
iPlane: An Information Plane for Distributed Services

Harsha V. Madhyastha∗ Tomas Isdal∗ Michael Piatek∗ Colin Dixon∗

Thomas Anderson∗ Arvind Krishnamurthy∗ Arun Venkataramani†

Abstract— In this paper, we present the design, imple-
mentation, and evaluation of the iPlane, a scalable ser-
vice providing accurate predictions of Internet path per-
formance for emerging overlay services. Unlike the more
common black box latency prediction techniques in use
today, the iPlane builds an explanatory model of the In-
ternet. We predict end-to-end performance by compos-
ing measured performance of segments of known Inter-
net paths. This method allows us to accurately and effi-
ciently predict latency, bandwidth, capacity and loss rates
between arbitrary Internet hosts. We demonstrate the fea-
sibility and utility of the iPlane service by applying it to
several representative overlay services in use today: con-
tent distribution, swarming peer-to-peer filesharing, and
voice-over-IP. In each case, we observe that using iPlane’s
predictions leads to a significant improvement in end user
performance.

1 Introduction
The Internet by design is opaque to its applications,
providing best effort packet delivery with little to no
information about the likely performance or reliabil-
ity characteristics of different paths. While this is a
reasonable design for simple client-server applications,
many emerging large-scale distributed services depend
on richer information about the state of the network.
For example, content distribution networks like Akamai,
Coral, and CoDeeN [1, 19, 59] have the ability to re-
direct each client to the replica providing the best per-
formance for that client. Likewise, voice over IP sys-
tems such as Skype [53] use relay nodes to bridge hosts
behind NAT/firewalls; the selection of these relay nodes
can dramatically affect call quality. Peer-to-peer file dis-
tribution, overlay multicast, distributed hash tables, and
many other overlay services [11, 33, 8, 2] can benefit
from peer selection based on different metrics of net-
work performance such as latency, available bandwidth,
loss rate, and reliability. Finally, the Internet itself can
benefit from more information about itself, e.g., ISPs
can monitor the global state of the Internet for reacha-
bility and root cause analysis, routing instability, onset
of DDoS attacks, etc.

If Internet performance was easily predictable, its
opaqueness might be an acceptable state of affairs.

∗Dept. of Computer Science, Univ. of Washington, Seattle
†Dept. of Computer Science, Univ. of Massachusetts, Amherst

However, Internet behavior is well-known to be fickle,
with local hot spots, transient (and partial) disconnec-
tivity, and triangle inequality violations all being quite
common [51, 2]. Many large scale services adapt to
this state of affairs by building their own proprietary
and application-specific information plane. Not only
is this redundant, but it prevents new applications from
leveraging information already gathered by other appli-
cations. The result is often sub-optimal. For example,
most implementations of the file distribution tool Bit-
Torrent choose peers at random (or at best using round
trip latency estimates); since downloads are bandwidth-
dependent, this can yield suboptimal download times.
By some estimates [48], BitTorrent accounts for roughly
a third of backbone traffic, so inefficiency at this scale is
a serious concern. Moreover, implementing an informa-
tion plane is often quite subtle; for example, large-scale
probing of end-hosts can raise intrusion alarms in edge
networks as the traffic resembles a DDoS. This is the
most common source of complaints on PlanetLab [49].

To address this, several research efforts, such as
IDMaps [18], GNP [42], Vivaldi [13], Meridian [4], and
PlanetSeer [62] have investigated providing a common
measurement infrastructure for distributed applications.
These systems provide only a limited subset of the met-
rics of interest, most commonly latency between a pair
of nodes, whereas most applications desire richer infor-
mation such as loss rate and bandwidth. Second, by
treating the Internet as a black box, most of these ser-
vices abstract away network characteristics and atypi-
cal behavior—exactly the information of value for trou-
bleshooting as well as improving performance. For ex-
ample, the most common latency prediction methods
use metric embeddings which are fundamentally inca-
pable of predicting which paths violate the triangle in-
equality [51, 63]. More importantly, being agnostic to
network structure, they cannot pinpoint failures, iden-
tify causes of poor performance, predict the effect of
network topology changes, or assist applications with
new functionality such as multipath routing.

In this paper, we move beyond mere latency predic-
tion and develop a service to automatically infer so-
phisticated network behavior. We develop an Informa-
tion Plane (iPlane) that continuously performs measure-

1



ments to generate and maintain an annotated map of
large portions of the Internet, containing a rich set of
link and router attributes. The iPlane uses structural
information such as the router-level topology and au-
tonomous system (AS) topology to predict paths be-
tween arbitrary nodes in the Internet. The path pre-
dictions are combined with measured characteristics of
path segments to predict end-to-end path properties for
a number of metrics such as latency, available band-
width, and loss rate. The iPlane can also analyze iso-
lated anomalies or obtain a global view of network be-
havior by correlating observations from different parts
of the Internet.

The iPlane is designed as a service that distributed
applications can query to obtain information about net-
work conditions. Deploying iPlane as a shared service
(as opposed to providing a library) has several benefits.
First, a common iPlane can exploit temporal and spa-
tial locality of queries across applications to minimize
redundant measurement overhead. Second, the iPlane
can selectively refresh its knowledge of valid regions of
the IP address space based on the real query workloads.
More generally, the iPlane can assimilate measurements
made on behalf of all of its clients as well as incorporate
information reported by clients to develop a more com-
prehensive model of Internet behavior over time. We
note that all of these arguments have been recognized
before [10, 60, 27], however a convincing validation has
remained starkly absent.

Our primary contribution is in demonstrating feasibil-
ity of the iPlane, e.g., we can infer an annotated map of
the Internet once every three hours with a measurement
load of a few Kbps. In addition, we develop:

• A common explanatory model for abstracting the net-
work structure and path properties like bandwidth,
loss rate etc.

• A measurement infrastructure that is deployed on ev-
ery active PlanetLab site and almost a thousand trace-
route and Looking Glass server vantage points (with
a lower intensity of probing).

• A toolkit of passive and active measurement and to-
mographic techniques for inferring path properties.

• Case studies of popular systems such as CDNs,
swarming peer-to-peer file distribution, and VoIP.
We demonstrate measurable benefits of applying the
iPlane to each of these types of applications.

The iPlane is a modest step towards the vision of a
knowledge plane [10] pioneered by Clark et al. The
iPlane supplies information about the network and
leaves the task of adapting or repairing to the client.
Nevertheless, the collection, analysis, and distribution
of Internet-scale measurement information is itself a

challenging systems engineering problem, and the focus
of this paper.

2 Design
We start by discussing the requirements of an Informa-
tion Plane for distributed services before presenting a
design that meets the requirements.
• Accuracy: The iPlane should accurately estimate a

rich set of performance metrics such as latency, loss-
rate, capacity, and available bandwidth.

• Wide coverage: The iPlane should be able to mea-
sure and predict the performance of arbitrary Inter-
net paths, not just those involving the overlay. Many
currently deployed overlay services, such as RON [2]
and S3 [35], limit their focus to the connectivity of
the overlay nodes only.

• Scalability: The measurement process should not im-
pose an undue communication load on the measure-
ment infrastructure.

• Unobtrusiveness: Active probes of end-hosts should
be coordinated and performed in an unobtrusive man-
ner in order to minimize the possibility of raising in-
trusion detection alarms.

• Cooperation: The iPlane should be able to systemat-
ically integrate measurements from clients to account
for routing asymmetry and infer end-hop properties.

2.1 Overview

The iPlane is designed to be deployed as an application-
level overlay network with the overlay nodes collec-
tively coordinating the task of generating and maintain-
ing an “atlas” of the Internet. The atlas is both extensive
and detailed—it comprises the topology of the Internet
core and the core’s connectivity to representative targets
in the edge networks, complete with a rich set of static
attributes (such as link delay and link capacity), and re-
cent observations of dynamic properties (such as routes
between network elements, path loss rates, and path
congestion). The iPlane uses systematic active mea-
surements to determine the attributes of the core routers
and the links connecting them. In addition, the system
performs opportunistic measurements by observing ac-
tual data transfers to end-hosts, exposing characteristics
of the edge of the network that typically cannot be ob-
tained from one-way probing.

