TEMPORAL PROBABILITY MODELS

CHAPTER 15

Chapter 15

(Outline

Time and uncertainty

Inference: filtering, prediction, smoothing
Hidden Markov models

Kalman filters (a brief mention)

Dynamic Bayesian networks

SO O

Particle filtering

Chapter 15

(Time and uncertainty

The world changes; we need to track and predict it
Diabetes management vs vehicle diagnosis
Basic idea: copy state and evidence variables for each time step

X, = set of unobservable state variables at time ¢
e.g., BloodSugar;, StomachContents,, etc.

E; = set of observable evidence variables at time
e.g., MeasuredBloodSugar;, PulseRate;, FoodEaten,

This assumes discrete time; step size depends on problem

Notation: X, = X, Xou1, -, Xp-1, Xp

Chapter 15

3

[Markov processes (Markov chains) |

Construct a Bayes net from these variables: parents?
Markov assumption: X; depends on bounded subset of X.; 1

First-order Markov process: P (X;|Xo,1) = P(Xy[X;)
Second-order Markov process: P (XX, 1) = P(X;|X; 9, X;1)

s DA~ ED—D

Second-order mmwm@
Sensor Markov assumption: P(E;| X, Eg.—1) = P(E/|X;)

Stationary process: transition model P(X;|X;_;) and
sensor model P(E,;|X;) fixed for all ¢

Chapter 15 4

(Example |

Ri-1| P(R)

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add T'emp;, Pressure;

Example: robot motion.
Augment position and velocity with Battery;

Chapter 15

(Inference tasks |

Filtering: P(X|e1.)
belief state—input to the decision process of a rational agent
Prediction: P(X,,t|er) for k >0

evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(Xy|ey,) for 0 < k <t
better estimate of past states, essential for learning

Most likely explanation: arg maxy,, P(x14|e1.)
speech recognition, decoding with a noisy channel

Chapter 15 6

(Filtering |

Aim: devise a recursive state estimation algorithm:

P(Xiler1) = flew, P(Xyler))

P(Xit1lerr1) = P(Xi1lers, er)
aP (1| X1, e14)P(Xpi]ers)
aP (ez+1 \Xz,+1)P(Xz,+1|6‘1:1,)

l.e., prediction + estimation. Prediction by summing out X;:

P(Xyilers1) = aP(ep1|Xi1) Y, P(Xys1|x:, €1:4) P(xilers)
= aP(ep+1]|Xet1) 2x, P (X1 |x0) P(xs|e14)

fl:H»l = FORVVARD(fl:[7 eHl) where fl:l =P(X1|e1:,)
Time and space constant (independent of t)

Chapter 15 7

(Filtering example |

0.500 0.627
0.500 0.373
True 0.500 0.318 O.QSB
False 0.500 0.182 0.117

Cargy——Cany——(Fan)

Chapter 15 8

(Smoothing |
C ==~ -

CD D) D,
Divide evidence e;; into €1.;, €x+1.4:
P(Xy|evr, exr1:t)
aP(Xilerr)P(err1:4| X, 1)
aP(Xilerr)P(err1:4/Xx)
afigbry1y

P(Xk|91;1,)

Il

Backward message computed by a backwards recursion:

Plepr1Xp) = Yy, Pkt Xy X1 P (x40 [X)
= Y,y Plersra|xrs1)P(xps1| Xr)

Xk+1
= Y Plena[xn1) Plenaelxp 1) P (xi11] Xi)

Chapter 15 9

Chapter 15

(Smoothing example

0500 0627
0500 0373
Tue 0500 0818 0.2!83 fommard
False 0500 0.182 0117 orwar
0.5*33 0.2!83
0117 0117 smeothed
0.690 1.000
0410 1.000 backward

@ (Rain)) Rain,
Umbrella; Umbrella,

Forward—backward algorithm: cache forward messages along the way
Time linear in ¢ (polytree inference), space O(t|f])

Chapter 15

(Most likely explanation

Most likely sequence # sequence of most likely states!!!!

