RC 21844 (98315) 28 September 2000 Computer Science

|BM Research Report

Using Control Theory to Achieve Service
L evel Objectivesin Performance M anagement

Sujay Parekh, Joe Hellerstein, T. S. Jayram, Joe Bigus

IBM T. J. Watson Research Center
P. O. Box 218
Y orktown Heights, NY 10598

Neha Gandhi, Dawn Tibury
University of Michigan

== =— Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOT I CE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research

Center ,
P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet athttp://domino.watson.ibm.com/library/CyberDig.nsf/home .

Using Control Theory to Achieve Service Level
Objectives In Performance Management

Sujay Parekh Neha Gandhi
IBM University of Michigan
sujayQus.ibm.com gandhin@engin.umich.edu
Joe Hellerstein Dawn Tilbury
IBM University of Michigan
hellers@us.ibm.com tilbury@umich.edu
T. S. Jayram Joe Bigus
IBM IBM
jayram@us.ibm.com bigus@us.ibm.com

September 19, 2000

Abstract

A widely used approach to achieving service level objectives for a target
system (e.g., an email server) is to add a controller that manipulates
the target system’s tuning parameters. We describe a methodology for
designing such controllers for software systems that builds on classical
control theory. The classical approach proceeds in two steps: system
identification and controller design. In system identification, we construct
mathematical models of the target system. Traditionally, this has been
based on a first-principles approach, using detailed knowledge of the target
system. Such models can be difficult to build, and too complex to validate,
use, and maintain. In our methodology, a statistical (ARMA) model is fit
to historical measurements of the target being controlled. These models
are easier to obtain and use and allow us to apply control-theoretic design
techniques to a larger class of systems. When applied to a Lotus Notes
groupware server, we obtain model fits with R? no lower than 75% and
as high as 98%.

In controller design, an analysis of the models leads to a controller
that will achieve the service level objectives. We report on an analysis of
a closed-loop system using an integral control law with Lotus Notes as the
target. The objective is to maintain a reference queue length. Using root-
locus analysis from control theory, we are able to predict the occurrence
(or absence) of controller-induced oscillations in the system’s response.
Such oscillations are undesirable since they increase variability, thereby
resulting in a failure to meet the service level objective. We implement
this controller for a real Lotus Notes system, and observe a remarkable

correspondence between the behavior of the real system and the predic-
tions of the analysis. This allows us to select the proper parameter for
the controller from the analysis alone.

1 Introduction

Wide-spread reliance on IT systems has focused increasing attention on service
level management, especially achieving response time and throughput objec-
tives. A commonly used approach is to take an existing target system and
add a controller that has access to the metrics and tuning parameters of the
system. Based on the feedback information present in the metrics, the con-
troller manipulates the tuning parameters to achieve the desired service level
objectives. Examples of such closed-loop software systems abound: the net-
work dispatcher [9, 8], which adjusts load balancing parameters in clusters of
web servers; the Multiple Virtual Storage (MVS) workload manager [1], which
adjusts memory allocations and other operating system tuning parameters to
achieve response time and throughput objectives; and fair share schedulers [6],
which adjust Unix mice tuning parameter to achieve fractional allocations of
CPU.

While considerable attention has been focused on the software mechanisms
needed to enable closed-loop systems (e.g., instrumentation and tuning control
access), much less attention has been paid to a rigorous evaluation of the be-
havior of the controller. Computer scientists most frequently use simulations to
understand and evaluate controller behavior. However, simulation studies can
be time-consuming, expensive, and error prone.

The design of closed-loop or feedback control systems is also studied ex-
tensively in other engineering disciplines, such as mechanical and aeronautical
engineering. In these engineering disciplines, designers most often employ linear
control theory [14], which uses input-output relationships of linear systems to
study controller properties such as: stability (finite inputs produces finite out-
puts), bias (how well objectives are achieved), rise time (how quickly the system
responds to a change in objective), and settling time (how long until steady state
is reached). This theory provides sound and rigorous mathematical principles
for the design and analysis of closed-loop systems.

The goal of our work is to develop a methodology for, and assess the value
of, applying control theory to the evaluation of controllers used for service level
management of software systems. While this is not a novel idea in itself, we
believe that our approach enables the application of these techniques to a wider
variety of systems than the traditional approach. In this paper, we also demon-
strate the appeal and power of a control theoretic analysis on a controller for
doing admission control of a Lotus Notes workgroup server.

A primary concern with applying linear control theory to computer sys-
tems is that the assumption of a linear system is a poor fit to the realities of
queueing in computer systems, which are highly non-linear. While there is a
well-developed theory of non-linear control, it is much more difficult to apply,

does not generalize across systems and provides much less insight. Our perspec-
tive is more pragmatic. We pose the question “Can we construct and analyze
the properties of real-life closed-loop software systems using the linear system
assumption?” Even in mechanical engineering, a discipline where control the-
ory is well-established, linearity often does not hold (e.g., turbulent fluid flows).
Rather, the success of linear control theory has resulted from creativity in its
application.
The classical controller design methodology consists of two steps:

System identification: Construct a transfer function which relates past
and present input values to past and present output values. These transfer
functions constitute a model of the system.