The iPlane can use its collected repository of ob-
served paths to predict end-to-end paths between any
pair of end-hosts at the edge of the network. This pre-
diction is made by carefully composing partial segments
of known Internet paths so as to exploit the similarity of
Internet routes. As routes from two nearby sources tend
to converge when heading to the same destination, the
iPlane makes path predictions by splicing a short path

2



Technique Description Goal Section
generate probe
targets

Obtain prefixes from Routeview’s BGP snapshot and cluster
groups of prefixes with similar routes.

coverage,
lower measurement load

Section 2.2.1

traceroutes from
vantage points

PlanetLab nodes probe all targets, while Traceroute/Looking
Glass servers issue probes to a small subset of the targets.

map topology,
capture path diversity

Section 2.2.1

cluster network
interfaces

Identify network interfaces that are geographically colocated. lower measurement load,
build structured topology

Section 2.2.2

frontier algorithm Schedule measurements of link attributes to PlanetLab nodes such
that each link is probed by the vantage point closest to it.

accurate measurements,
lower measurement load,
balance measurement load

Section 2.3.1

measure link
attributes

PlanetLab nodes measure the loss rate, capacity, and available
bandwidth over a subset of paths in the Internet core.

richly annotated topology Section 2.3.2

opportunistic
measurements

Passive measurements that expose the structure and performance
of the edge networks.

minimize obtrusiveness Section 2.4

route composition Compose segments of observed or reported paths to predict end-
to-end paths between a pair of nodes.

path prediction,
performance prediction

Section 2.5

Table 1: A summary of techniques used in the iPlane.

segment from the source to an arbitrary destination with
an observed path segment going towards the destination.
Once a path is predicted, the iPlane simply composes
the measured properties of the path segments to predict
the performance of the composite path. For instance, if
the iPlane has to make a latency prediction, it simply
adds the latencies associated with the path segments to
make the overall prediction.

The iPlane can integrate hitherto unknown clients
into its atlas using any one of the following operational
scenarios depending upon the desired balance between
accuracy, measurement load, and client participation.
The simplest form of integration is to approximate the
client’s performance by a representative target in the
same edge network (which is a client IP with the longest
prefix match), resulting in a scheme that requires no
additional probes. A more refined integration model
requires a small number of vantage points to perform
probes to determine their paths to the new client and
then add these paths to the atlas for future path predic-
tions. If the client desires greater prediction accuracy, it
can voluntarily perform some probes and contribute the
paths that it has discovered to the iPlane; multi-homed
clients could benefit from such an operational model.

The rest of this section describes the various tech-
niques used to develop a functional iPlane that has wide
coverage, incurs modest measurement load without sac-
rificing coverage or detail, and uses topology structuring
techniques to enable efficient measurement and accurate
inference. The techniques are summarized in Table 1.

2.2 Mapping the Internet Topology

The iPlane requires geographically distributed vantage
points to map the Internet topology and obtain a collec-
tion of observed paths. PlanetLab servers that are lo-
cated at over 300 sites around the world currently serve

as vantage points. We could also enlist the use of pub-
lic Looking Glass/Traceroute servers, as long as they
are used for low-intensity probing. Our primary tool
for determining the Internet topology is traceroute,
which allows us to identify the network interfaces on the
forward path from the probing entity to the destination.
We do however need to address the issue of what des-
tinations are to be probed and how to convert the raw
output of traceroute to a structured topology.

2.2.1 Probe Target Selection

BGP snapshots, such as those collected by Route-
Views [41], are a good source of probe targets. The
iPlane could achieve wide coverage for the topology
mapping process by obtaining the list of all globally
routable prefixes in BGP snapshots, and choosing within
each prefix a target .1 address that responds to either
ICMP or UDP probes. However, such a strategy incurs
high measurement load. Instead, the iPlane prunes this
list by clustering prefixes into BGP atoms [5]. A BGP
atom is a set of prefixes, each of which has the same AS
path route to it from any given vantage point; in other
words, each vantage point has the same AS path route
to all of the prefixes within the atom. BGP atoms repre-
sent the knee of the curve with respect to measurement
efficiency—probing within an atom might find useful
data, but it is less likely to do so.

The iPlane uses the PlanetLab nodes to perform ex-
haustive and periodic probing of the representative tar-
gets. (In Section 2.7, we discuss optimizations that
lower the measurement load once the initial topology
has been discovered.) In addition, the iPlane schedules
probes from public traceroute servers to a small random
set of BGP atoms, typically making a few tens of mea-
surements during the course of a day. The public trace-
route servers serve as a valuable source of information

3



regarding local routing policies. Note that in the long
run, a functioning iPlane may actually serve to decrease
the load on the public traceroute servers as the iPlane,
rather than the traceroute servers themselves, could be
consulted for information on the Internet topology.

2.2.2 Clustering of Interfaces

Once the basic topology has been identified, the iPlane
proceeds to measure a rich set of link attributes, such
as loss rate and capacity. Unfortunately, the topology
information gathered by traceroutes is at the granular-
ity of network interfaces, and thus lacks the structuring
required to enable efficient measurement and accurate
prediction. First, the measured topology has redundant
connectivity information, as two interfaces colocated on
the same router would appear as distinct entities and will
create the illusion of multiple links to be measured even
though there is only a single physical link. Second, it
also contains links that are not critical to performance
prediction; links between routers belonging to the same
AS in a PoP are typically low-latency and high capac-
ity and need not be measured. Third, as we describe
in Section 2.5, our path and performance prediction al-
gorithms work by composing observed route segments
from our measured topology of the Internet. Declaring
two paths to have intersected only if we see the same
network interface address on both is almost certainly
too strict. Instead, we would like to say that two paths
intersect even if they pass through different interfaces
or routers as long as the interfaces have similar perfor-
mance to end-hosts— operationally, are owned by the
same AS and reside in the same PoP.

We therefore seek to partition all observed network
interfaces into “clusters” and use this structured topol-
ogy for more in-depth measurements and predictions.
We define the clusters to include interfaces that are
similar from a routing perspective, interfaces belonging
to the same PoP, and interfaces within geographically
nearby portions of the same AS; in other words, these
are interfaces with similar routing and performance
characteristics. Note that this clustering is performed
on network interfaces in the Internet core, whereas the
clustering of prefixes into BGP atoms was performed for
end-host IPs. In fact, IP address-based clustering would
be ineffective in the core as geographically distant inter-
faces are often assigned addresses in the same prefix.

First, the iPlane uses the Mercator [22] technique to
identify interfaces that belong to the same router. UDP
probes are sent to a high-numbered port on every router
interface observed in traceroutes. Interfaces that re-
turned responses with the same source address are de-
clared as aliases.

Second, the iPlane determines the DNS names as-
signed to as many network interfaces as possible. It then

uses Rocketfuel’s undns utility [54] to determine the
locations of these interfaces based on their DNS names.
This step alone does not suffice for our purpose of clus-
tering geographically co-located interfaces because: 1)
several interfaces do not have a DNS name assigned to
them, 2) undns does not have rules for inferring the lo-
cations of all DNS names, and 3) undns infers incorrect
locations for some interfaces that have been misnamed.

So, thirdly, to cluster interfaces for which undns did
not yield a location and to determine incorrectly inferred
locations, we develop an automated algorithm that clus-
ters interfaces based on responses received from them
when probed from a large number of vantage points.
We probe all interfaces from all of the iPlane’s Planet-
Lab vantage points using ICMP ECHO probes. We use
the TTL value in the response to estimate the number of
hops on the reverse path back from every router to each
of our vantage points. Our hypothesis is that routers in
the same AS that are geographically nearby will have al-
most identical routing table entries and hence, take sim-
ilar reverse paths back to each vantage point.

