Undirected graphical models

A potential function is a non-negative function.

We can define a joint density by a normalized product of potential
functions. For example, we could define the BURGLARY density as follows:
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where each v function is a potential and
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is the normalization constant (a.k.a. partition function).

In general the potentials do not have a probabilistic interpretation, but
they are interpretable: values with higher potential are more probable. The
potentials trade-off with each other via the partition function.

Multivariate Gaussians can be represented in this way.



Conditional independence
in undirected graphical models

e For a density p = % ]1; ¥i we define an undirected graph G as follows:
— Each variable of p becomes a node of G.

— For each potential v; we place a clique over its arguments in G.
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e This is called an undirected graphical model (a.k.a. Markov random field).

e Then XY |{Zy,...,Z;} if X is separated from Y by Z,..., Z, i.e., if
when Z1,...,Z; are removed there is no path between X and Y.




The Hammersley-Clifford Theorem

When p is strictly positive, the connection between conditional

independence and factorization is much stronger.
Let G be an undirected graph over a set of random variables {X1,..., Xi}.

Let P; be the set of positive densities over {X7,..., X;} that are of the

form
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where each Y is a potential over a clique of G.

Let Py be the set of positive densities with the conditional independencies
encoded by graph separation in G.

Then Pl = 7)2.




Comparing directed and
undirected graphical models

Specifying an undirected graphical model is easy (normalized product of
potentials), but the factors don’t have probabilistic interpretations.
Specifying a directed graphical model is harder (we must choose an ordering

of the variables), but the factors are marginal and conditional densities.

Determining independence in undirected models is easy (graph separation),

and in directed models it is hard (d-separation).

Directed and undirected models are different languages: there are densities
with independence properties that can be described only by directed

models; the same is true for undirected models.

In spite of this, inference in a directed model usually starts by converting it

into an undirected graphical model with fewer conditional independencies.




Moralization

Because the factors of a Bayesian network are marginal and conditional

densities, they are also potential functions.

Thus, a directed factorization is also an undirected factorization (with

Z =1). Each clique consists of a variable and its parents in the Bayes net.

We can transform a Bayesian network into a Markov random field by
placing a clique over each family of the Bayesian network and dropping the

directed edges.

This process is called moralization because we marry (or connect) the

variable’s parents and then drop the edge directions.




Example of moralization
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All of the conditional independencies represented by the undirected model are
also present in the directed model, but the reverse is not true: the directed

model has conditional independencies that are not represented by the undirected
model.




