com/products/jdk/1.2/guide/rmi/index.html.

69. Sun Microsystems Inc., “A Collection of Jini (TM) Technology Helper Utilities and
Services Specifications: Version 1.2,” December 2001.

70. Sycara, K., Paolucci, M., Velsen, M. van, and Giampapa, J., “The RETSINA MAS
Infrastructure,” Carnegie Mellon University , Robotics Institute Technical Report
CMU-RI-TR-01-05 , 2001.

 - 50 -

 DRAFT: Ontologies (4/16/2003)

71. Tamma, Valentina, Wooldridge, Michael, and Dickinson, Ian, “An ontology based
approach to automated negotiation,” Proceedings of the IV workshop on agent
mediated electronic commerce (AMEC IV), Bologna, 2002.

72. The Dublin Core Metadata Initiative, "Dublin Core Metadata Initiative - Home Page,"
http://purl.org/dc/index.htm.

73. Trastour, David, Bartolini, Claudio, and Gonzalez-Castillo, Javier, “A Semantic Web
Approach to Service Description for Matchmaking of Services,” HP Laboratories
Bristol , Bristol , HPL-2001-183 , July 30 2001. http://www.hpl.hp.com/techreports

74. Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S., Kesselman, C., and
Vanderbilt, P., “Grid Service Specification,” BWD-R October 4 2002.
http://www.ggf.org/meetings/ggf6_wg_papers/draft-ggf-gridservice-04_2002-10-
04.pdf

75. uddi.org, “UDDI Technical White Paper,” September 6 2002.
http://www.uddi.org/pubs/UDDI_Executive_White_Paper.pdf

76. uddi.org, “UDDI Version 3.0,” 19 July 2002. http://uddi.org/pugs/uddi-v300-
published-20020719.pdf

77. United Nations, "United Nations Standard Produce and Services Code,"
hhtp://www.un-spsc.net/.

78. W3C, "Extensible Markup Language (XML)," http://www.w3.org/XML.
79. W3C, “Feature Synopsis for OWL Lite and OWL,” W3C Working Draft 29 July

2002. http://www.w3.org/TR/2002/WD-owl-features-20020729/
80. W3C, "Namespaces in XML," http://www.w3.org/TR/REC-xml-names/.
81. W3C, "Requirements for a Web Ontology Language,"

http://www.w3c.org/TR/webont-req/.
82. W3C, "Resource Description Framework (RDF)," http://www.w3c.org/RDF.
83. W3C, "The Semantic Web," http://www.w3.org/2001/sw.
84. W3C, “SOAP Version 1.2 Part 1: Messaging Framework,” W3C Candidate

Recommendation 19 December 2002. http://www.w3.org/TR/soap12-part1/
85. W3C, “Web Ontology Language (OWL) Guide Version 1.0,” W3C Working Draft 4

November 2002. http://www.w3.org/TR/2002/WD-owl-guide-20021104/
86. W3C, “Web Ontology Language (OWL) Reference Version 1.0,” 12 November

2002. http://www.w3.org/TR/2002/WD-owl-ref-20021112/
87. W3C, “Web Services Architecture,” W3C Working Draft 14 November 2002.

http://www.w3.org/TR/2002/WD-ws-arch-20021114/
88. W3C, “Web Services Architecture Usage Scenarios,” W3C Working Draft 30 July

2002. http://www.w3.org/TR/2002/WD-ws-arch-scenarios-20020730/
89. W3C, “Web Services Description Language (WSDL) Version 1.2,” W3C Working

Draft 9 July 2003. http://www.w3.org/TR/wsdl12/
90. W3C, “Web Services Description Language (WSDL) Version 1.2: Bindings,” W3C

Working Draft 9 July 2002. http://www.w3.org/TR/wsdl1.2-bindings/
91. W3C, “Web Services Description Requirements,” W3C Working Draft 28 October

2002. http://www.w3.org/TR/ws-desc-reqs/
92. W3C, “Web Services Description Usage Scenarios,” W3C Working Draft 4 June

2002. http://www.w3.org/TR/ws-desc-usecases/
93. W3C, "Web-Ontology (WebOnt) Working Group,"

http://www.w3.org/2001/sw/WebOnt.

 - 51 -

 DRAFT: Ontologies (4/16/2003)

 - 52 -

94. W3C, "XML Schema," http://www.w3.org/XML/Schema.html.
95. W3C, "XML Schema Part 2: Datatypes," http://www.w3c.org/TR/xml-schema-2.
96. Wahl, M., Howes, T., and Kille, S., “Lightweight Directory Access Protocol (v3),”

IETF , RFC 2251 , December 1997. http://www.rfc-editor.org/rfc/rfc2251.txt
97. Wichadakul, Duangdao, Gu, Xiaohui, and Nahrstedt, Klara, “A Programming

Framework for Quality-Aware Ubiquitous Multimedia Applications,” ACM
Multimedia, Juan Les Pins, 2002.

	Abstract
	Use of Ontologies in Pervasive Computing Environments

	1. Introduction
	1.1. Semantic Interoperability in Pervasive Computing Systems
	1.1.1. Object Registries are Insufficient
	1.1.2. Web Services are Insufficient
	1.1.3. Context-Aware Applications
	1.1.4. A Missing Piece: Adding “Semantics” to the

	1.2. The Semantic Web
	1.3. Semantic Infrastructure for Ubiquitous Computing: An Experimental Implementation

	2. Background
	2.1. GAIA: a Pervasive Computing Environment
	2.2. Semantic Web Technology
	2.3.1. The Semantic Web Stack: XML, RDF, DAML+OIL, OWL, and Description Logic
	2.3.2. Description Logics
	2.3.3. Semantic Web Software

	2.4. Ontologies

	3. Kinds of Ontologies in GAIA
	3.1. Ontologies for different entities
	3.1.1. An example of a class in our ontology

	3.2. Ontologies for context information
	3.2.1. An example of using ontologies to describe context

	4. Use of Ontologies in GAIA
	4.1. Applications of Ontologies and Semantic Services
	4.1.1. Defining terms used in the environment
	4.1.2. Configuration Management: Validating Descriptions
	4.1.3. Semantic Discovery and Matchmaking
	4.1.4. Specifying Rules for Context-Sensitive Behavior

	4.2. Example Uses of Ontologies and Semantic Services
	4.2.1. Better Interaction with Humans
	4.2.2. Improved Searches
	4.2.3. Allowing Easier Interaction With Components

	5. Implementation Details
	5.1. The Ontology Server
	5.1.1. Architecture
	5.1.2. Content and Behavior of the Knowledge Base (KB)

	5.2. Integration into GAIA Framework
	5.3. The Ontology Explorer

	6. Discussion and Future Work
	6.1. Important Findings
	6.1.1. Limitations of Description Logic
	6.1.2. Development of Ontologies
	6.1.3. Standard Interfaces and APIs for Semantic Services
	6.1.4. Scalability and Reliability of Semantic Services

	6.2. Future Research
	6.2.1. Semantic interoperability between different environments
	6.2.3. Vocabulary Translation
	6.2.3. Security and Access Control

	Acknowledgements
	Listing 1
	Listing 2
	References