To translate this hypothesis into a systematic algo-
rithm for clustering, each interface is associated with a
reverse path length vector. This is a vector with as many
components as the number of vantage points, and the ith

component is the length of the reverse path from the in-
terface back to the ith vantage point. We define the clus-
ter distance between two vectors to be the L1 distance—
the sum of the absolute differences between correspond-
ing components, divided by the number of components.
In our measurements, we have observed that the clus-
ter distance between reverse path length vectors of co-
located routers in an AS is normally less than 2.

Based on the metric discussed above, we can now
present a technique for validating undns results and also
attributing locations to interfaces without DNS names.
We start by initializing our clusters to contain those in-
terfaces for which undns gave us a location. Interfaces
that have been determined to be co-located in an AS are
in the same cluster. We then determine interfaces for
which undns has inferred an incorrect location. For each
cluster, we compute the median reverse path length vec-
tor, whose ith component is the median of the ith com-
ponents of the vectors corresponding to all interfaces in
the cluster. The location of every interface that belongs
to some cluster and has a cluster distance greater than
2 from the median vector for its cluster is invalidated.
Now, we cluster all interfaces that do not belong to any
cluster. For each interface, we determine the cluster in
the same AS as the interface, with whose median vec-
tor the interface’s vector has the least cluster distance.
If this minimum cluster distance is less than 2, the in-
terface it added to the chosen cluster, otherwise a new
cluster is created. This clustering algorithm, when exe-

4



cuted on a typical traceroute output, clusters over 300K
interfaces into about 25K clusters.

2.3 Measuring the Internet Core

After clustering, the iPlane can operate on a compact
routing topology, where each node in the topology is a
cluster of interfaces and each link connects two clusters.
The iPlane then seeks to determine a variety of link at-
tributes that can be used to predict path performance. To
achieve this goal, a centralized agent is used to distribute
the measurement tasks such that each vantage point of
the iPlane is assigned to repeatedly measure only a sub-
set of the links. The centralized agent uses the compact
routing topology to determine the assignments of mea-
surement tasks to vantage points, communicates the as-
signment, and monitors the execution of the tasks. Since
the probes for these carefully constructed measurement
activities might incur modest loads, only the iPlane in-
frastructure nodes (namely, the PlanetLab nodes) are
used for these tasks.

2.3.1 Orchestrating the Measurement Tasks

There are three objectives to be satisfied in assigning
measurement tasks to vantage points. First, we want
to minimize the measurement load by requiring that
each link attribute be measured by exactly one van-
tage point. Second, the measurement should be load-
balanced across all vantage points, i.e., each vantage
point should perform a similar number of measure-
ments. Third, in order to measure the properties of each
link as accurately as possible, every link in the topology
should be measured from the vantage point that is clos-
est to it and is also capable of routing probes to the link;
it is of course not meaningful to assign a link measure-
ment to some vantage point that is incapable of generat-
ing valid Internet routes through it.

We have developed a novel “frontier” algorithm to
perform the assignment of tasks to vantage points. The
algorithm works by growing a frontier rooted at each
vantage point in an uniform manner and having each
vantage point measure only those links that are at its
frontier. The centralized agent performs a Breadth-First-
Search (BFS) over the measured topology in parallel
from each of the vantage points. The agent goes through
all the vantage points iteratively. Whenever a vantage
point is taken up for consideration, the algorithm per-
forms a single step of the BFS by following one of the
traceroute paths originating at the vantage point. If it
encounters a link whose measurement task has been as-
signed already to another vantage point, it continues the
BFS exploration for the vantage point. When the BFS
exploration encounters a new link that has not been seen
before, it assigns the task of measuring the new link’s
attributes to the vantage point under consideration. This

process continues until all the link measurements have
been assigned to some vantage point in the system.

The centralized agent uses the above algorithm to de-
termine the assignment of tasks, and then ships them to
the respective vantage points. Each target link is identi-
fied by the traceroute path that the vantage point could
use to reach the link and by its position within the trace-
route path. If a vantage point is no longer capable of
routing to the link due to route changes, the vantage
point reports this to the centralized agent, who in turn re-
assigns the task to a different vantage point. If the routes
have not changed, the vantage point probes the assigned
link in order to measure various properties such as loss
rate, bottleneck capacity and available bandwidth.

Most link attributes, however, cannot be directly de-
termined by the vantage point. For instance, while mea-
suring loss-rates, the vantage point can only measure the
overall loss rate associated with the entire path from the
vantage point to the target link; the individual link loss-
rate would have to be inferred as a post-processing oper-
ation that is essentially a rerun of the frontier algorithm.
Once all vantage points report their measurements back
to the centralized agent, the agent can perform the BFS
style exploration of the topology to infer link properties
in the correct order. For instance, assume that a van-
tage point v had probed the path v, . . . , x, y and had ob-
tained a (one-way) loss rate measurement of lv,y for the
entire path. The centralized agent can then infer the loss
rate along the link (x, y) after inferring the loss rates for
each of the links in v, . . . , x, composing these individual
loss rates to predict the loss rate lv,x along the segment
v . . . x, and then calculating the loss rate for (x, y) us-
ing the equation (1 − lv,y) = (1 − lv,x) · (1 − lx,y).
Since the link property inference is performed as a BFS
traversal, we are guaranteed that all of the loss rates for
the links along v, . . . , x have been inferred before we
consider the link (x, y).

2.3.2 Measurement of Link Attributes

We next outline the details of the loss rate, bottleneck
capacity and available bandwidth measurements per-
formed from each vantage point. We note that many
previous research efforts have proposed specific ways to
measure each of these properties, but no widespread and
continuous measurement has been attempted to date.

Loss Rate Measurements: We perform loss rate
measurements along path segments from vantage points
to routers in the core by sending out probes and de-
termining the fraction of probes for which we get re-
sponses. Ideally, we would like to distinguish a probe
loss from a lost response since the reverse path, in gen-
eral, could be different from the forward path and is un-
known. We experimented with the Tulip tool [40] that
allows one to distinguish a forward path loss from a

5



reverse path loss by examining the IP-ID fields in re-
sponses to three back-to-back UDP probes.1 Unfortu-
nately, we determined that only 77% of Internet routers
respond to UDP probes and only 26% respond to back-
to-back UDP probes. Even if the UDP probes are re-
placed by ICMP probes, one cannot distinguish a lost
probe from a lost response as the IP-ID counter value
is rarely communicated in ICMP probe replies. We
therefore settled on the simple method of sending TTL-
limited singleton ICMP probes with a 1000-byte pay-
load. When the probe’s TTL value expires at the tar-
get router, it responds with a ICMP error message, typ-
ically with a small payload. When a response is not re-
ceived, one cannot determine whether the probe or the
response was lost, but there is some evidence from pre-
vious studies that the small packets tend to be preserved
even when routers are congested [40]. We therefore cur-
rently attribute all of the packet loss to the forward path;
the development of more accurate techniques is part of
ongoing work.

Capacity Measurements: We perform capacity
measurements using algorithms initially proposed by
Bellovin [3] and Jacobson [28] that vary the packet size
and determines the delay induced by increased packet
sizes. For each packet size, a number of probes (typ-
ically, thirty to forty) of that size is sent to an inter-
mediate router and the minimum observed round-trip
time is noted. The minimum observed round-trip time
corresponds to the scenario where the probe didn’t ob-
serve any queueing delays. By performing this exper-
iment for different packet sizes, one can determine the
increased transmission cost per byte over a sequence of
links. When this experiment is performed for a sequence
of network links in succession, the capacity of each link
could be determined. We implement this measurement
technique as opposed to other techniques that observe
the induced dispersion of back-to-back packets [31, 34],
since such techniques report only the capacity of the bot-
tleneck link along a segment but not the capacity of non-
bottleneck links. Note that our capacity measurements
may underestimate a cluster link if it consists of multiple
parallel physical links, unless the router is configured to
stripe packets across the parallel links.