Controller design: Based on properties of the transfer function and the de-
sired objectives, a particular control law is chosen. Techniques from
control theory are used to predict how the system will behave once the
chosen controller is added to it.

Previous work on the application of control theoretic techniques to computer
systems ([5, 10, 13, 11, 16] to name a few) has generally used first principles to
perform system identification. For example, the congestion control work typi-
cally constructs state transition equations based on detailed knowledge of (or
assumptions about) the protocol, workload, losses, etc. Unfortunately, there
are several short-comings with a first principles approach. First, for complex
systems, it is difficult to construct a model from first principles, so often some
unrealistic assumptions are made. This difficulty has been a major barrier to ap-
plying control theory to computer systems. Second, the first-principles models
often employ detailed information about the target system. Since these details
may change frequently (e.g., with each software release), a first-principles ap-
proach may require expert involvement on an on-going basis. This is expensive
and often impractical. Third, the first-principles approach often does not ad-
dress model validation. Without model validation, it is unclear how the insights
obtained using control theory relate to the system being studied.

Rather than proceeding from first principles, we advocate an empirical ap-
proach to system identification. Here, the input and output parameters need
to be identified, just as before. But rather than deriving the transfer functions
based on first-principles knowledge, an autoregressive, moving average (ARMA)
model is constructed, and standard statistical techniques are employed to esti-
mate the ARMA parameters. This approach treats the system as a black box,
and thus is not affected by system complexity or lack of expert knowledge. More-
over, changes in the target system can easily be accommodated by re-estimating
model parameters. In this paper, we show that the approach works well for the
Notes server: R? is no lower than 75%, and is as high as 98%.

For the controller law, we use a saturated integral controller. The behavior
of such a controller is determined by one parameter, called the gain. Control
theory tells us that the gain should be large to obtain a fast response to changing
inputs, but if it is too large, it can lead to undesirable behaviors in the system,

such as controller induced oscillations. The goal of the analysis, then, is to
identify how large gain can be without causing these undesirable behavoirs.
The particular form of the models allows us to use standard techniques from
control theory to perform the analysis. Our results demonstrate that there is
a remarkable correspondence between the predictions made by control theory
and the observed behavior of an actual Notes server. In particular, we are able
to identify the feasible gain values that satisfy the control objectives.

The remainder of this paper is organized as follows. Section 2 describes
the Notes server and how this target system is embedded into a closed-loop
to achieve service level objectives. Section 3 details our approach to system
identification. Section 4 discusses controller design and uses empirical studies
to access the accuracy of insights obtained from control theory. We provide a
summary and future work discussion in Section 5. Finally, Section 6 discusses
related work.

2 Lotus Notes and Its Closed-Loop Control

This section describes relevant features of the Lotus Notes server and provides
more details on how closed-loop control is obtained for this target system.

Architecturally, Lotus Notes is a client-server system. Client software con-
verts high-level user activity (mouse clicks, etc) into remote procedure calls
(RPCs) that are sent to the server. The server maintains a queue of these in-
progress RPCs. Once an RPC is serviced, an entry is made in the server log,
and the appropriate response is sent to the client. Clients operate in a syn-
chronous manner — waiting for the previous request to complete before sending
a new request. The client/server protocol is session-oriented. An new session is
begun after a session-initiating RPC is accepted by the server. We use the term
offered load to refer to the load imposed on the server by client requests. In
the case of homogeneous clients, offered load is expressed in terms of the number
of clients. Our service level metric is the length of the queue of in-progress RPC
requests, hereafter just referred to as queue length.

The tuning parameter SERVER MAXUSERS regulates the number of users al-
lowed to access the server at any time. This is a session-level control (as opposed
to packet-level RPC controls). It operates by rejecting session-initiating RPCs
once the number of connected users exceeds SERVER_MAXUSERS. As such, this pa-
rameter has a somewhat complex effect on queue length. In particular, changing
SERVER_MAXUSERS has no effect until a session-initiating RPC arrives, so existing
sessions are not affected.

Unfortunately, we do not have direct measurements of RPC rates and queue
length. Rather, we obtain these values from a measurement sensor that samples
the server log at a rate of once a minute. The queue length computation is
performed by counting RPCs that were active in the previous time quantum.
However, since RPCs currently waiting in the queue are not present in the log,
this approach underestimates the true queue length and true RPC rates. That
is, measurement is lossy. We can improve the approximation by delaying one or

more time units before reporting the measurements since doing so allows more
RPCs to complete and hence gives us a more accurate count of the RPCs that

were executing.
“ t {

Users
RPCs
Reference Tuning |
A) value control |= =
——» Controller ———» Mﬂﬂﬂﬂﬂm—bﬂ—b Sensor—»
[Server

Administrator Log

Queue
Length

Figure 1: Closed-Loop Control of Lotus Notes

Notes administrators are keenly interested in controlling queue length since
this provides a way to manage trade-offs between response times and through-
puts. Figure 1 shows how we construct a closed-loop system to control Notes
queue length. Notes provides an interface for manipulating tuning parameters
such as SERVER_MAXUSERS. We use the measurement sensor described above to
obtain values of queue length. The administrator specifies a desired value, or
reference value, for queue length. The reference value specifies a management
policy that the closed loop system tries to achieve. The controller takes as in-
put the control error, which is the difference between the reference value and
measured value of queue length. Depending on the current (and past) values
of the error, SERVER_MAXUSERS is adjusted. The algorithm that determines the
value of SERVER_MAXUSERS is called the control law.

