
Rhythm Modeling, Visualizations and Applications

ABSTRACT
People use their awareness of others' temporal patterns to
plan work activities and communication. This paper pres-
ents algorithms for programatically detecting and modeling
temporal patterns from a record of online presence data.
We describe analytic and end-user visualizations of rhyth-
mic patterns and the tradeoffs between them. We con-
ducted a design study that explored the accuracy of the de-
rived rhythm models compared to user perceptions, user
preference among the visualization alternatives, and users'
privacy preferences. We also present a prototype applica-
tion based on the rhythm model that detects when a person
is “away” for an extended period and predicts their return.
We discuss the implications of this technology on the de-
sign of computer-mediated communication.
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INTRODUCTION
People exhibit temporal patterns, or rhythms, in their daily
behavior such as when they typically arrive at the office,
take breaks, attend recurring meetings, and commute to
and from work sites. Researchers of cooperative work in
co-located settings have found that coworkers share a sense
of these patterns and they use their awareness of rhythms
to coordinate their work activity and form expectations of
availability [14, 20]. When coworkers are geographically
distributed, however, it becomes difficult to form and
maintain awareness of rhythmic patterns. Diminished
awareness of coworkers' rhythms increases the cost of co-
ordinating communication and work activities among geo-
graphically remote coworkers.

For example, when a physical office neighbor is away, we
may have an idea of when she will likely return based on
past behavior. However, when a remote coworker is away,
it is difficult to form an idea of when he will likely return
because we have had less information about his comings
and goings over time. A partial solution can be found us-
ing awareness systems [6, 13, 16] which provide realtime
information about remote coworkers' online presence.
Such systems are increasingly popular in the form of In-

stant Messaging (IM) such as AIM [2], Sun™  ONE Instant
Messaging [15] and others. Over time, the information
provided by such systems can help coworkers form a sense
of each other's temporal patterns.

Another solution is based on observations of rhythmic pat-
terns in the records of use of IM and other computer-medi-
ated communication (CMC) technologies, as we reported
in previous work [3]. These observations suggest a num-
ber of applications using computer inferencing of temporal
patterns. The applications are potentially useful for distrib-
uted coworkers who do not have a strong sense of each
other's rhythms and may also be useful to coworkers who
are newly introduced and have not yet had time to form
awareness of each other's rhythms.

In this paper, we describe algorithms for detecting and
modeling rhythmic patterns, visualizations of rhythms,
user perceptions of their mental models of rhythms, and
prototype applications. The next section describes the hu-
man-observable patterns in the data, desired applications,
and requirements of a computer model to support those ap-
plications. We discuss related work in modeling user be-
havior and the extent to which previous models meet the
application requirements. We then describe our modeling
technique. A number of end-user visualizations of rhyth-
mic patterns are presented and compared. We describe a
design study that examined the accuracy of the computer
model against user perceptions of their rhythms, user pref-
erences among the end-user visualizations and user con-
cerns about privacy. We also describe initial prototype ap-
plications of the model based on information gathered in
the design study. The paper ends with a discussion of the
implications for other CMC technologies and privacy con-
siderations of rhythm inferencing technologies.

BACKGROUND
In past work [3], we described human-observable patterns
seen in the record of individuals' computer, email, instant
messaging and phone activity collected using a research
awareness and communication system calledAwarenex
[16]. We observed a number of temporal patterns in a per-
son's activity.   

� Most people exhibit regular arrival and departure times.

� Patterns may differ according to day of the week.

� Patterns may differ according to location.
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� The shape of the distribution of arrival and departure
times has predictive power in some cases (e.g., when
arrival/departure is constrained by a transit schedule).

� There are recurring breaks in activity that do not appear
in a person's calendar. Most exhibit a lunch break and
some have other recurring, unscheduled breaks.

� Activity may occur throughout recurring scheduled ap-
pointments, implying the person tends to be reachable
throughout that recurring appointment.

� Activity may regularly differ from the scheduled start
and stop times of a recurring appointment (e.g., the per-
son may be regularly active earlier/later than the sched-
uled end/beginning of an appointment).

� Some people exhibit patterns of transitions between lo-
cations. For example, a person may start their day by
logging in at home and later traveling to the office.

These activity patterns have implications for predicting
when someone would likely bereachablefor communica-
tion: if they are active on a computer, they can be reached
by IM or email; and if they are near a phone and not using
it, they can be reached by phone. However, the use of ac-
tivity data in determining someone's availability is limited
in at least two ways. Firstly, one may be reachable while
not interacting with a device. For example, one could be
sitting near a computer while reading a printed document
and therefore reachable although not active. Secondly, be-
ing physically reachable does not necessarily equate to be-
ing mentally receptive, or “available”, to communication.  

Nevertheless, activity does imply reachability and may be
useful enough for a substantial proportion of communica-
tions, as evidenced by the popularity of instant messaging
systems where computer activity indicates “presence.”
The users studied by S. Hudsonet al. [12] considered
themselves to be in some degree “interruptible” 68% of the
time. This suggests that the recipient of a communication
is  receptive to interruption more often than not.