Available Bandwidth Measurements: Once we
have link capacities, we can probe for available band-
width along path segments using packet dispersion tech-
niques such as Spruce [55], IGI [25], Pathload [29].
A simple measurement is performed by sending a few,
equally spaced, short probes at the believed capacity,
and then measuring how much delay they induce. The
slope of the delay increase will indicate how much back-
ground traffic arrived during the same time period as the

1The IP-ID value typically corresponds to a router-specific counter
that is incremented after each probe response.

probe. For instance, if the probes are generated with a
gap of ∆in through a path segment of capacity C and
if the measured gap between between the probe replies
is ∆out, one can estimate the available bandwidth as
C ·(1− ∆out−∆in

∆in
). An important detail is that the pack-

ets have to be scheduled at the desired spacing, or else
the measurement is not valid. Fortunately, even on heav-
ily loaded PlanetLab nodes, it is possible to realize the
desired scheduling most of the time.

2.4 Opportunistic Edge Measurements

To provide a comprehensive data set on which to in-
fer current properties of paths to end-hosts, it is nec-
essary for the iPlane to maintain an up-to-date map of
the network that extends to the very edge. However,
the measurement techniques outlined above are unlikely
to work as active measurements do not elicit responses
from most end-hosts. Also, measurements to end-hosts
are frequently misinterpreted by intrusion detection sys-
tems as attacks. Hence, we pursue an opportunistic ap-
proach to data collection—measuring paths to end-hosts
while interacting with them over normal connections.
We participate in the popular file-distribution applica-
tion BitTorrent [11] and gather measurements from our
exchanges with the peers in this swarming system.

BitTorrent is used daily by thousands of end users to
distribute large files. BitTorrent is one example of a
large class of swarming data distribution tools, which
have recently received much attention in the research
community [33, 47, 8]. By participating in several Bit-
Torrent swarms, we have the opportunity to interact with
a large pool of end-hosts. We measure properties of the
paths to peers while exchanging data with them as part
of the swarming system.

We gather two kinds of measurements as part of our
opportunistic measurement infrastructure.

• Packet traces of TCP flows to end-hosts. These traces
provide information about packet inter-arrival times,
loss rates, TCP retransmissions and round trip times.
We use the inter-arrival times between data packets
to measure bottleneck bandwidth capacities, as de-
scribed further in Section 3.

• Traceroutes to end-hosts. When a peer requests a con-
nection with our measurement node, we conduct a
traceroute to that host. We record this data and add
it to our atlas.

2.5 Performance Prediction

Next, we describe how to predict path properties be-
tween an arbitrary pair of nodes based on the above mea-
surements. The prediction proceeds in two steps. First,
we predict the forward and reverse paths connecting the
two nodes. Second, we aggregate measured link-level
properties to predict end-to-end path properties.

6



S D
Actual path = S.D

V1 V2

I
Predicted path = S.I.D

Figure 1: The path from S to D is obtained by composing a
path going into S with a path going into D via an intersection
point I close to S.

Path Prediction We use a technique developed by
Madhyastha et al [38] based on composing observed
path segments to predict unknown paths. Consider a
source S and destination D. If S is a vantage point,
then we simply return the measured path from S to D.
Else, we determine an appropriate intersection point I in
the measured subgraph of the Internet such that—(a) the
AS hop count of the path S.I.D is minimum, and (b) the
latency from S to I is minimum, in that order (refer Fig-
ure 1). The underlying principle is similarity of routes,
i.e., with a sufficiently large number of vantage points,
the path to a destination (D) from any node (S) will be
similar to the path from a vantage point or router (I) lo-
cated nearby. Condition (a) encodes the default path se-
lection criterion used by BGP in the absence of conflict-
ing local preference policies. Furthermore, the extent of
error introduced by policy routing is confined to a small
path segment S.I by virtue of condition (b). Note that
the above technique is guaranteed to return a path. Every
path of the form S.V.D, for each vantage point V , be-
longs to the measured subgraph. The caveat is that some
of these predicted paths may be highly inflated due to the
asymmetric nature of Internet routing. Madhyastha et
al [38] note that adding a small number of measured
paths originating from S significantly improves the pre-
diction accuracy. In the proposed iPlane architecture,
any client interested in greater prediction accuracy can
contribute traceroute measurements. These measure-
ments will then be used only for the purpose of answer-
ing queries issued by the contributing client, thereby
limiting the risk of polluting the iPlane database with
measurements from untrustworthy clients.

Path Properties Given predicted paths as above, we
can estimate end-to-end properties by aggregating link-
level properties. For example, we can estimate the one-
way delay from S to D as the sum of measured link
latencies along the predicted forward path. Round-trip
delays are estimated as the sum of the delays along the
forward and reverse paths. The loss rate on a path is es-
timated as the probability of a loss on any its constituent
links while bandwidth is the minimum value across the
links. We predict TCP throughput and total transfer time
using widely accepted loss-rate-based models by Pad-

hye et al [45] and Cardwell et al [7]. Recently, He et
al [24] argued that the only way to accurately predict
TCP throughput is to send TCP flows and use history-
based predictors. Although we have not implemented
these, our use of passive BitTorrent logs is amenable to
incorporating such predictors. In practice, we do not
need fine-grained link-level information to predict end-
to-end properties. It suffices to know these values for
the path segments used in path composition.
2.6 Query Interface

In this work we focus on techniques that enable infer-
ence of a rich set of structural, routing, and path perfor-
mance properties of the Internet. However, a practical
iPlane service also requires a careful design of the in-
terface exposed to end users and ISPs keeping typical
usage scenarios in mind. In this section, we consider de-
sign strategies for a query interface that will meet these
goals.

The iPlane will export three kinds of interfaces:
1. On-the-fly Queries: The iPlane will enable appli-

cations to issue sophisticated queries over the an-
notated Internet graph on the fly. For example, (i)
get detour(a, b, metric, relay nodes[]) returns the
best relay node to detour traffic from A to B that opti-
mizes metric such as latency, loss rate, bottleneck ca-
pacity, TCP bandwidth etc, (ii) select peer(a, metric,
peer nodes[]) selects the peer closest to a node a with
respect to metric, (iii) select peer(.) or get detour(.)
may also specify a set of metrics seeking to optimize
one and bounding the others. Such queries can be is-
sued either by node a above, or by an overlay service
provider (e.g., a BitTorrent tracker) to connect A to a
good peer.

2. Download the Internet: A user will be able to ob-
tain the annotated graph data structure of the entire
Internet or specific popular regions. For example, a
commercial CDN operating in the US may wish to
analyze the Internet graph in North America to deter-
mine where to locate its caches.

3. Network Newspaper: The iPlane will also support a
publish-subscribe interface that allows users to reg-
ister for information updates about specific portions
of the Internet graph. This interface is most useful
to allow users to subscribe to their “view” of the In-
ternet, i.e., all paths originating from a user to all
BGP atoms, or insert triggers to be notified of spe-
cific events, e.g., when a critical link fails.

The on-the-fly query model has some limitations.
First, each on-the-fly query incurs at least a round-
trip time of querying latency and may not be appropri-
ate for latency-sensitive applications. Second, handling
Internet-scale query traffic especially during periods of
peak load essentially requires re-engineering a system

7



as scalable and robust as DNS, but one that processes
far more sophisticated queries—a formidable prospect.
More realistically, we expect users to “download the In-
ternet” at coarse-grained time-intervals and subscribe to
updates to frequently accessed portions of the Internet
graph.

We currently only support on-the-fly queries; the del-
icate task of defining a precise API is ongoing work.