3 System Identification and Validation

This section describes our approach to system identification and its application
to Lotus Notes. System identification has three parts. The first, block diagram
construction, identifies the significant functional components and their input-
output relationships. The second, transfer function formulation, models the
input-output relationships of each element in the block diagram. The particular
form of the models we construct (linear transfer functions) is important because
it enables us to leverage a large set of analysis techniques that are available in

control theory. The third, parameter estimation and evaluation, asseses the
quality of the model developed.

3.1 Block Diagram Construction

A Dblock diagram depicts the components of a system and the flow of information
between them. Figure 1 provides a convenient starting point for modeling the
Notes server. Here, RPC rates and SERVER MAXUSERS are inputs, and queue
length is the output. This is depicted in Figure 2(a).

RPC1 rate———»
H H

. H Notes Queue
RPCn rate—=| gerver _>Length

MaxUsers——

(a) Initial Model

MaxUsers——p» Notes | Actual Measured
Server | Queue > _>(I_ggrut1
Length g

(b) Final Model [Offered Load > Max_Users]

Figure 2: Models of Notes server (open-loop)

There are two problems with the foregoing. First, it is incomplete in that
lossy measurements are not considered. Thus, a separate sensor component
should be included.

The second problem is more involved. Since SERVER MAXUSERS has an indi-
rect effect on RPC rates, the two inputs are not independent. Hence this is not
a linear system. To address this, we divide the operating region of the Notes
server into two regions. In the first, SERVER_MAXUSERS exceeds offered load and
so the tuning parameter has no effect. In the second, SERVER_MAXUSERS is lower
than offered load and so exactly SERVER_MAXUSERS users are allowed onto the
system. We focus on the second operating region. Here, the offered load value
is not relevant (as long as we stay in this region) and hence, it can be ignored.
In other words, there is no need to consider RPC rates as an input.

Can we adequately model the Notes server if SERVER MAXUSERS is the only
input to the transfer function? To answer this question, Figure 3 plots queue
length where the offered load is 300 users and SERVER_MAXUSERS increased by
20 every 20 minutes. (These data are obtained using the experimental set up
described in Section 4.4.) The impact of SERVER_MAXUSERS is clear, suggest-

Offered load = 300
350 T T

300

250

200

150

Queue Length, MaxUsers

100

50

X Queue Length 4
=—— MaxUsers

Time X 107

Figure 3: Effect of SERVER_MAXUSERS on Queue Length

ing that it would be sufficient. A more quantitative assessment is provided in
Section 3.3.

This results in the block diagram in Figure 2(b). Note that this is a single-
input, single-output system.

3.2 Transfer Function Formulation

We must now be more precise about quantifying input-output relationships.
Throughout, we assume that time is discrete with uniform interval sizes. Con-
sider a linear system with input z(¢) and output y(t). By input-output rela-
tionships, we mean an autoregressive, moving average (ARMA) model of the
form

y®) = awlt—)+ 3 bja(t -) W
i=1 7j=0

where (n,m) is the order of the model, and the a;,b; are constants that are
estimated from data. When values for n,m,a;,b; are specified, this is the
transfer function of the linear system. For analysis purposes, it is much more
convenient to convert the transfer functions from the time domain into the z
(frequency) domain, where z is a complex number. That is, we want to use
Y(z) = 3,2, y(t)z~", which is known as the z-transform.

z-transforms have several nice properties. For example, consider two linear
systems with transforms A(z) and B(z). Then the transform of the system

formed by connecting these two in series is A(z)B(z). If outputs of the two
systems are summed, then the combined system has the transform A(z)+ B(z).
Also, if the input to A(z) is multiplied by k, then the associated transform is
kA(z).

Applying these principles to Eq. (1) and assuming that n > m (which is a
typical constraint), we obtain the z-transform:

Y (2) _ Z;’nzo bjz"~
X(z) 2= (XL i)

We use the general form of the transfer function in Eq. (2) to determine
N(z),the transfer function for the Notes-Server , and S(z), the transfer function
of the Sensor component. Let ¢(t) be the value of queue length at time ¢ and
u(t) be the value of SERVER_MAXUSERS. Note that this ¢(¢) is the actual queue
length, not the one produced by the Sensor. For N(z), it turns out that a good
fit is obtained if » =1 and m = 0 (see Table 1). That is,

Qz) _ _zbo
U(z) z-a

H(z) =

(2)

N(z) =

This is a first order model since max(n,m) = 1.

Modeling S(z) is a bit more involved. Let m(t) be the measured queue
length as output by the Sensor. As discussed earlier, the Sensor output is lossy,
so in general m(t) underestimates the real queue length ¢(¢). Once again we use
a first order model:

mo(t) = almg(t —].) + boq(t) + blq(t — 1)

whose transform is:
MO (Z) Zbo + bl

Q(z) z—a
However, this is not enough. Recall that to get an accurate estimate of
q(t), we could delay d time units so that long-running RPCs present during
time ¢ complete their execution. To model this effect, define m(t) such that:
m(t) = mo(t — d). In the z-domain, this is simply 2~%. Folding this into the
previous equation, we obtain:

M(Z) - Zb0+b1
Q(z) (z—a1)z?