Other researchers have also observed a temporal compo-
nent to an individual's reachability and availability. J.
Hudsonet al. [11] found that research managers' receptive-
ness to interruption varied regularly with the time of day.
Horvitz et al. [10] also report variations in patterns of com-
puter activity at different times of day. Tyler and Tang
[19] observed that email correspondents maintain a rhyth-
mic pace in their email exchanges and that an awareness of
typical pacing is among the factors used to judge when a
response breakdown has occurred.

Rhythm Model Requirements
The observations of rhythmic patterns previously described
suggest a number of applications. First, a representation of
remote coworkers' overall rhythms may help form expecta-
tions of when and where coworkers can reach each other.
Another application is to automatically set the “away”
status of a person in their instant messaging client during
recurring periods of inactivity such as lunch, commute,
regular breaks and when they leave for the day. Rhythm
data can also be used to predict when they are likely to re-
turn from such an absence. Rhythm information can sup-
plement calendar information by predicting reachability for

scheduled appointments during which the user is regularly
active. Rhythm information along with scheduled appoint-
ments can be used to find periods of overlapping availabil-
ity among a number of people. Another application is to
predict an individual's location at the time of a package de-
livery. For example, if a package is scheduled to arrive on
a Wednesday and the recipient usually works from home
on Wednesdays, the package could be routed to her home.

These applications suggest a number of requirements for a
computational model of rhythms.   The model should

� Predict probability of reachability throughout the day

� Describe the temporal variations in reachability so that
end-user representations can be constructed

� Model patterns within specific days of the week and lo-
cations as well as patterns across multiple or unspeci-
fied days and locations

� Identify significant recurring periods of inactivity such
as lunch, regular breaks, end of the day

� Identify recurring transitions between locations

� Describe the range and distribution of start and end
times of recurring transitions

Related Modeling Approaches
A number of approaches to modeling temporal patterns
have been investigated by other researchers.  

A common approach to modeling temporal variation is us-
ing time-series analysis techniques such as spectral analy-
sis and auto-regressive integrated moving average
(ARIMA) models [4]. Generally, this kind of analysis is
applicable for problems where the values over time appear
to exhibit a pattern of non-random behavior, but the under-
lying causative processes are unknown or are too complex
to model directly. A common example is stock price fluc-
tuations. We explored using an ARIMA model with lim-
ited success. In the end, we found ARIMA modeling to be
unsuitable for our purposes because, although it satisfies
the first three requirements, it does not meet the last three.
An ARIMA model can characterize different levels of ac-
tivity from one moment to the next, but it does not isolate
or identify recurring regions of low activity. 

Other researchers have previously explored computer mod-
els for similar applications. ThePriorities system de-
scribed by Horvitzet al. [10] contains a presence-forecast-
ing subsystem to infer the likelihood that someone is away
now and for how long. If they are likely to be away for a
substantial amount of time, and the message is determined
to be of a high-enough priority, the message is routed to a
mobile device. The probability distributions used in the
prediction are based on the record of past presence catego-
rized by special regions of the day: morning, lunch, after-
noon, evening and night. Priorities does not provide an
end-user representation of the computational model .

Coordinate [10] and Augur [18] used Bayesian networks
and Decision trees that include time of day along with
other factors to construct models that predict the likelihood
of attending a meeting. Bayesian networks and Decision
trees are general models that can be applied to a variety of



inferencing tasks. Such models can be constructed auto-
matically with machine-learning techniques by feeding in a
record of inputs and known correct responses. S. Hudson
et al. [12] also employed these and other machine-infer-
encing techniques to detect a person's level of interruptibil-
ity from simulated sensor input and time of day.

Our model is a custom technique, specifically designed for
detecting and modeling temporal patterns. Although it is
more specialized, our model is generalized in three senses:
it is user-independent, it is constructed (“learns”) from a
record of values, and it can analyze data from a variety of
sources: computer, email or telephone activity, presence
sensors, online calendar, and other sources.

Our applications require a model that is bothpredictiveand
descriptiveof the temporal patterns. Bayesian networks
and Decision trees are predictive, being able to answer
queries based on the state of input parameters, and they are
descriptive in the sense that they depict the network of
factors that contribute to a prediction, one of which may be
time. However, temporal patterns are not apparent when
examining such models. Our model differs in that the
structure represents the temporal patterns of activity. A
useful aspect of such a temporally descriptive model is to
allow human observers to augment their own mental model
of rhythms, enabling them to make inferences of their own,
perhaps based on information not known to the computer,
rather than relying solely on an opaque machine inference.

RHYTHM DETECTION AND MODELING
The structure of a rhythm model is a container oftransi-
tions, which are regions of time that identify significant
changes in the pattern.  There are three types of transition.

1. Recurring transitions between locations.  

2. Start- and end-of-day transitions.  

3. Recurring periods of inactivity due to meetings, lunch
and other recurring, scheduled or unscheduled breaks.  

The first two transition types are easily detected. Loca-
tion-change transitions occur when an inactivity period be-
gins in one location and ends in another. Start- and end-of-
day transitions are detected as the first and last activity in
the day. Start- and end-of-day areone-sidedtransitions
and have a start or end time, respectively. Location-
change transitions and inactivity transitions that occur be-
tween the start- and end-of-day (e.g., lunch) are considered
two-sided, having a start time, an end time and a duration.  