2.7 Scalability
We now discuss the measurement load required to gen-
erate and maintain a frequently refreshed map of the In-
ternet. First, we note that discovering the routing topol-
ogy is crucial as all of our inference algorithms oper-
ate by predicting the path first. The BFS algorithm de-
scribed in Section 2.3 needs as input traceroute probes
from all vantage points to all address prefixes. How-
ever, we can reduce the running overhead of these tracer-
outes even further so that each link is probed mostly
once. Thus, traceroutes from all vantage points to all
prefixes are performed only once to initialize the system,
while the running overhead of topology maintenance is
small. The algorithm proceeds in two phases. In the
first phase, the centralized agent optimistically assumes
that no changes to the topology occurred since the pre-
vious phase and assigns to each vantage point v a set of
path segments that it should probe using traceroutes; this
assignment is obtained by simply running the frontier
algorithm on the original traceroute graph. 2 All van-
tage points then report their measurements to the cen-
tralized agent. The agent then inspects these measure-
ments to check if the routing topology is consistent, i.e.,
the paths from all vantage points to all prefixes has not
changed since the previous phase. If topology changes
have occurred, the agents computes a difference set of
path segments that are assigned to each vantage point to
complete the routing topology. The stationarity of Inter-
net paths [61] suggests that the number of traceroutes in
the second phase will be small.

With this optimization in place, we now quantify the
measurement load associated with each technique in our
measurement apparatus. The communication load is
summarized in Table 2.7. Our main result is that the
iPlane can produce an updated map of the Internet’s
routing topology with as little as 2Kbps of probe traf-
fic per vantage point, and a map of link-level attributes
with 5Kbps of probe traffic per vantage point, suggest-
ing that the iPlane can refresh the Internet map once
every 3 hours.
3 System Setup and Evaluation
In this section, we present details of our deployment of
the iPlane. We provide an overview of the measure-

2Note that in the earlier discussions, the frontier algorithm was
used on the compact cluster-level graph.

(a)

(b)

Figure 2: Distribution of errors in (a) latency, and (b) loss rate
estimation.

ments we conducted as part of our deployment. We
also outline the tests we conducted to validate various
measurement techniques described in Section 2 and em-
ployed by the iPlane.

3.1 Measuring the Core

We performed traceroutes from 147 PlanetLab nodes in
distinct sites to map the topology of the core of the In-
ternet. The targets for our traceroutes were .1 addresses
in each of 47, 983 atoms determined from the Route-
Views BGP snapshot. We probed all interfaces observed
in our measured topology with UDP and ICMP probes,
and clustered the interfaces based on their responses.

Once a map of the Internet’s core was gathered, we
employed our “frontier” BFS algorithm to determine
paths to be probed from each of the 147 PlanetLab
nodes. Each vantage point was assigned to measure only
around 1500 paths. Loss rate, capacity, and available
bandwidth were measured along each of the assigned
paths. These measurements were then assembled to de-
termine these properties for every cluster-level link that
occurs in our measured topology.

To validate the predictions performed by the iPlane
using the technique outlined in Section 2.5, we com-
pared properties of paths between PlanetLab nodes with
the corresponding values predicted by the iPlane. We
considered paths between all pairs of PlanetLab nodes
for validation, and measured the latency and loss rate
along these paths. To predict the latency or loss rate

8



Measurement Task Tool/Technique Frequency Probing complexity/rate
Topology Mapping traceroute Infrequently (over

a day)
1000 vantage points ×
50K atoms — 5Kbps

Clustering mercator for alias resolution, ICMP-ECHO probes
for reverse TTLs

Infrequently (over
a day)

100 vantage points ×
300K interfaces — 2Kbps

Capacity measurements “frontier” BFS algorithm applied to cluster-level
topology for path assignment, pathchar for band-
width capacity

Infrequently (over
a day)

200 vantage points ×
1500 paths — 3Kbps

Loss rate and available
bandwidth measurements

“frontier” BFS algorithm for path assignment, tulip
for loss rate, spruce for available bandwidth

Continuous (every
3 hours)

200 vantage points ×
1500 paths — 5Kbps

Topology Update “frontier” BFS algorithm applied to router-level
topology

Continuous (every
3 hours)

200 vantage points× 60K
links — 2Kbps

Table 2: Complexity of measurements techniques used in the iPlane.

between a pair of nodes, we assumed that we only had
10 traceroutes from either node to aid in our prediction.
The remaining 145 nodes were considered to be our van-
tage points. Each such experiment is independent to en-
sure no mixing of the measurement and validation set.
Figure 2 plots the difference of latency and loss rate es-
timates made by the iPlane as compared to the true val-
ues. For 62% and 66% of the paths, the iPlane’s latency
estimates have error less than 20ms, and loss rate esti-
mates have error less than 10%, respectively.

3.2 Measurements to End Hosts

To measure the edges of the Internet, we deployed our
modified BitTorrent client on 367 PlanetLab nodes. As
described in Section 2.4, our infrastructure for measur-
ing the edge also involves the millions of users who fre-
quently participate in the BitTorrent filesharing appli-
cation. Every hour, we crawl well-known public web-
sites that provide links to several thousand .torrent
files to put together a list of 120 popular swarms. The
number of swarms for consideration was chosen so as to
ensure the participation of several of our measurement
vantage points in each swarm. The number of Planet-
Lab nodes designated to a swarm is proportional to the
number of peers participating in it.

Each PlanetLab node runs a BitTorrent client that we
have modified in several ways to aid in our measure-
ments. First, the modified client does not write any data
that it downloads onto disk. The client keeps only a
small cache of recently received pieces in memory. Data
in this cache is offered for upload so that we do not have
to depend only on peers optimistically unchoking us to
setup connections with them. Second, our client sev-
ers connections once we have exchanged 1MB of data,
which suffices for purposes of our measurements. Fi-
nally, we introduce a shadow tracker—a database that
coordinates measurements among all PlanetLab nodes
participating in a single swarm. Instead of operating
only on the set of peers returned by the original tracker
for the swarm, our modified client also makes use of

Figure 3: Cumulative opportunistic measurements obtained
over a 48 hour period. Both the raw number of connections
and those connections that produced actual measurements are
shown.

peers that it learns from the shadow tracker. Each client
reports all peers it learns from the central tracker to
the shadow tracker, and performs two queries on the
shadow tracker for preferred measurement tasks. First,
clients attempt to connect and exchange data with peers
that have been observed but not yet measured. Second,
clients then measure nodes that have been previously
measured only from other vantage points. These modi-
fications are crucial for measurement efficiency and di-
versity since typical BitTorrent trackers permit request-
ing only a restricted set (50–100) of participating peers
once every 30 minutes or more. Such short lists are ex-
hausted by our modified client quickly.

The rate at which we gather increasing measurements
is summarized in Figure 3. During a 48 hour period, our
measurement nodes have connected to 301, 595 distinct
IPs. The number of unique IPs for which we gathered
upload bandwidth capacity estimates were 70, 428. We
connected to IPs in 3, 591 distinct ASs and 19, 639 dis-
tinct BGP prefixes. Our study spans end-hosts in 160
different countries.

The success of these measurements depends greatly
on the popularity of the swarms in which we participate.
As a result, our measurement rate fluctuates as popular-
ity changes. These initial results show the promise of

9



Figure 4: CDF of the ratio of maximum to minimum mea-
sured bandwidth capacity for /24 address blocks with multiple
measurements.

S3

Figure 5: CDFs of estimated bandwidth capacity on paths
between PlanetLab nodes as measured by iPlane and S3.

opportunistic measurements obtained from peer-to-peer
services, and are applicable even if services other than
BitTorrent become more popular in the future.

3.3 Clustering of end-hosts

Although the data produced by our opportunistic strat-
egy is extensive, it is by no means complete. We rely
on clustering based on IP prefixes to generalize results
for prefixes to which we have only a few measurements.
In Figure 4, we explore the validity of this clustering
assumption. For every /24 prefix in which we have
measurements to multiple end-hosts from the same van-
tage point, we compute the ratio of the maximum to the
minimum measured bandwidth capacity. For 70% of
/24 prefixes, the capacities measured differ by less than
25%. During our 48 hour measurement period, we per-
formed measurements to end-hosts in 61, 294 /24 pre-
fixes, which are representative of measurements to over
15 million end-hosts.