Note that in modeling N(z) and S(z), we have treated the components as a
black boxes, and have not used any details about their internal operation.

3.3 Parameter Estimation and Model Evaluation

Given the functional forms of N(z) and S(z), we must estimate their parameters.
Our approach is statististical. First, measurements of the target system are

obtained while varying the input parameters in a controlled way, such as the
data in Figure 3. Then, we use least-squares regression to estimate the a;, b;
for different values of (n,m). In general the fit of the model improves as (n,m)
are increased. We seek a model that has adequate fit and a low order.

Delay | R2 a; bo b,
Notes Server | All 97.6 | 0.4261 | 0.4709 0.0
0 75.5 | 0.6371 | 0.1692 | -0.1057
Sensor 1 83.7 | 0.7991 | 0.7182 | -0.6564
2 91.2 | 0.9237 | 0.9388 | -0.9092

Table 1: Model R? Values and Coefficients

How well do these transfer functions characterize the input-output relation-
ships in the real system? One way to answer this question is to use the metric
R?, the fraction of the variability of the output variable that is explained by
the transfer function. It turns out that a first order model provides a good fit
for both N(z) and S(z). Table 1 reports values of the a;,b; and R? for these
transfer functions. For the Notes-Server, R? is quite large, almost 98%! This is
an excellent fit. The quality of this model can be further assessed by plotting
observed values of queue length versus those predicted by the model, shown in
Figure 4. Note that almost all observations lie close to the line of unit slope
where the predicted value equals the actual value.

200

T
¢ Data
180 | — xzy
o o
E o
160 x
o I
140 % 33
o
E) o0 gf
5120 & @
°
H (oo
H
31001 o8
5
3 15 14
3 80 ¢
& g o
60 o
SR
40 0 d 0%
045”08
201
0

.
0 20 40 60 80 100 120 140 160 180 200
Observed Queue Length

Figure 4: Comparing N(z) model predictions with observed values

For the Sensor transfer function, R? is smaller, although still acceptable.
Note that as d increases so does R?, and a; approaches 1. Both effects are
expected since with longer delays, measured values approach the actual value.

4 Controller Design and Assessment

Having completed system identification, the next step is to design and assess
one or more controllers. We begin by describing how to construct the controller
from a control law. This is done under the assumption that the system is linear.
Unfortunately, linearity does not always hold. Hence, a preliminary analysis is
required to determine the conditions under which linearity is reasonable. We
then use control theory to gain insights into controller behavior, especially the
presence of controller induced oscillations. These predictions are assessed using
measurements of a real Notes server.

4.1 Control Law and Closed-Loop Analysis

Control theory provides a systematic way to study feedback systems. Here, we
show how to construct a transfer function of a closed loop system based on
the transfer function of the target system in Figure 2(b). By constructing a
closed loop system, we mean that the output of Figure 2(b) is fed back to the
controller, which in turns compares this to the reference value r(t). Based on
the difference between these two values, the controller computes a new setting
u(t) for the control, which in our case is the value of SERVER_MAXUSERS. This is
shown in Figure 5.

R(z v @b G(z) v@, N(z) Q@) S(2) : »>M(2)
i Controller : Notes Sensor :
1 Server .

Figure 5: System with controller

The starting point for controller design is a control law that describes how the
controller operates. We focus on integral control [14], a widely used technique
that is a reasonable approach for the Notes server. Only one control law is
considered since our objective is to demonstrate the value of our methodology.

A time-domain expression of the integral control law is

u(t) = ut — 1) + Ke(t) (3)

where u(t) is the new control value at time ¢, and e(t) = r(t) —m(¢) is the control
error. The parameter K; > 0 is called the gain. Intuitively, this control law
dictates that SERVER_MAXUSERS be adjusted incrementally based on its previous
value and the gain-weighted control error. From the definition of a transfer
function, we have

G(z) = = K; = K;D(2) (4)

For an integral controller, the intuition is that higher K; values lead to a
faster response. However, care is required since larger values of K; can cause
oscillations or even instabilities.

There is a problem with directly translating this control law into software
that is used for controlling Lotus Notes. Specifically, if |K;e(t)| is too large,
SERVER_MAXUSERS is set to a value that can cause a software error. To avoid such
situations, we limit the range of SERVER MAXUSERS by extending the control law:
Vt : Min < u(t) < Max. Such saturated controllers are not linear. Thus,
our modeling is restricted to regions in which these bounds are not reached.

Using the principles of z-transforms discussed earlier, we have

M(z) = E(z)xK;D(z)N(z)S(z)
E(z) = R(z)— M(z)

Solving these equations, we get the following transfer function for the system in

Figure 5:
M(z) K;D(2)N(z)S(z)

R(z) 1+ K:D(z)N(2)S(z) (5)

4.2 Preliminary Analysis

Since our model has been developed under the assumption that Min < u(t) <
Maz, any analysis based on the model is necessarily restricted to this region
as well. We peroform a preliminary analysis to determine the values of K; for
which this holds.