The transition data structure consists of a label, the fre-
quency of occurrence, and the probability distributions of
the start and/or end time and, for two-sided transitions, the
duration. The properties of a transition may not conform
to common parametric distributions, such as Gaussian,
Poisson, etc. For example, the distribution in Figure 1 has
peaks at approximately 20 minute intervals as a result of
being constrained by a mass transit schedule [3]. There-
fore, the transition data structure does not assume paramet-
ric distributions and records the probability distributions
minute-by-minute.

A goal of our modeling technique is to minimizea priori
knowledge of the structure of a person's day. Beyond the
coarsest generality that people tend to start activity in the

mornings and end in the evenings, peoples' patterns vary
widely. Even a common transition like “lunch” does not
show up in all people's data. Because it is impossible to
enumerate all of the rhythmic patterns we should look for,
we discover transitions dynamically by detecting points in
time that potentially designate a significant change from
one level of activity/reachability to another. 

To detect and model two-sided transitions, we use an Ex-
pectation Maximization (EM) algorithm, first introduced
by Dempster, Laird and Rubin [5] and summarized in Data
Mining texts such as Dunham's [7]. Our implementation
of EM has three main steps: transition discovery, clustering
of similar inactivity periods and estimate refinement. The
first step is to detect candidate transitions by discovering
significant changes in the activity level. This step provides
an initial estimate of the start, end and duration of the tran-
sition, seeding the clustering in the next step. The cluster-
ing step finds instances of inactivity periods in the record
that are similar to each candidate transition. The final step
is to refine the estimates for the start, end and duration of
the transition from the instances found in the clustering
step. We repeat the the last two steps until the property es-
timates converge or a maximum number of iterations is
exceeded.  Details of each step are described next.

Two-sided Transition Discovery
To discover the two-sided recurring periods of inactivity,
we first filter the historical data according to factors that
significantly influence rhythm: day of week, and location
[3]. We next aggregate the record by calculating the per-
centage of time the person was active at each minute of the
day, weighted by recency of the activity.

Thresholds identify candidate two-sided transitions as the
points where the percent-active level crosses the thresh-
olds. Upper and lower thresholds are used to minimize the
mis-identification of spurious transitions from small
changes in activity due to natural variance. When activity
is declining, it must cross the lower threshold and when ac-
tivity is rising, it must cross the upper threshold. We de-
termine the upper and lower thresholds by comparing all
possible positions using a “penalty” function which favors
longer spans between threshold crossings to shorter, poten-
tially spurious spans. The upper and lower threshold posi-
tions with the lowest final penalty are used.  

Before calculating threshold values, we segment the day
into regions of sustained (more than two hours) “high” and
“low” activity. Different threshold values are calculated
within each segment. Segmentation alleviates cases such
as that in Figure 2 where a long span of sustained “low”
activity would otherwise confound the threshold level de-
termination. Such cases arise when the person usually di-

Figure 1. An example start-of-day distribution that
does not conform to a parametric distribution.



vides their work day between locations but occasionally
stays in one of them. 

We use a heuristic based on the distribution of percent-ac-
tive values to determine “low” versus “high” segments. A
low segment is a span of greater than two hours in which
the aggregate activity never exceeds half of the 80th percen-
tile value for activity levels.

Clustering
The next step is to associate instances of inactivity from
the data set with the candidate transitions. This clustering
is determined by how “close” an instance of inactivity is to
a transition. We use thel2-norm, or Euclidean distance,
function shown in Equation 1 to compare time periods ac-
cording to their start, end and duration. Although duration
is a redundant measure, we include it to account for peri-
ods that have similar duration but are offset in start and end
times. A lower value indicates greater similarity. Garner
[8] found that Euclidean distance is both normative and de-
scriptive of human cognitive processes involving non-ob-
vious objects of comparison.

The numerators,�start,�endand�duration,are the abso-
lute value of the difference between the properties of the
two periods being compared.p1 is a two-sided transition
whose property estimates are initially based on the thresh-
old-crossing and refined later. It is compared to each in-
stance of an inactivity period in the data set, treated as p2.

Each term is normalized by the corresponding estimated
standard deviation for that property of the transition,
�� start , �� end and �� duration . Although we do not

assume a normal distribution, standard deviation provides
a useful measure of variance with which to normalize each
term. Estimates of standard deviation are bootstrapped us-
ing an initial value of one third the duration found in the
previous step; the estimates are refined in the next step.

A maximum distance of three determines whether a period
of inactivity is considered an instance of a transition. Three
allows all three of the period's properties to lie within one
standard deviation from the transition's estimated proper-
ties, or any two, but not all three, to be as much as two
standard deviations away.  For example, a period that starts

within one standard deviation of the expected start time
and is within two standard deviations of the end time and
duration, would have a distance less than three and be con-
sidered an instance of the transition. In contrast, another
period which has start, end and duration of two or greater
standard deviations away from the transition would not be
considered an instance of the transition. If any one prop-
erty is more than three standard deviations away, then the
distance will be greater than three and the period will not
be associated with the transition.

Transition Property Refinement
The next step is to refine the estimates of the start, end and
durations of the transitions. From the set of instances asso-
ciated with the transition, we determine the probability dis-
tribution and recalculate the estimates for mean and me-
dian for each property of the transition. The model uses
the median as the new estimated value of start, end and du-
ration properties. The clustering and refinement steps are
repeated until the initial and the refined estimates converge
or a maximum number of iterations (ten) is exceeded.