3.4 Validation of capacity measurements

Our edge bandwidth capacity measurement relies on
inter-arrival times observed between data packets in the
connections we maintain with BitTorrent peers. We im-
plemented the multiQ [32] technique to infer end-to-end
bottleneck bandwidth capacity from these inter-arrival

Figure 6: CDF of download times from replicas in the CDN
chosen by the iPlane and from replicas closest in terms of la-
tency. Each download time is the median of 5 measurements.

times. Although the performance of multiQ presented
in previous studies is encouraging, with 85% of mea-
surements based on data packets within 10% of the true
bottleneck capacity, the unique properties of PlanetLab
hosts motivated us to provide further validation. To ver-
ify that multiQ provides reasonable data in the presence
of cross traffic, machines under heavy load and short
TCP traces, we compared our measurements with those
made by S3 [15].

We setup a test torrent and had our measurement
clients running on 357 PlanetLab nodes participate in
this torrent. From this setup, we opportunistically mea-
sured the bottleneck bandwidth capacities between these
PlanetLab nodes. The dataset we gathered from this ex-
periment had 10, 879 paths in common with measure-
ments made by S3 on the same day. Figure 5 compares
the bandwidth capacities measured by the two meth-
ods. The measurements made by the iPlane closely
match those of S3 for capacities less than 10 Mbps. At
higher bandwidth capacities, they are only roughly cor-
related. We attribute this difference to the use of user-
level timestamps by Pathrate, the capacity measurement
tool used by S3. User-level timestamps for high capac-
ity paths are likely to be inaccurate in the highly loaded
PlanetLab environment. Our measurement setup makes
use of kernel-level timestamps and is therefore less sen-
sitive to high CPU load.

4 Application Case Studies
In this section, we show how popular applications can
use the iPlane. We evaluate three distributed services for
potential performance benefits from using the iPlane.

4.1 Content Distribution Network

Content distribution networks (CDNs) such as Akamai,
Codeen and Coral [1, 59, 19] redirect clients to a nearby
replica. The underlying assumption is that latency de-
termines network performance.

10



Figure 7: CDF of BitTorrent download completion times with
and without informed peer selection at the tracker.

However, there is more to network performance than
just latency. Models by Padhye et al [45] and Card-
well et al [7] indicate an inverse square root dependence
on loss rate of TCP throughput and total transfer time.
Even for small web documents, a loss of a SYN or a
packet during slow start can considerably inflate trans-
fer time. A CDN using the iPlane can track the latency,
loss rate, and bottleneck capacity from each replica to
the rest of the Internet. The CDN can then arrange for
its name servers to redirect the client to optimize perfor-
mance using the metric and model of its choice.

We evaluate potential performance gains that a CDN
using the iPlane can provide to clients. We emulate a
small CDN comprising 30 randomly chosen PlanetLab
nodes. Each node serves 3 files of sizes 10KB, 100KB
and 1MB. We use 141 other PlanetLab nodes to emulate
clients. Each client downloads all 3 files from the replica
that provides the best TCP throughput as predicted by
the PFTK model [45] using the iPlane’s estimates of la-
tency and loss rate. Each client also downloads the 3
files from the replica closest in terms of actual measured
latency. Note that this comparison is against an optimum
that cannot be achieved without extensive probing. A
real CDN would only have estimated latencies available.
Figure 6 compares the download times experienced by
the clients in either case. Choosing the replica for opti-
mized TCP throughput based on the iPlane’s predictions
provides better performance than choosing the optimal
replica in terms of latency. Though these results are only
indicative, they suggest that CDNs could provide better
performance by utilizing both latency and loss rate in-
formation exported by the iPlane instead of optimizing
latency alone, as in OASIS [20] and other systems.

4.2 BitTorrent

We show how the iPlane can enable informed peer se-
lection in popular file swarming systems like BitTor-
rent. In current implementations, a centralized BitTor-
rent tracker serves each client a random list of peers.
Each client enforces a tit-for-tat bandwidth reciprocity

mechanism that incents users to contribute more upload
bandwidth to obtain faster downloads. However, the
same mechanism also serves to optimize path selection
at a local level—peers simply try uploading to many
random peers and eventually settle on a set that max-
imizes their download rate. Because reasoning about
peer quality occurs locally at each client, each client
needs to keep a large pool of directly connected peers
(60–100 for typical swarms) in order to achieve good
performance even though at any time only a few of these
(10–20) are actively engaged in data transfer with the
client. This overhead is fundamental: with only local in-
formation, peers cannot reason about the value of neigh-
bors without actively exchanging data with them. This
lack of information is typical of popular peer-to-peer
systems, and results in increased overhead and delayed
convergence of path selection. Broadly, the iPlane en-
ables a clean separation of the path selection policy from
the incentive mechanism in peer-to-peer systems.

We built a modified tracker that uses the iPlane for
informed peer selection. Instead of returning random
peers, the tracker uses the iPlane’s loss rate and latency
estimates to infer TCP throughput [45]. It then returns a
set of peers to clients, half of which have high predicted
TCP throughput and the rest are randomly selected. The
random subset of peers are included to prevent the over-
lay from becoming disconnected (e.g., no North Ameri-
can node preferring a peer in Asia).

We used our modified tracker to coordinate the distri-
bution of a 50 megabyte file over 117 PlanetLab nodes
located in North America, Europe, and Asia. We mea-
sured the time taken by each of the peers to download
the file after the seed was started. Figure 7 compares the
download times observed against those of an unmodified
tracker. Informed peer selection causes 50% of peers to
have significantly better download times. Although pre-
liminary, these performance numbers for BitTorrent are
encouraging. We believe that better use of information
from the iPlane could lead to even further improvements
in performance. Our selection of 50% as the fraction of
random peers was arbitrary, and we are currently investi-
gating the tradeoff between robustness and performance
in BitTorrent.

4.3 Voice Over IP
Voice over IP (VoIP) is a rapidly growing application
that requires paths with low latency, loss and jitter for
good performance. Several VoIP implementations such
as Skype [53] require relay nodes to connect end-hosts
behind NATs and firewalls. Choosing the right relay
node is crucial to providing acceptable user-perceived
performance. Reducing end-to-end latency is impor-
tant since humans are sensitive to delays above a thresh-
old. Low loss rates improves sound quality and reduces
throughput consumed by compensating codecs. Metrics

11



(a)

(b)
Figure 8: Comparison of (a) loss rate, and (b) jitter with and
without use of the iPlane for end-to-end VoIP paths.

of user-perceived quality such as mean opinion score
(MOS) [57] have been shown to be highly correlated
with QoS models like the E-model [17] that depend
on loss rate and end-to-end delay among other factors.
Thus, VoIP applications can benefit from the iPlane’s
predictions of latency and loss rate in choosing the best
possible relay node.

To evaluate the iPlane’s ability to successfully pick
good relay nodes, we emulated VoIP traffic patterns on
PlanetLab. We considered 384 pairs of PlanetLab nodes,
chosen at random, as being representative of end-hosts
participating in a VoIP call. Between each pair, we emu-
lated a call by sending a 10 KBps UDP packet stream via
another PlanetLab node chosen as the relay node. We
tried 4 different relay options for each pair chosen based
on (i) the iPlane’s estimates of latency and loss rate, (ii)
latency to the source, (iii) latency to the destination, and
(iv) random choice. The iPlane-informed choice was
obtained by first querying for the 10 relay options that
minimize end-to-end loss and then, choosing the one
that minimized end-to-end delay among these options. 3

Each emulated call lasted for 60 seconds, and the end-
to-end loss rate and latency were measured. Figure 8(a)
shows that significantly lower loss rates were observed
along relay paths chosen based on the iPlane’s predic-
tions. Additionally, Figure 8(b) shows that the iPlane

3The E-model uses a metric that is roughly c1.ln(1+c2.L)+c3.D
for loss rate L and delay D < 177.3ms. We use the above simpler
formula as we do not use compensating codecs.

also helps to reduce jitter, which we computed as the
standard deviation of end-to-end latency. These results
demonstrate the potential for the use of the iPlane in
VoIP applications. We are in the process of repeating
this experiment running Skype coupled with the Oasis
network stack [39] and employing the E-model to select
and validate paths.