Our approach is as follows. We divide the control region into three parts:
u(t) = Maz, u(t) = Min and Max < u(t) < Min. We designate these states
as Maz, Min, and Intermediate, respectively. We seek to understand the
conditions under which control values will be in states Min and Maz. If we
stay away from these regions, then the assumptions of our analysis should hold.

Figure 6 shows the state transitions obtained from the control law. We see
that as K; — oo, all transitions are between states 1 and Maz. Clearly, we
want to avoid large K.

How big can K; be without encountering states Min or Maxz? Let € be the
largest error that occurs once the closed-loop system is in operation. Then, if
Max — Min

€
we never transition into the extreme states. In our empirical studies of an
uncontrolled Notes system, queue lengths range from approximately 20 to 100
if d = 0 and 60 to 140 if d = 2. So, if there is no bias, then in either case, € = 40.
We set Max = 200 so that it equals offered load, and Min = 1. That gives us:
K; < 5.

K; <

4.3 Analytical Studies

This subsection uses classical control theory to evaluate the closed-loop system
described by Eq. (5). We know from control theory that K; should be as large

11

- Min - Max

ec< K

e<=0

Figure 6: Preliminary Analysis: control state transitions

as possible to provide a fast response. The issue addressed here is to predict
when K; will be so large that there are controller induced oscillations. Such
a prediction is made by studying properties of the transfer function for the
closed-loop system, that is Eq. (5).

First, some background is required to understand the logic of this analysis.
Note that the transfer functions we consider can be expressed as a ratio of two
polynomials in z. The roots of the numerator are called its zeros and the roots of
the denominator are its poles. Specifically, if A(z) and B(z) are two polynomials

of z and H(z) = 28 is a transfer function, then the zeros are the values of z
where A(z) = 0 and the poles are where B(z) = 0.

The poles and zeros of a transfer function provide insight into stability and
controlled-induced oscillations. Recall that z is an imaginary number. If any of
the poles of H(z) lie outside the unit circle, then H(z) is unstable. That is, a
bounded input produces an unbounded output. This is a result of the mapping
from the z domain to the time domain: the time domain equation is expressed
in terms of a geometric series in which the poles are raised to the ¢t power. Thus,
if a pole has magnitude that exceeds one, it is becomes unbounded as t becomes
large.

Another fact of interest relates to poles for which Im(z) # 0. Such poles
contain time domain terms of the form e/*!, where j = /—1. This is a sinusoid
and so oscillations are present that increase the variability of ¢(t).

12

Root-locus plots provide a systematic way to study the location of poles in
the Complex plane. Figure 7 shows root-locus plots for a unit step response
(unit change in the tuning parameter) of the system described by Eq. (5). Con-
sider the left most plot, which addresses d = 0. The horizontal axis of the plot
corresponds to Re(z) and the vertical axis is Im(z). To provide a frame of refer-
ence, there is a unit circle centered at 0. The x’s indicate poles in G(z)N(2)S(z),
and the o’s indicate its zeros. The root-locus is the curve inside the unit circle
that traces the poles as K; increases from 0 to cc. Since all poles lie within
the unit circle, there is no problem with stability. Further, observe that for
large K; (e.g. 0.1 and 1), the poles lie on the real axis. Thus, there is no sinu-
soidal component associated with the step response for these gains. However,
for larger K; (e.g. 5 and 50), there is a non-zero imaginary component to the
poles. This suggests the presence of controller induced oscillations that increase
the variance of queue length.

Now consider the the root locus plot for d = 2, which is the right plot in
Figure 7. While K; = 0.1 lies on the real axis, poles for the other gains have
nonzero imaginary components. Hence, we expect controller induced oscillations
that result in higher variability for queue length.

Delay 0 Root Locus Delay 2 Root Locus\ _
K=50
2 2 :
K =5
15 15 '
1 1
» 05 » 05
2 2
[=2) 0 o 0
© [
E E
-0.5 -0.5 K=0.1
-1 -1
-15 -15
-2 -2
-2 -1 0 1 2 -2 -1 0 1 2
Real Axis Real Axis

Figure 7: Root-locus plots for delay=0 and delay=2

We further observe that for d = 2, the pole at K; = 5 lies outside the unit
circle. This suggests a stability problem. Of course, the system cannot become
unstable since we have bounded the range of values that SERVER MAXUSERS is
assigned. However, large gains can cause another problem—a limit cycle in
which the tuning parameter only takes on values in {Umin; Umax}- We discuss
this further in Section 4.4. The analysis thus reveals that if we wish to introduce
a delay in order to obtain more accurate queue length information, it severely
limits the range of gain values that we may use, and thus limits the responsive-
ness of the control system. Thus, we have a rigorous way of trading off accuracy
for recency in the sensor data.

13

4.4 Empirical Assessments

Here, we present empirical results for various values of K; used in an integral
controller in a real system with a synthetic workload. We study how the pre-
dictions made by control theory compare with the behavior of the real system.