We also calculate theoccurrence frequencyof the transi-
tion, which is the percent of days in which we detect an in-
stance of the transition. In addition to indicating how often
a transition occurs, the occurrence frequency is a measure
of how significant a potential transition is. If we did not
find many instances that match the potential transition, it
will have a low occurrence frequency.

We use a simple algorithm to name transitions. The tran-
sition closest to a canonical lunch period (12:00-1:00),
without being too far away, is named “Lunch.” Too far
away is defined as more than twice the normal maximum
distance (i.e., six). A transition that corresponds to a recur-
ring appointment is named after that appointment, such as
“Staff Meeting.” A location-change transition is named af-
ter the locations in which it begins and ends, such as “Of-
fice to Home.”  Other transitions are labeled “Unknown.”

The lower portion of Figure 3 shows an example of the the
rhythm model extracted for one individual's Mondays
across all locations. The probability distributions for the
start, duration and end are drawn below the label of each
transition and on different rows to avoid overlap. The dis-
tributions use a bin size of 5 minutes. In this example, the
daily activity regularly begins around 5:00am. There is an
unscheduled recurring break detected between 7:00 and
7:30, generally lasting less than 20 minutes, on 30% of the
days. There is another unscheduled break that is detected
67% of the time between 8:00 and 10:00 which lasts be-
tween 45 and 90 minutes. It corresponds to a location-
change transition “home to office.” There is a recurring
meeting “1/1 with Mgr” that is detected 65% of the time
which starts promptly at 10:00, lasting around 30 minutes.
A lunch break is detected 82% of the time between about
11:40 and 1:15, generally lasting between 30 and 75 min-
utes. The “Team meeting” is detected 50% of the time,
promptly starting at 2:00 lasting between 20 and 75 min-
utes. This transition corresponds to a location transition
from “office to lab.” The day ends with equal probability
anywhere between 3:30 and 4:30 and occasionally later.

Equation 1. Distance metric to determine the simi-
larity between two time periods.

Figure 2. Graph of percent-active levels for Mondays
at home showing segment boundaries (vertical white
lines) and thresholds (horizontal white lines).  Candi-
date two-sided transitions occur where the percent-
active level crosses the thresholds. 
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VISUALIZATIONS OF RHYTHMS
While the visualizations we had developed so far were de-
signed to help us analyze the data for rhythmic patterns [3],
we were concerned that they might be too complex for
end-users to interpret. We designed a number of visualiza-
tions to explore how to best convey rhythmic patterns to
end users. The first three visualizations below are based
on the raw data set and the last two are derived from the
model. We were interested to explore whether users would
prefer representations of the raw data including the irregu-
larities due to variance or the modeled data which abstracts
the salient patterns.

Percent-active graph
The first visualization we considered was the graph of per-
cent-active levels used in the detection of two-sided transi-
tions, seen previously in Figures 2 and 3 and repeated be-
low in Figure 4 to simplify comparison against subsequent
visualizations. This visualization is useful because signifi-
cant dips in the activity level suggest typical periods when
the person is not likely to be available. By presenting the
information to users, they can interpret what is a “signifi-
cant dip” for themselves.  

One drawback to this visualization is that the 'V' shape of
dips conveys a misleading impression of the variability and
correlations of a transition's start, end and duration. For
example, in the dip between 8:00 and 10:00 there is a span
of approximately 2 hours at the top of the dip, but a span as
narrow as 20 minutes at the bottom. The slope between

these end points is nearly linear, suggesting that the dura-
tion of this break varies with equal probability between 20
minutes and 2 hours. Looking at the same break in the
model of Figure 3, we can see that the duration actually
varies between 45 and 90 minutes, most often in the later
range. Furthermore, the 'V' shape may mistakenly suggest
that when the transition starts early, it lasts longer and
when it starts late, it takes a shorter time.

Color Saturation Gradient
An alternate visualization of the same data is shown in Fig-
ure 5. Here, the percentage of activity is represented by
varying the level of color saturation. The gradient percep-
tually smoothes the data, which helps de-emphasize the
variation due to noise. It also hides unnecessary detail
which may alleviate privacy concerns. In some cases,
however, such details have predictive power which is lost
if not detected by a user. Furthermore, while users may
discern a difference in color saturation at different levels of
activity, the saturation does not convey theamountof dif-
ference between the levels as effectively as the percent-ac-
tive graph. To partially compensate for this, we exaggerate
the saturation levels in the visualization by exponentially
weighting the activity values such that low values are
pulled lower and high values  higher. 

Although the gradient visualization is vertically more com-
pact and perhaps more aesthetically pleasing than the per-
cent-active graph, users cannot perceive as many levels in
the color shades as they can in the percent-active graph,

Figure 4.  Percent-active graph.  

Figure 3. Example rhythm model. Percent-active levels in the upper portion of the graph identify rhythmic transitions
shown in the lower portion along with the occurrence frequency and probability distributions for start time, duration
and end time of each transition.