5 Related Work
The iPlane bridges and builds upon ideas from network
measurement, performance modeling, Internet tomog-
raphy, and recent efforts towards building a knowledge
plane for the Internet. We believe that an Internet-scale
instantiation of the iPlane is greater than the sum of its
parts, and relate individual contributions to prior work
in the respective areas.

Information Plane Clark et al [10] pioneered the
broad architectural vision of a knowledge plane to
build large-scale, self-managing and self-diagnosing
networks based on tools from AI and cognitive science.
Several research efforts have since concretely addressed
pieces of this problem.

Several existing systems focus primarily on the query
processing engine of a network information plane.
Sophia [60] is an information plane for large-scale net-
worked systems such as PlanetLab that uses declara-
tive programming to evaluate logical expressions in a
distributed manner. PIER [27] presents a distributed
query processing engine for monitoring networks and
distributed databases. IrisNet [21] is an information
plane for a “sensor Web” of end hosts such as PCs
and Webcams and is based on a hierarchical data model
using XML. SWORD [44], HP’s OpenView [43] and
IBM’s Tivoli [58] are other such systems that focus on
the query processing aspect of the system.

Furthermore, all of the above research as well as
commercial systems manage information that represents
nodes (e.g., PlanetLab nodes, routers in an ISP, or sen-
sor devices) under control of the information plane. In
contrast, our focus is on an information plane for the
Internet spanning thousands of administrative domains
and millions of routers and end-hosts with only a small
number of vantage points under our control.

We discuss related networking research next.
Link Metrics IDMaps [18] is an early example of a

network information service that estimates the latency
between an arbitrary pair of nodes using a small set
of vantage points as routing landmarks. Subsequently,
Ng et al [42] discovered that Internet distances can be
modeled as a k-dimensional Euclidean space. Such em-
beddings can be used to predict latencies between a
large number of nodes by measuring latencies from a
small number of vantage points to these nodes. Sev-
eral refinements to this basic methodology such as Vi-

12



valdi [13], PIC [12], Tang et al [56] Lighthouse [50],
Lim et al [36], Shavitt et al [52] followed. Merid-
ian [4] enables closest replica selection using an algo-
rithm based on multi-resolution proximity rings. Their
analysis and intuition assumes an underlying growth-
restricted metric space, i.e., distances obey the triangle
inequality and, informally, the number of nodes in any
ring is not too much higher than the number of nodes in
a ring half its size. A key limitation of all of these tech-
niques is that they treat the Internet as a black box and
are only predictive, i.e., they do not explain why, if at
all, their predictions are correct. As a result, they have
serious systematic deficiencies, e.g., a significant frac-
tion of Internet paths are known to have detours [51],
however, metric embeddings like above, by definition,
obey the triangle inequality and will predict no detours.

We use an explanatory path prediction model devel-
oped by Madhyastha et al[38], however they only con-
sider latency prediction. Yu et al [26] developed a
technique to estimate available bandwidth between ar-
bitrary node pairs based of splicing observed path seg-
ments assuming that bottlenecks occur close to the ends.
The OASIS [20] system by Freedman et al provides an
overlay-based anycast service by mapping dynamically-
sized address prefixes to geographic locations based
on their proximity to a vantage point. All of these
experiences and others [37] emphasize limitations of
embedding-based techniques and the need for explana-
tory models to estimate latency as well as more sophis-
ticated path metrics.

This paper builds upon earlier work by Madhyastha et
al [38] in the following ways. First, we develop tech-
niques to predict loss rate, capacity, and available band-
width in addition to latency. Second, we develop an im-
proved clustering algorithm to resolve aliases and detect
PoPs. Finally, we design and implement the iPlane as a
service compared to the measurement study in [38] and
evaluate it using application case studies. We are in the
process of integrating a complete query interface to the
iPlane and the Oasis access system [39] at the user end.

Network Tomography Chen et al [9] proposed an al-
gebraic approach to infer loss rates on paths between all
pairs of nodes based on measured loss rates on a subset
of the paths. Duffield et al [6, 16] proposed a multicast-
based approach to infer link loss rates by observing loss
correlations between receivers. Padmanabhan et al [46]
proposed a Bayesian inference technique to infer lossy
links by conducting passive measurements at a Web
server in conjunction with active traceroutes. Our use of
BitTorrent client logs can be viewed as an Internet-scale
distributed extension of this methodology. Jaiswal et
al [30] propose a “measurements-in-the-middle” tech-
nique to infer end-to-end path properties using passive
measurements conducted at a router. Such inference

techniques can be integrated into an iPlane to which
both end-users and ISPs jointly contribute for mutual
benefit. In contrast to these techniques, tomography is
only one component of the iPlane—we also need to pre-
dict topology and performance between arbitrary node
pairs in the Internet.

The Rocketfuel [54] and Doubletree [14] systems es-
timate ISP topologies by performing traceroutes from a
small set of vantage points and efficiently pruning re-
dundant traceroutes. Our frontier (Section 2.3) algo-
rithm to prune traceroutes and loss rate probes is similar
in spirit and drastically reduces the running overhead of
topology discovery and tomography.

Failure Recovery The PlanetSeer [62] monitoring
system by Zhang et al detects and characterizes network
path anomalies. Their methodology is based on pas-
sive monitoring of traffic at nodes offering a wide-area
service (such as content distribution) combined with ac-
tive traceroute probes from different nodes to character-
ize the anomaly. For each source-destination pair, they
maintain a reference (forward) path and compare it to
the reachable prefix of the path after a failure to infer
the cause. The SOSR [23] system by Gummadi et al
suggests that a simple randomized strategy of choosing
one of a small number (about 4) of detour nodes suffices
to recover from most recoverable failures, i.e., failures
that detour nodes can circumvent. Both PlanetSeer and
SOSR suggest that roughly half of the failures are recov-
erable. In comparison, the iPlane focuses on predictable
performance metrics as opposed to failure analysis or re-
covery.

6 Conclusion
The performance and robustness of overlay services crit-
ically depends on the choice of end-to-end paths used
as overlay links. Today, overlay services face a tension
between minimizing redundant probe overhead and se-
lecting good overlay links. More importantly, they lack
accurate method to infer path properties between an ar-
bitrary pair of nodes not under their control. In this pa-
per, we showed that it is possible to accurately infer so-
phisticated path properties between an arbitrary pair of
nodes using a small number of vantage points and exist-
ing infrastructure. The key insight is to systematically
exploit the Internet’s structural properties. Based on this
observation, we built the iPlane service and showed that
it is feasible to infer a richly annotated link-level map
of the Internet’s routing topology once every hour. Our
case studies suggest that the iPlane can serve as a com-
mon information plane for a wide range of distributed
services such as content distribution, file swarming, and
voice-over-IP.

References
[1] Akamai, Inc. home page. http://www.akamai.com.

13



[2] D. G. Anderson, H. Balakrishnan, M. F. Kaawhoek, and R. Mor-
ris. Resilient Overlay Networks. In SOSP, 2001.

[3] S. Bellovin. A best-case network performance model. Technical
report, ATT Research, 1992.

[4] E. G. S. Bernard Wong, Aleksandrs Slivkins. Meridian: A
lightweight network location service without virtual. In SIG-
COMM, 2005.

[5] A. Broido and kc claffy. Analysis of routeViews BGP data: pol-
icy atoms. In Network Resource Data Management Workshop,
2001.