The testbed for our experiments consists of a workload generator, product
level Notes server, a sensor running on the Notes server, and a controller run-
ning on a third machine (so as not to perturb the Notes server). The workload
generator simulates the activity of multiple clients by running n copies of an
identical script that sends RPCs to the server. These scripts are executed re-
peatedly with a one minute delay between executions. The script was selected
from the NotesBench suite, a standard for such workload generation. During
the experiment, the offered load to the server (i.e, the number of users trying
to issue requests) is kept constant at 200 users. The reference queue length is
intially set to 10, and after 60 minutes is changed to 25.

200 Delay 0 (200 users) 200 Dela: (200 users)

180 - 180 -
160 - - 160 [-
140 - - 140+ B

120 - 120

100

Queue Length

80

60

a0

zoii - 20 -
o o

o 5000 10000 15000) 5000 10000 15000
Time Ti

Figure 8: Uncontrolled system run (SERVER_MAXUSERS > offered load)

Now consider the behavior of the closed loop system if the controller is
disabled. This is effected by modifying the control law so that SERVER_MAXUSERS
is set to offered load. Figure 8 displays the result for both d = 0 and d = 2.
In the former, queue length hovers around 80. In the latter, it’s around 100.
These results are consistent with the fact that d = 0 is more lossy than d = 2.
We also see substantial variability in both cases, with changes in queue length
of 40 being common. This variability comes, in large part, from having random
think times between script executions.

Note further that there appears to be some oscillatory pattern in that queue
length alternates between small and large values. To understand why, note that
the duration of a script is also one minute. Further, recall that clients operate
synchronously in that only one request can be outstanding. Thus, we tend to
alternate between sets of clients that are executing and those that are wait-
ing to execute. Thus, even without a controller modifying SERVER_MAXUSERS,

14

significant variability is present.

Figure 9 shows the effect of the controller for K; € {0.1,1,5} and delays
of 0 and 2. The figure consists of 12 plots presented in two columns. The left
column is d = 0 and the right column is d = 2. There are three parts to the
figure. Each part considers a single value of K;. For example, part (a) consists
of the first two rows of plots. The first row plots queue length (and the reference
value) versus time. The the second row shows the value of the control at the
same time as the queue length plot. Part (b) does the same for K; = 1, and
Part (c) displays K; = 5.

Consider Part (a). While there is an initial transient, the queue length
converges to the reference value. There is some variability, but variance is
considerably smaller than in Figure 8. This observation holds for both d = 0
and d = 2. These results are consistent with the root-locus analysis that found
Im(z) = 0 for K; = .1, where z is a pole of the transfer function of the closed
loop system.

Now consider Part (b) in which gain has increased by a factor of ten. We
begin with d = 0. Here, variability is substantially larger than for K; = 0.1.
However, there does not appear to be a controller induced oscillation. Also,
queue length values remain centered on the reference value suggesting that bias
is small. The situation for d = 2 is not so good. There is a pronounced cycle
in the queue length values, a cycle that corresponds to a cycle in the values of
the control. This suggests a controller induced oscillation. We note that root-
locus analysis predicted both of these results in that: (a) there is no pole with
a non-zero imaginary component for K; = 1,d = 0 and (b) there is such a pole
for K; =1,d=2.

What is the reason for the oscillations in queue length? Primarlily, this is the
result of overcompensation. That is, K; = 1 is so large for the e(¢) in d = 2 that
large positive errors cause the controller to increase SERVER_MAXUSERS and this
in turn causes the next e(t) to be so negative that SERVER_MAXUSERS greatly
reduced, and so on. This is evident from the plot of u(¢) in Figure 9 Part (b).

In Part (c), gain is fifty times larger than in Part (a). Variability is quite
large, even larger than in the uncontrolled system. Indeed, there are oscilla-
tions that are clearly related to changes in u(t). Recall that root-locus analysis
predicts the presence of controller induced oscillations for this case.

It is instructive to consider an extreme example, one that clearly violates the
constraint of K; < 5 that was established in our preliminary analysis. Figure 10
displays the results of studies done for K; = 50. Here, we see a strong limit
cycle for the control value, and the resultant queue length plot shows large
oscillations. Indeed, changing the reference value has no apparent impact on
the system’s behavior. Instead, the control oscillates between extreme values in
a dysfunctional way.

Table 2 quantifies these results for the region where the reference value r(t) =
25. Several metrics are reported: mean queue length, standard deviation of
queue length, and RMS (root-mean-square) error. Mean queue length relates to
bias in that we are interested in the difference between this number and 25, the
reference value. Standard deviation of queue length reflects variability in the

15

Ki=0.1; Delay =0 Ki=0.1; Delay =2
T T

150 150
< <
§100 §100 E
H g
3 3
» 2
3 3
H z
3 50 & 50 B
o ’ ’ | | o ’ ’ | 1 . . . | .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time Time
250, : T T T T T T T T 250, T T T T T T T T T
200 B 200 —
£ 1501 4 2150k 4
8 g
2 2
Z100F 1 2100} E
501 1 50+ E
o o
) 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time Time
(a)
Ki=1:Delay=0 Ki=1;Delay =2
150 T T T 150 T T T
< <
§100- 1 §100 E
H g
3 3
» 2
3 3
H z
3 50 4 & 50 {.&% B
sal] TIPS) S VRV VEY.
o S S Vet . . . , ‘ o ol e i ‘ ‘
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time Time
250 : T T T T T T T T 250 T T T T T T T T T
200 B 200 —
2 1 £ 150 E
8 g
i o A
E | 100, % f 41 3 L |
I ‘ g?é 1 g ? 14 ‘
] 50] [{ |
IRTETAYRYE
0 0 L ! L L L