Figure 5. Gradient shading of activity levels. This
displays the same data as in Figure 4, varying the
color saturation according to percent-active level. 



and interpreting the shades is prone to inaccuracy due to
perceptual effects of edge fluting and simultaneous con-
trast [17]. The percent-active graph affords distinguishing
even small differences in level from one minute to the
next. For example, the upward trend between 1:00 and
2:00 is obvious in Figure 4 but hidden in Figure 5.

Compressed Actogram
Another visualization is a compressed actogram of a
limited span of data, shown in Figure 6. Each row
represents an actual day of activity, stacked
chronologically with the most recent day at the bottom.
While similar to the actograms we presented in past work
[3], here the activity is one pixel high and colored by
location. In this example, we see activity in three
locations: home (white), office (black) and lab (dark gray).
Significant rhythmic transitions emerge where the
background shows through in gaps of activity and where
the location color changes.  

This visualization has a number of advantages over the
previous ones. First, it addresses the misleading nature of
the 'V'-shaped dips in the percent-active graph. Also, by
presenting actual instances of daily activity, users can see
the actual variation in start times, end times and durations
for themselves. Another advantage is that we can
interleave location information rather than having to plot
each location separately. Because the days are sorted by
recency, this visualization inherently portrays recent
changes in rhythm. For example, this person has recently
started working in a different location (lab) in the
afternoons.  

A disadvantage is that this visualization raises greater con-
cern about privacy as it exposes details about activity on
specific days. To alleviate this concern, we provide an op-
tion to include random noise to obscure individual data
points while maintaining the same aggregate values [1].
The main disadvantage is that this visualization is more
complex and visually cluttered than the previous ones.  

Model gradient
In contrast to visualizing the raw data, we explored two
visualizations based on the model which abstract the sali-
ent patterns of a person's rhythm. Since the rhythm model
identifies specific transitions of interest to the end user
(i.e., when is a colleague likely to be active), we used it to
create a variation of the color-saturation gradient. An ex-
ample of the gradient visualization of the rhythm model
was shown earlier in the lower portion of Figure 3. The
color saturation varies according to the cumulative prob-
ability distribution of the start and end times of each transi-
tion. For two-sided transitions, the shading plateaus at the
occurrence frequency value of the transition, such that
higher frequency transitions (e.g., “Lunch”) are whiter than
lower frequency transitions (e.g., “1/1 with Mgr”).

While the model in Figure 3 combines activity across all
locations for Mondays, Figure 7 separates activity in the
home (top) and office (bottom) locations for Mondays.

Shaped Ribbon
Another visualization of the model data can be seen in Fig-
ure 8. The edge of each transition is shaped by the cumu-
lative probability of the start or end time of that transition,
giving a sense of the range and shape of the variance. For
example, in Figure 8, the day typically begins between
5:00 and 5:45, and usually (~75% of the time) by 5:15.
The typical duration of a transition is apparent from the
gap between the start and end edges of the transition (e.g.,
the transition that starts near 7:00 has a typical duration of
15 minutes). The gap is shaded to convey the transition's
occurrence frequency. Because the edges are parallel, this
visualization avoids overlaps in the start- and end-time dis-
tributions within a transition, which sometimes overlap in
the gradient visualizations. However, when the times of
two different transitions overlap, there is a collision in the
visualization, such as the one around 10:00.  

While this visualization is appealing in its precision, it's
complexity has disadvantages for end-user applications.
First, interpreting the graph of a cumulative probability is
not intuitive to many people. Second, while it is the hori-
zontal band near the middle that gives a sense of a person's
typical pattern, the extreme ends of the distribution create
tails at the top and bottom edges that can distort accurate
perception of the patterns. In Figure 8, the tails were trun-
cated by 15% on each side, but they still have a distracting
perceptual effect. Although we found this to be a useful
analytic visualization, it required too much training to in-
terpret correctly for an end-user visualization.

DESIGN STUDY
We wanted to get user input on how they could interpret
and use the model and visualizations of rhythmic activity
patterns. We conducted a study to get end user feedback
on the following and to guide the design of applications.   

� Reactions to the visualization approaches

� Reflections on how well the model aligned with peo-
ple's perceptions of their own rhythms

� Reactions to the privacy implications of sharing this in-
formation on rhythmic patterns with others

We could only interview a limited number of people, so
the results are preliminary and reported as qualitative ob-
servations for guiding the design at this early stage.

Figure 6. Compressed actogram. Each row repre-
sents a day of activity colored by location: home
(white), office (black) and lab (dark gray).  

Figure 8. Shaped ribbon. The edges of each tran-
sition are shaped by the cumulative probability dis-
tributions of the transition's start and end times.  

Figure 7. Rhythm model gradient for activity in
home (top) and office (bottom) locations.  



Method
We interviewed currentAwarenex users who are not
closely involved in this rhythm modeling research and for
whom we had at least three months of data. We conducted
a structured interview with nine subjects. The interviews
lasted approximately an hour and were audiotaped and ana-
lyzed to identify recurring issues. Anecdotally, using the
subjects' rhythm models helped suggest good times to pro-
pose for scheduling these interviews.