Most likely path to each x;.;
= most likely path to some x; plus one more step

max P(xy, ... xp, Xypalers)
= Plerar [Xeo) mgx (P(Xea) g Pl %01, xdlen)
Identical to filtering, except f7.; replaced by

my; = xmi)f(,lp(xl’ sy X1, X/|91:1),

l.e., my,(7) gives the probability of the most likely path to state i.
Update has sum replaced by max, giving the Viterbi algorithm:

myyq1 = P(elvl‘Xl,Jrl) Hggl{}\ (P(X1,+1|x1,)m11,)

Chapter 15

[Viterbi example |

Rain, Rain, Raing Rain, Raing

state ‘
space
paths
false false false false false ‘
umbrella false
.8182 5155 .0361 .0334 .0210 |
most
likely
paths 1818 0491 1237 0173 0024 ‘
m 11 m 12 m 13 m 14 m 15

Chapter 15 13

I Hidden Markov models |

X, is a single, discrete variable (usually E; is too)
Domain of X, is {1,...,S}

Transition matrix Ty; = P(X,=j| X, =1), e.g., (0'7 0'3)

0.3 0.7

Sensor matrix Oy for each time step, diagonal elements P(e;| X, =1)

e.g., with U; =true, O; = (0(')9 002)

Forward and backward messages as column vectors:

fiin = a0 T fyy
bii1e = TOpy1brias

Forward-backward algorithm needs time O(S%t) and space O(St)

Chapter 15 14

[Country dance algorithm |

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

figer = @O0 Ty
Oﬁrllfuﬂ = oT'fy,
d(THO 2 et = fiu

Algorithm: forward pass computes f;, backward pass does f;, b;

586834

Chapter 15 15

[Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
flusr = a0 T iy
O, fip1 = T fyy
(T 'O i = iy

Algorithm: forward pass computes f;, backward pass does f;, b;

Chapter 15

16

[Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fier = @O0 Ty
Oﬁrllfuﬂ aT
d(THO 2 et = fiu

Algorithm: forward pass computes f;, backward pass does f;, b;

Chapter 15

17

[Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:
flus1 = a0 T iy
O iyt = oT fyy
(T 'O s = iy

Algorithm: forward pass computes f;, backward pass does f;, b;

Chapter 15

18

[Country dance algorithm |

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fier = @O0 Ty
O, fip1 = T fyy
d(THO et = fiu

Algorithm: forward pass computes f;, backward pass does f;, b;

N ON O

Chapter 15 19

[Country dance algorithm |

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fier = @O0 Ty
O, fi1 = T fyy
d(THO 2 et = fiu

Algorithm: forward pass computes f;, backward pass does f;, b;

NN N N

Chapter 15 20

[Country dance algorithm |

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

figer = @O0 Ty
Oﬁrllfu-l = oT'fy,
d(THO 2 et = fiu

Algorithm: forward pass computes f;, backward pass does f;, b;

Chapter 15 21

[Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fier = @O0 Ty
O, fip1 = T fyy
d(TH'O 2 et = fiu

Algorithm: forward pass computes f;, backward pass does f;, b;

Chapter 15

[Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

fier = @O0 Ty
O, fip1 = T fyy
d(THO 2 et = fiu

Algorithm: forward pass computes f;, backward pass does f;, b;

Chapter 15

[Country dance algorithm

Can avoid storing all forward messages in smoothing by running
forward algorithm backwards:

figer = @O0 Ty
Oﬁrllfu-l = oT'fy,
d(THO et = fiu

Algorithm: forward pass computes f;, backward pass does f;, b;

536838

Chapter 15

(Kalman filters |

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—X,=X,Y, Z, XY, Z.
Airplanes, robots, ecosystems, economies, chemical plants, planets, . ..

Gaussian prior, linear Gaussian transition model and sensor model

Chapter 15 25

(Updating Gaussian distributions |

Prediction step: if P(X,|e;,) is Gaussian, then prediction
P(Xiilewd) = [, P(Xer[x) P(xiler) dx

is Gaussian. If P(X,,1|e;,) is Gaussian, then the updated distribution
P(Xpiler1) = aP(er|Xen)P(Xesler)

is Gaussian

Hence P(X;|ey.) is multivariate Gaussian N (p,, ;) for all ¢

General (nonlinear, non-Gaussian) posterior grows unboundedly as t — co

Chapter 15 26

(Simple 1-D example |

Gaussian random walk on X-axis, s.d. o, sensor s.d. o,

(0 + %)z + o2) _ (o2 +odo?