L L L L L L L L i
[1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time Time

(b)

Ki=5; Delay =2
T

150 ! ! ! ! ! ! 150 ! ! ! ! ! ! !
£ 100 4 £ 100 g
g g
5 g
K} g
H g
& 50 4 & 50+ B
. ‘ APV YT R . i e = A A Y LRV AR
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time Time
250 ! ! ! ! ! ! ! ! ! 250 i i
200+ | I f It 1 200 e ‘
Tk M
gusor IR | % [R (S G § 150
INIERISIS RN
£ 100 ? ‘ | o) ‘ g £ 100
E [Tt me & g
A JP 50
| [
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time Time

(¢)

Figure 9: Effect of controller on a real system

16

Ki =50 ; Delay = 0
150

— Reference

[N
1S)
=]

Queue Length

——
=
-
N
-
=
S
L
[——
==
;FX
o
e
[
[,
==

s e IO D B O O R

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time
250
m i 1T m i 17 I

T
=TT
&
DHH\HHHHHH | |
x

B T H \‘ ‘
“T1 | \‘\ INinim

2000

1000 3000 4000 6000

7000 9000 10000

Figure 10: (Unstable) controller with high K;

system. Root-mean-squared (RMS) error with respect to the reference value
quantifies how extreme the bias becomes.

Queue Length RMS

K; | Delay || Mean | St. Dev. | Error
0.1 0 23.95 5.58 5.64
0.1 2 23.80 7.37 7.43
1 0 24.66 7.57 7.54
1 2 29.70 25.67 | 25.96
5 0 35.39 20.94 | 23.27
5 2 59.99 41.63 | 54.17
50 0 42.73 21.41 | 27.70

Table 2: Controller performance statistics

Note that standard deviations are small for those values of (K, d) that root-
locus identified as only having real-valued poles. On the other hand, standard
deviations are large for those values of (K;,d) that do have complex poles. We
also observe that for larger K;,d, there is a problem with bias. This is indicated
by large values of RMS and the difference between average queue length and
the reference value of 25. This validates our analysis that for larger delays, we
cannot get a fast-responding system (large K;), otherwise the system quickly

17

becomes unstable.

5 Summary and Future Work

Wide-spread reliance on IT services has created intense interest in automated
techniques for achieving service level objectives for target systems (e.g., web
servers, email servers). In order to design systems that respond dynamically
based on feedback about their current state, a commonly-used approach is to
create a controller that manipulates tuning parameters of the target system to
achieve these objectives. However, a rigorous analysis of the behavior of such
a closed-loop system is often lacking. If care is not taken in the design of the
controller, then controller induced oscillations can arise that can degrade the
quality of service delivered.

In this paper, we have demonstrated a methodology for constructing and
analyzing closed-loop systems. Our starting point is classical control theory, a
widely used approach in other engineering disciplines. While others have used
control theory to analyze computer and communications systems, their work has
not provided a general approach to modeling control systems nor has it included
empirical validation. We suggest a statistical approach to system identification
which is more generally applicable than the conventional first-principles ap-
proach, and also has the potential to adapt to changes in the underlying system
(such as new software releases).

We have applied this methodology to the closed-loop control of a Lotus
Notes server, where a controller manipulates the Notes SERVER_MAXUSERS tuning
parameter. For system identification, we use least-squares regression to estimate
the parameters of the ARMA models for the components of the system. The fit
for these models is quite good: R? is no lower than 75%, and is as high as 98%.
Interestingly, we find that it is important to model the fact that queue lengths
are sampled on the server since this can introduce delays that affect controller
performance.

We illustrate the value of a control-theoretic analysis by applying it to an
integral controller for the Notes server, a popular technique in control theory.
To ensure software correctness, however, we are forced to limit the range of u(t).
This causes the controller to become non-linear.

With integral control, the design problem is to determine an appropriate
value for the gain K;. From control theory, we know that having a large gain
makes the system more responsive. However, too large a gain can cause insta-
bilities. Studying this using classical control theory requires that we restrict
ourselves to linear regions of the controller’s operation. We therefore use a
simple state analysis to estimate values of the gain for which linearity should
hold.

Our control-theory based analysis provides useful insights into this tradeoff
about the gain value. Root-locus analysis, which is commonly used in classical
control theory, allows us to predict which values of K; cause controller induced
oscillations. Our empirical studies using a real Notes system confirm these pre-

18

dictions. That is, in all cases where root-locus analysis predicts that a controller
induced oscillation is present, this happens in our empirical studies. And in all
cases where root-locus predicts that there should be no such oscillation, these
oscillations are absent in our empirical results. Thus, we can choose a value for
K; that allows the system to be responsive and yet not be subject to controller-
induced oscillations. Moreover, the analysis clarifies the effect of sensor-induced
delays.