During the interviews, subjects were presented four of the
visualizations of an overall rhythm (Figures 4-7) together
on one web page. The data in these visualizations depicted
the activity of a person who was in a time zone that was
three hours later, to suggest coordinating with a remote
person in a different time zone. The subjects were
prompted to compare and contrast among the visualiza-
tions to elicit what information they could get from each.
We also asked them to depict their mental model of their
own "daily transitions," and to compare it with the compu-
tationally-generated rhythm models (e.g., Figure 7). Fi-
nally, having seen what information can be depicted in the
rhythm models and how accurately the models portrayed
their daily activity, the subjects were asked how comfort-
able they would feel sharing these rhythm visualizations
with others.

Visualization Reactions 
While there were quite a variety of responses to which
visualization people preferred, the percent-active graph
(Figure 4) and the model gradient (Figure 7) emerged as
favorites. The percent-active graph afforded precisely
comparing levels at different times of the day, and some
said that they could most clearly see transitions in this rep-
resentation. When asked to draw their own model of their
daily rhythm, six of the nine subjects drew a representation
like the percent-active graph. We had not expected this
visualization to be favored, due to the noise and misleading
characteristics of dips as described previously. It should
be noted that since almost all the subjects were members of
a computer research lab, there may be a bias toward famili-
arity with this kind of graph. Others who do not share a
scientific background may find this display to be overly
complex.

Those who liked the modeled gradient liked that it distin-
guished the locale where the activity occurred. Knowing
which locale the user was in provided important contextual
information, such as whether it would be appropriate to
call the user at 5:00 am at home. A few people would have
preferred the percent-active graph if it had also shown ac-
tivity according to locale. While some commented that the
gradient did not allow making the fine distinctions in activ-
ity level that the percent-active graph offered, others men-
tioned that they did not need such detail for how they
would imagine using these visualizations. Thus, they pre-
ferred the model gradient because it identified the impor-
tant daily transitions without unnecessarily exposing more
details and the associated privacy concerns.

Some found that the compressed actogram (Figure 6) con-
veyed the most information, especially since it could indi-
cate changes in patterns over time. Yet most found the

compressed actogram too complex to easily interpret.
Since there was quite a range in preference for visualiza-
tions, perhaps this should be a setting that users could
choose to match their personal preference and what kinds
of information they need from the visualization.

Accuracy of Computational Model
To compare the rhythm models with people's perceptions
of their daily activity, we counted the number of two-sided
transitions (e.g., lunch, recurring meetings) that subjects
depicted and compared it with the number of transitions in
the model. On average, subjects depicted 2.67 two-sided
transitions per person per day, which means that in addi-
tion to lunch, they typically indicated 1-2 transitions per
day. We found a matching transition in the model 79% of
the time. Sometimes the model even prompted subjects to
remember a transition that they had forgotten to depict.
The median duration of the correctly identified transitions
was 41 minutes and the median occurrence frequency was
45%.

On the other hand, the model detected transitions that the
subjects did not perceive, nor could they provide an expla-
nation for them. On average, the model detected 2.77 tran-
sitions per person per day that the subjects did not depict.
The majority are likely spurious, while a few may be tran-
sitions of which the person is unaware. The number of
“false hits” varied depending on the person, showing that
the model was more accurate for some people/job roles
than others. The lowest average of false hits per day for a
person was 0.8, and the highest average was 5.0. The me-
dian duration of these false hit transitions was 19 minutes,
and the median occurrence frequency was 26%.

One of the main reasons for inaccuracies in the model is
that it does not adequately account for changes in people's
daily routines. Seven of the nine subjects had substantial
changes in their routine recently (e.g., taking a class during
the day, working from home for a couple months, changing
the day of a weekly group meeting). Although the model
does weigh recent data more heavily, the lag before a new
trend overtakes an old one is too great. Given how likely
these kinds of routine changes occur, the rhythm model
needs to more quickly detect these changes.   

A somewhat common pattern that also introduced inaccu-
racy is regularly occurring meetings that occur less often
than weekly.  While the model does indicate the percentage
of how often such a transition occurs (the occurrence fre-
quency), the subjects did not readily interpret that value as
corresponding to bi-weekly or monthly meetings. The ef-
fect of such non-weekly patterns could be more accurately
represented if the model kept track of the periodic pattern
of those series of meetings.   

The subject's job role also affected the accuracy of the
model. As expected, the models for those whose jobs in-
volved a lot of computer keyboard work (e.g., programmer,
administrative assistant) were more accurate than those
with more interrupt-driven work (e.g., managers).  

These preliminary results indicate that the model's accu-
racy is promising along with a number of ways it can im-
prove. “False hits” have low occurrence-frequency values
relative to correct hits which suggests that a higher thresh-



old may exclude many “false hits.” While we do plan to
enhance the model in this and other ways, it is not clear
what level of accuracy is needed to be useful. For exam-
ple, although “false hits” may be interpreted as bad times
to reach someone, as long as users do find times to make
contact, incorrectly blocked off periods may not be per-
ceived as greatly harmful. In addition, the way the model
is used by the inferred-status application, described later,
the existence of a transition only identifies a region when
the person has thepotentialto be inactive. In the case of a
“false hit,” that potential would not be realized.