Hi+1 = : Oyp1 = :
o} + 02+ 0? o} + 02+ 0?2

045
04t 1
035 ‘
03}
0.25
02
015
01
005

| P(cL | z1=25) |

P(X)

X position

Chapter 15 27

(General Kalman update |

Transition and sensor models:

Plxiafx) = N(Fx, 3g)(x¢21)
P(Z[|Xg) = N(HX),E:)(Z[)

F' is the matrix for the transition; 3, the transition noise covariance
H is the matrix for the sensors; 3, the sensor noise covariance

Filter computes the following update:

P = Fpy+ K (20 — HF py)
S = I-Kuy)(FEFT+X,)

where K, = (FE,F' + Z,)H (HFSF' +2,)H' +32,)!
is the Kalman gain matrix

3%, and K, are independent of observation sequence, so compute offline

Chapter 15 28

(2-D tracking example: filtering |

2D filtering
121
—8— true
* observed
1k x filtered

Chapter 15 29

(2-D tracking example: smoothing |

2D smoothing

—e— true
* observed
smoothed

x

Chapter 15 30

I Where it breaks |

Cannot be applied if the transition model is nonlinear

Extended Kalman Filter models transition as locally linear around x; =,
Fails if systems is locally unsmooth

Chapter 15 81

[Dynamic Bayesian networks |

X, E; contain arbitrarily many variables in a replicated Bayes net

Chapter 15 82

I DBNs vs. HMMs [

Every HMM is a single-variable DBN; every discrete DBN is an HMM

!

!

sis

Sparse dependencies = exponentially fewer parameters;
e.g., 20 state variables, three parents each
DBN has 20 x 2% =160 parameters, HMM has 220 x 220 x5 102

Chapter 15 33

I DBNs vs Kalman filters |

Every Kalman filter model is a DBN, but few DBNs are KFs;
real world requires non-Gaussian posteriors

E.g., where are bin Laden and my keys? What's the battery charge?

E(Battery|. 5555005555..)
=

e
4t E(Battery]...5555000000. "

3l 4
2L 4

P(BMBroken]...5555000000..))
Rt bl

= CRBCHE =

E(Battery)

/

a
P(BMBroken].. 5555005555..))

1 L L L L
15 20 25 30

Time step

Chapter 15 34

I Exact inference in DBNs |

Naive method: unroll the network and run any exact algorithm

Problem: inference cost for each update grows with ¢

Rollup filtering: add slice ¢ + 1, “sum out” slice ¢ using variable elimination

Largest factor is O(d"™1), update cost O(d"*?)
(cf. HMM update cost O(d*"))

Chapter 15 35

[Likelihood weighting for DBNs |

Set of weighted samples approximates the belief state
@D , D, D, D,
LW samples pay no attention to the evidence!

= fraction “agreeing” falls exponentially with ¢
= number of samples required grows exponentially with ¢

P TW(gF

JLwied)

08 L LW(IR0D) -
LW(18000)

s

o b
0 5 10 15 20 25 30 35 4 45 50
Time step

Chapter 15 36

Particle filtering

Basic idea: ensure that the population of samples (“particles”)

tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for e;

Rain; Raing; Rain; .y Raing .,y
we [gy |][]
o0
fase | ¢ -
(a) Propagate (b) Weight (c) Resample

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
10°-dimensional state space

Chapter 15

31

(Particle filtering contd.

Assume consistent at time t: N(x|e1.)/N = P(x;|e1.)

Propagate forward: populations of x;.; are

N(xip1lers) = Xx, P(xp1|x) N (x| ers)

Weight samples by their likelihood for e;.:

W(xs1lere+1) = Plepa|Xee1) N (i1 len)

Resample to obtain populations proportional to W:

N(xss1lerss1)/N

P(x¢11]€1:411)

aW (xg41leru41) = aP(epr1|xer1) N (Xey1le1s)
aP(ez+1‘Xz,+1)Ex,P(Xz+1|Xz,)N(Xz,‘91:z,)
o P(epi|xp41) 2x, P(xp1|x) P(xc|e1)

Chapter 15

£

(Particle filtering performance

Approximation error of particle filtering remains bounded over time,
at least empirically—theoretical analysis is difficult

Avg absolute error

0

o

06

04

LW(L
ER/SOF(25) -#---

B asd s s s ns s A an st sa i st bast

0
0 5 10 15 20 25 30 35 40 45 50
Time step

Chapter 15

39

(Summary [

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
— transition modelP(X;|X; ;)
— sensor model P (E,|X;)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow n state variables, linear Gaussian, O(n?) update
Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs

Chapter 15 40