[6] R. Caceres, N. G. Duffield, J. Horowitz, and D. F. Towsley.
Multicast-based inference of network internal loss characteris-
tics. IEEE Transactions on Information Theory, 1999.

[7] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP la-
tency. In INFOCOM, 2000.

[8] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Row-
stron, and A. Singh. SplitStream: high-bandwidth multicast in
cooperative environments. In SOSP, 2003.

[9] Y. Chen, D. Bindel, H. Song, and R. H. Katz. An algebraic
approach to practical and scalable overlay network monitoring.
In SIGCOMM, 2004.

[10] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski.
A knowledge plane for the Internet. In SIGCOMM, 2003.

[11] B. Cohen. Incentives build robustness in BitTorrent. In
P2PEcon, 2003.

[12] M. Costa, M. Castro, A. Rowstron, and P. Key. PIC: Practical
Internet coordinates for distance estimation. In ICDCS, 2004.

[13] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A de-
centralized network coordinate system. In SIGCOMM, 2004.

[14] B. Donnet, P. Raoult, T. Friedman, and M. Crovella. Efficient
algorithms for large-scale topology discovery. In SIGMETRICS,
2005.

[15] C. Dovrolis, P. Ramanathan, and D. Moore. Packet dispersion
techniques and a capacity estimation methodology. Transactions
on Networking, 2004.

[16] N. G. Duffield, F. L. Presti, V. Paxson, and D. F. Towsley. Infer-
ring link loss using striped unicast probes. In INFOCOM, 2001.

[17] The E-model, a computational model for use in transmission
planning. ITU-T Recommendation G.107 http://www.itu.int/.

[18] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. IDMaps: A global Internet host distance estimation
service. Transactions on Networking, 2001.

[19] M. J. Freedman, E. Freudenthal, and D. Mazières. Democratiz-
ing content publication with Coral. In NSDI, 2004.

[20] M. J. Freedman, K. Lakshminarayanan, and D. Mazieres. OA-
SIS: Anycast for any service. In NSDI, 2006.

[21] P. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. IrisNet:
An architecture for a world-wide sensor web. IEEE Pervasive
Computing, 2(4), 2003.

[22] R. Govindan and H. Tangmunarunkit. Heuristics for Internet
map discovery. In INFOCOM, 2000.

[23] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy,
and D. Wetherall. Improving the reliability of Internet paths with
one-hop source routing. In OSDI, 2004.

[24] Q. He, C. Dovrolis, and M. Ammar. On the predictability of
large transfer TCP throughput. In SIGCOMM, 2005.

[25] N. Hu and P. Steenkiste. Evaluation and characterization of
available bandwidth probing techniques. IEEE JSAC Special
Issue in Internet and WWW Measurement, Mapping, and Mod-
eling, 21(6), 2003.

[26] N. Hu and P. Steenkiste. Exploiting Internet route sharing for
large scale available bandwidth estimation. In IMC, 2005.

[27] R. Huebsch, J. M. Hellerstein, N. L. Boon, T. Loo, S. Shenker,
and I. Stoica. Querying the Internet with PIER. In VLDB, 2003.

[28] V. Jacobson. Pathchar. ftp://ftp.ee.lbl.gov/pathchar.
[29] M. Jain and C. Dovrolis. End-to-end available bandwidth:

measurement methodology, dynamics, and relation with TCP
throughput. In SIGCOMM, 2002.

[30] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley.
Formal analysis of passive measurement inference techniques.
In INFOCOM, 2006.

[31] R. Kapoor, L.-J. Chen, L. Lao, M. Gerla, and M. Y. Sanadidi.
CapProbe: a simple and accurate capacity estimation technique.
In SIGCOMM, 2004.

[32] S. Katti, D. Katabi, C. Blake, E. Kohler, and J. Strauss. MultiQ:
Automated detection of multiple bottleneck capacities along a
path. In IMC, 2004.

[33] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet:
high bandwidth data dissemination using an overlay mesh. In
SOSP, 2003.

[34] K. Lai and M. Baker. Nettimer: A tool for measuring bottleneck
link bandwidth. In USITS, 2001.

[35] S. Lee, P. Sharma, S. Banerjee, S. Basu, and R. Fonseca. Mea-
suring bandwidth between planetlab nodes. In PAM, 2005.

[36] H. Lim, J. C. Hou, and C.-H. Choi. Constructing an Internet

coordinate system based on delay measurement. In IMC, 2003.
[37] E. K. Lua, T. Griffin, M. Pias, H. Zheng, and J. Crowcroft. On

the accuracy of embeddings for Internet coordinate systems. In
IMC, 2005.

[38] H. V. Madhyastha, T. E. Anderson, A. Krishnamurthy, N. T.
Spring, and A. Venkataramani. An explanatory model of path
latency. Technical report, University of Washington, Computer
Science and Engineering, 2006.

[39] H. V. Madhyastha, A. Venkataramani, A. Krishnamurthy, and
T. E. Anderson. Oasis: An overlay-aware network stack. OSR,
2006.

[40] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. User-
level Internet path diagnosis. In SOSP, 2003.

[41] D. Meyer. RouteViews. http://www.routeviews.org.
[42] T. S. E. Ng and H. Zhang. Predicting Internet network distance

with coordinates-based approaches. In INFOCOM, 2002.
[43] OpenView home page. http://www.managementsoftware.hp.com/.
[44] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Scal-

able wide-area resource discovery. Technical Report Technical
Report CSD04 -1334, University of California Berkeley, Berke-
ley, CA, USA, 2004.

[45] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP
throughput: A simple model and its empirical validation. CCR,
28(4), 1998.

[46] V. N. Padmanabhan, L. Qiu, and H. J. Wang. Passive network
tomography using bayesian inference. In IMW, 2002.

[47] V. Pai, K. Tamilmani, V. Sambamurthy, K. Kumar, and A. Mohr.
Chainsaw: Eliminating trees from overlay multicast. In IPTPS,
2005.

[48] A. Parker. CacheLogic. http://www.cachelogic.com/research/slide1.php.
[49] L. peterson. Personal communication.
[50] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti. Light-

houses for scalable distributed location. In IPTPS, 2003.
[51] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell,

A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and
J. Zahorjan. Detour: a case for informed Internet routing and
transport. IEEE Micro, 19(1), 1999.

[52] Y. Shavitt and T. Tankel. On the curvature of the Internet and
its usage for overlay construction and distance estimation. In
INFOCOM, 2004.

[53] Skype home page. http://www.skype.com.
[54] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measur-

ing ISP topologies with Rocketfuel. Transactions on Network-
ing, 2004.

[55] J. Strauss, D. Katabi, and F. Kaashoek. A measurement study of
available bandwidth estimation tools. In IMC, 2003.

[56] L. Tang and M. Crovella. Virtual landmarks for the Internet. In
IMC, 2003.

[57] S. Tao, K. Xu, A. Estepa, T. Fei, L. Gao, R. Guerin, J. Kurose,
D. Towsley, and Z.-L. Zhang. Improving VoIP quality through
path switching. In INFOCOM, 2005.

[58] IBM Tivoli software home page.
http://www.ibm.com/software/tivoli.

[59] L. Wang, K. Park, R. Pang, V. S. Pai, and L. L. Peterson. Relia-
bility and security in the CoDeeN content distribution network.
In USENIX, 2004.

[60] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An infor-
mation plane for networked systems. In HotNets-II, 2003.

[61] Y. Zhang, V. Paxson, and S. Shenker. The stationarity of In-
ternet path properties: Routing, loss, and throughput. Tech-
nical report, AT&T Center for Internet Research at ICSI,
http://www.aciri.org/, 2000.

[62] M. Zhao, C. Zhang, V. Pai, L. Peterson, and R. Wang. Plan-
etSeer: Internet path failure monitoring and characterization in
wide-area services. In OSDI, 2004.

[63] H. Zheng, E. K. Lua, M. Pias, and T. Griffin. Internet routing
policies and round-trip-times. In PAM, 2005.

14