In addition to asking subjects to depict their own daily pat-
terns, we also asked them to indicate if there were regions
when they were especially open to interruptions or would
rather not be disturbed. Seven of the nine subjects were
able to identify such regions. According to this self-re-
ported data, subjects indicated that they would rather not
be disturbed at the beginning or end of the day or right af-
ter lunch, which is consistent with what J. Hudsonet al.
[11] found. Two subjects indicated they would rather not
be disturbed during high productivity times (late afternoon,
in their cases). Three subjects also indicated regions right
before recurring meetings when they would rather not be
disturbed, as they felt they were often needing to make
last-minute preparations for the meeting.  

Privacy
When asked about sharing their rhythm models with oth-
ers, three had no reservations about doing so. Most, how-
ever, were concerned about wanting to provide more con-
text to help explain and interpret the rhythm models, or
would only want to share it with select people. Two sub-
jects were uncomfortable sharing their rhythms with any-
one, although one of these could think of another person
for whom they would like to be able to see a rhythm model
(because that person is needed for time-sensitive approv-
als).

APPLICATIONS OF RHYTHM MODELING
Providing an end-user visualization is one application of
the rhythm modeling work that allows viewers to make in-
ferences about good times to coordinate with that person.
In addition to that and the applications described previ-
ously in the discussion of “Rhythm Modeling Require-
ments,” several interview comments suggested other appli-
cations. One subject mentioned that he was only interested
in information within a couple hours into the future. If he
needed to coordinate contacting someone beyond that, he
would simply send email and coordinate asynchronously.
Others mentioned being more interested in when to expect
someone to return from a period of inactivity than in an
overall view of the person's day. Focusing more narrowly
addresses some privacy concerns, as providing a local pre-
diction of when someone will return from being inactive
reveals less information about a person's typical daily pat-
terns. These comments suggested applications that focus
on reachability at the current time and in the near future.

Inferring Away Status
One application of the rhythm model is to infer situations
when a currently inactive person will likely continue to be
inactive, or “away,” corresponding to a two-sided transi-

tion such as lunch. The general approach for this inference
is that when the person is inactive during the range of a
two-sided transition, we calculate the likelihood that the
current inactivity period will become an instance of the
transition, based on how long they have been inactive so
far.

The algorithm for this application uses both the static
model of the person's rhythm, described previously, and
also dynamically constructs a model of the transition using
instances in the past that are similar to the person's current
state. This dynamic modeling is guided by suggestions
from the design study that users' questions should be an-
swered from data that is local to the current time, as op-
posed to the entire day.

To explain the specific steps of the algorithm, consider the
example illustrated in Figure 9. Here, the individual has
been inactive within the range of their “lunch” transition,
as identified in their rhythm model. The current period of
inactivity began at 12:15 and has lasted for 10 minutes.
We search the data set for past instances of inactivity that
are at least as long as the current one and that started
“near” the same time. “Near” is considered as the start of
the current inactive period plus or minus two standard de-
viations of the transition's start time. Next, we examine
each prior instance to determine whether it is considered an
instance of the lunch transition using the same criterion
used in the transition clustering pass of the model's con-
struction (i.e., the period has a Euclidean distance less than
three units from the transition). The likelihood that the
current inactive period will become an instance of lunch
(i.e., the probability that the person is currently “at lunch”)
is the percentage of these past periods that were considered
to be instances of lunch. In this example, 8 of the 12 peri-
ods that started around the same time and are at least as
long as the current inactivity period were instances of
lunch. This implies a 66% chance that the current inactiv-
ity period will be an instance of lunch. Once the probabil-
ity exceeds half the transition's occurrence frequency, we
consider the person to be in the transition (e.g., “at lunch”).

Note that as the length of the current inactivity period
grows, the total number of periods in the calculation will
decrease as periods shorter than the current one are ex-
cluded. This will initially increase the probability that the
current inactivity is an instance of lunch, as the proportion
of “true” lunch instances in the set grows. For example,
after the next minute, the current inactivity period will be
11 minutes long and the bottom-most period, which is 10

Figure 9. Example of determining the probability
that current inactivity period is an instance of lunch.

Current
Inactive Period

Historic
Inactive
Periods

12:15 12:25

Lunch Period

Not Lunch Period

Current Inactive Period

 8 of 12 past periods that were at least as
long as current were instances of lunch.

12:15 ± 

Out to lunch?

 => 66% probability gone to lunch
��start of lunch2



minutes long, will be dropped. This raises the probability
to 8 out of 11, or 73%. The likelihood will begin to de-
crease, however, when the current inactivity becomes
longer than the “true” instances of lunch because the
shorter “true” instances will be dropped from the set, de-
creasing the proportion of “true” lunches in the set. When
there are fewer than a minimum number (5) of periods in
the comparison set, we do not attempt a prediction.

Predicting Times Around Rhythmic Transitions
Once the model identifies a person as being in a rhythmic
transition, it can use the statistical descriptions of the tran-
sition's start, end, and duration to also predict the end time
of that transition. For example, if an inactivity period is
identified as lunch, the model can predict the return from
lunch by taking the 80th percentile of lunch durations and
adding that to when the lunch period started.