Note that both system identification and controller design are performed off-
line, based on data that has been collected from either controlled or production
runs of the target system. This allows us to use a large amount of sample data,
perform more time-consuming analyses and even consult domain experts. We
assume that the system evolves slowly, if at all, so the model does not need to be
estimated often. An online changepoint detection [2] scheme can be employed
to actively monitor the system and trigger the parameter re-estimation when
required. Online adaptation of the target that is within the bounds of the
estimated model is performed by the controller.

Much work remains. Our approach to identifying linear regions of operation
is approximate at best. A better approach would employ describing functions,
a technique used in non-linear control theory. In this paper we have restricted
ourselves to a simple control law in order to demonstrate the value of this
approach. We plan to study more complex controllers to assess if control theory
provides useful insights as to their operation. More broadly, we are interested
in applying our methodology to other service level management situations both
to refine our methodology and to asses its value.

6 Related Work

The application of control theory to analyzing software systems has mostly been
prevalent in the networking arena. The focus is usually on congestion and flow
control algorithms for reservationless protocols. A high-level analysis is done by
Chiu et al. [5] to derive optimal convergence and fairness policies for congestion
avoidance. Keshav [10] provides a more detailed analysis for performing flow
control in a network with a very specific set of assumptions about the networking
infrastructure and protocols. They use the z-transform and root-locus analysis
as well, and are also faced with a non-linearity in their system introduced by
Maz and Min terms. While the non-linear analysis is not carried out, they
suggest using the second method of Liapunov [14]. Work by Benmohamed et al.
[3] for packet-switched networks, and further extended by Mascolo et al. [12] for
ATM also follow the first-principles approach. Both these papers have a very
detailed system model and they do some sophisticated analyses. However, it is
not clear how their ideas would generalize to other systems. More recent work
includes Mascolo et al. [13]. and Shor et al. [15], both of which apply control
theoretic ideas to analyzing the congestion control behavior in TCP.
Researchers have also applied control theory to QoS-oriented systems, such
as OS schedulers [16] and distributed multimedia systems [11]. On an encour-

19

aging note, Goel et al. [7] have recognized the need to build general tools and
algorithms for dealing with feedback-based systems. They provide a software
toolkit called SWiFT for building and dynamically reconfiguring such systems
In a somewhat different approach to system modeling, some researchers (for
example, Bigus [4]) use neural networks for system modeling. While this ap-
proach also allows us to treat the target system as a black box, the resultant
models are not as transparent as the ARMA models. While the NNs are non-
linear and they can model more complex systems, we are not able to leverage
any of the control theory analysis tools for designing or analyzing controllers.

References

[1] J. Aman, C. K. Eilert, D. Emmes, P. Yocom, and D. Dillenberger. Adap-
tive algorithms for managing a distributed data processing workload. IBM
Systems Journal, 36(2), 1997.

[2] M. Basseville and I. Nikiforov. Detection of Abrupt Changes: Theory and
Applications. Prentice Hall, 1993.

[3] Lotfi Benmohamed and Semyon M. Meerkov. Feedback control of conges-
tion in packet switching networks: the case of a single congested node.
IEEE Transactions on Networking, 1(6), December 1993.

[4] Joseph P. Bigus. Adaptive Operating System Conirol using Neural Net-
works. PhD thesis, Lehigh University, 1993.

[5] Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks. Computer Networks
and ISDN systems, 17(1), June 1989.

[6] Raymond B. Essick. An event-based fair share scheduler. In Proceedings
of ACM USENIX, pages 147-161, Winter 1990.

[7] Ashvin Goel, David Steere, Calton Pu, and Jonathan Walpole. Swift: A
feedback control and dynamic reconfiguration toolkit. Technical Report
98-009, OGI CSE, 1998.

[8] G. Hunt, G. Goldszmidt, R. King, and R. Mukherjee. Network dispatcher:
A connection router for scalable internet services. In Proceedings of the 7th
International World Wide Web Conference, April 1998.

[9] Arun Iyengar, Jim Challenger, Daniel Dias, and Paul Dantzig. High-
performance web site design techniques. In IEEE Internet Computing,
volume 4, pages 17-26, February 2000.

[10] Srinivasan Keshav. A control-theoretic approach to flow control. In ACM
SIGCOMM °91, September 1991.

20

[11]

[12]

[13]

[14]

[15]

[16]

Baochun Li and Klara Nahrstedt. Control-based middleware framework
for quality of service applications. IEEE Journal on Selected Areas in
Commaunication, 19997

S. Mascolo, D. Cavendish, and M. Gerla. Atm rate based congestion control
using a smith predictor: an eprca implementation. In IEEE INFOCOM 96,
1996.

Saverio Mascolo. Classical control theory for congestion avoidance in high-
speed internet. In Proceedings of the 38th Conference on Decision & Con-
trol, December 1999.

Katsuhiko Ogata. Modern Control Engineering. Prentice Hall, 3rd edition,
1997.

Molly H. Shor, Kang Li, Jonathan Walpole, David C. Steere, and Calton
Pu. Application of control theory to modeling and analysis of computer
systems. In Japan-USA-Vietnam RESCCE Workshop, June 2000.

David C. Steere, Ashvin Goel, Joshua Gruenberg, Dylan McNamee, Calton
Pu, and Jonathan Walpole. A feedback-driven proportion allocator for real-
rate scheduling. In Operating Systems Design and Implementation (OSDI),
February 1999.

21