Figure 10 shows a screenshot of the integration of status
inferencing and return time prediction withAwarenex. In
this example, the current time is 12:14 on a Thursday in
the U.S. Pacific time zone. The first entry is a normal
Awarenex entry indicating that Bo has been inactive for
50 minutes. This inactivity does not correspond to a mod-
eled transition but may be due to the appointment he has
scheduled for the current time (indicated by the clock
icon). The second person on the list, John, has been inac-
tive for 11 minutes. The system infers that he is at lunch
(75% probability) and predicts he will return (ETA) on or
before 12:50. The third person in the list, Rosco, works in
the U.S. Eastern time zone and has been logged out for
more than two hours. The system predicts he will return
on Friday around 5:15 (8:15 eastern). In the last entry,
Jean, who also works in the U.S. Eastern time zone, is cur-
rently active and the system predicts that her departure
(ETD) may be as early as 1:28 (4:28 eastern). This pro-
vides information for those who may want to reach her be-
fore she leaves for the day.

The functionality described here is similar to that ofTime-
Wave and SmartOOF described by Horvitzet al. [10],
with the addition of predicting and presenting the approach
to the end of a work day. In addition, our system inte-
grates the functions in an awareness and multi-channel
communication system, rather than calendar and email.
Status inferencing fits naturally in an awareness system
where the information is available for coordinating a com-
munication before a contact is attempted rather than as an
asynchronous response after an email message has been
sent.

Coordination Applications
Rhythmic modeling could also help the coordination of ac-
tivities among people. Comparing a model of your daily
activities with someone else's model (along with any
scheduled appointments) could help identify overlapping
times of availability to try to make contact with that per-
son. This would be especially useful between differing
time zones where you may not have intuitions about the
overall rhythms in that time zone.

Furthermore, models of a group of people could be com-
pared to help identify candidate times for scheduling a
group meeting. Especially if the participants span different
time zones or temporal contexts (e.g., early bird, night
owl), the models of rhythmic patterns could help identify
overlap times for scheduling a meeting.

DISCUSSION
Privacy
As with all systems that provide awareness information,
this work raises the concern that making this kind of infor-
mation available may encroach on individuals' privacy.
We explored this question with participants of the design
study. Several said they were comfortable sharing rhythm
information with anyone, though most had some reserva-
tion. Those who were concerned primarily expressed that
they would like to be able to interpret the pattern for peo-
ple seeing it, to avoid projecting a negative impression.
This mirrors how we deal with rhythm awareness among
physically co-located colleagues where we know who is
aware of us and can manage their interpretations by offer-
ing explanations when we deviate from our expected
rhythm. For example, if you started coming in later than
usual, you might drop hints that you were also staying
later, or another appropriate explanation. Managing others'
perceptions is more difficult when information is distrib-
uted electronically where, as Grudin notes [9], it does not
necessarily come along with the context needed to interpret
it appropriately.

Because privacy is socially negotiated in a dynamic and
ongoing process, we don't believe a solution that relies
solely on technology (e.g., strict access control) can com-
pletely solve the problem. However, there are steps that
technologies can take to mitigate the concern, and we de-
scribe a few here that specifically relate to rhythm informa-
tion. One step is to store and present only the information
necessary to answer a user's question. That is, the activity
on individual days is not needed when users are interested
in the aggregate pattern. An example is that the inferred
status application shows only the result of the inference,
rather than the data that leads to it. When daily details
must be shown, as in the compressed actogram visualiza-
tion, they can be obscured by introducing random noise
that maintains the aggregate values [1].

Another step is to gradually expose details of a person's
rhythm over time. It takes time to develop a sense of
rhythmic awareness of neighboring workers, and that time
also allows trust to build as the relationship forms. Simi-
larly, users should control how much rhythmic information
is being electronically conveyed to pace the amount of dis-
closure to be appropriate for the social relationship. 

Figure 10. Screenshot illustrating integration of in-
ferred status in the Awarenex  contact list.



Leveraging the Computer  in CMC Technologies
The rhythm modeling and applications presented here
complement real-time awareness systems, such as IM, by
providing information about coworkers' future reachability.
Such inferencing illustrates the potential for computer-me-
diated communication (CMC) technologies to go beyond
traditional communication technologies. For example,
typical use-case scenarios for Voice over Internet Protocol
(VoIP) primarily mimic the functionality of conventional
telephony, using computers for media codecs, routing and
address directories. Recreating telephony on a data net-
work provides few capabilities beyond what telephony al-
ready provides and misses the opportunity to take advan-
tage of other ways that computing resources can address
the fundamental problem of finding a good time to contact
someone.

The rhythm awareness research leverages thecomputerin
CMC technologies to gather, process and present context
data. Since much of our work activity involves using a
computer, it can naturally capture and analyze some of the
context of our work activity. As demonstrated in previous
awareness systems [6, 13, 16], this contextual information
can help work colleagues plan and coordinate making con-
tact. Rhythm inferencing extends context awareness to in-
formation about one's temporal context.

We have presented an algorithm for building a model of
the temporal patterns in people's computer activities and
online presence. The model is both predictive and descrip-
tive of temporal patterns, allowing users to augment their
own mental model for making their own inferences, rather
than relying solely on a computer inference. Exploring
what information can be gleaned from the temporal context
enables new applications in supporting the coordination of
distributed teams. One area we are currently exploring is
using sensors to capture additional sources of context in-
formation (e.g., presence, audio activity) to augment the
rhythm model. The techniques may also be applied to
other CMC technologies to help people find good times to
make contact and support the overall aim of helping restore
rhythm awareness among members of a distributed team. 
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