590q: The Database Seminar Fall 2013

Query Languages for Nested Data

Models

Dan Suciu

1st Normal Form

- 1st normal form says that all tables are flat
- Why? Data independence principles

 "Normalization" means taking your data and shredding it into flat tables

Consequence: databases have joins galore...

Modern Big Data Systems

Dremmel paper (google):

 The data used in Web and scientific computing are often non-relational. [...] Data structures [...] lend themselves naturally to a nested representation. Normalizing and recombining such data at Web scale is usually prohibitive. A nested data model underlies most of the structured data processing at Google and reportedly at other major Web companies

In other words: "de-normalize the data to avoid joins"

DocID	Date	FullText
222	2007	In this paper we show
123	2012	In the previous paper we showed
	•••	

DocID	Date
222	2007
123	2012

DocID	Text
222	In
222	this
222	paper
222	we
222	show
123	In
123	the
123	previous
123	paper
123	we
123	showed

Ancient History of NF²

- VERSO project at INRIA, circa 1982
- S. Abiteboul and N. Bidoit, Non-first normal form relations: an algebra allowing data restructuring, 1986
 - COURSE(STUDENT)*(BOOK)*
- Schek, Scholl: The relational model with relation-valued attributes. 1986
 - NF^2
- S.J. Thomas and P.C. Fischer, Nested relational structures, 1986

Ancient History of NF²

Early papers searched for a query language

- 1NF: query language is either FOL or RA
- NF²: what is a natural query language?
- FOL is ill suited for nested relations
- RA is better:

```
flat RA: \times, \sigma, \Pi, U, -
```

nest : $\{A \times B\} \rightarrow \{A \times \{B\}\}\$

unnest : $\{A \times \{B\}\} \rightarrow \{A \times B\}$

1-2. Principles

Early 90's at Penn:

- Buneman, Tannen, Wong redesigned a query language from first principles – category theory
- Main construct:

```
from f : A \rightarrow B to map(f) : \{A\} \rightarrow \{B\}
variation: f : A \rightarrow \{B\} to ext(f) : \{A\} \rightarrow \{B\}
Example: nested_join
\{A \times \{B \times C\} \times \{B \times D\}\} \rightarrow \{A \times \{B \times C \times D\}\}
```

Papers: Naturally embedded; Comprehension; Wadler's Comprehending Monads

Discussion: design principles; minimal set of operators; ...

3. Case Studies

Dremmel/Big-Query, AQL, Jaql, ...

- Some treat nested relations as second-class citizens. E.g. Big-Query:
 - Group-aggregation v.s. scoped aggregation
 - Can join main tables, but not nested tables

Papers: Dremmel, Asterix QL (AQL), Pig Latin

Discussion: how natural can they express queries on nested tables?

4. Implementation

- Most systems
 "flatten" nested
 collections
- Naturally leads to column-oriented storage
- ...and compression

Papers: Dremmel (2)

C-Store, XMill

DocID	Date	FullText	
222	2007	In this paper we show	
123	2012	In the previous paper we showed	

DocID
222
123
•••

Date
2007
2012
•••

FullText
In
this
paper
•••

5. Conservativity

Back to theory. Recall that FOL has limited expressive power (no transitive closure, no parity). Do we get <u>more</u> expressive power if we use nested relations?
 {A × B × C} → {A × C × {B × C}} → {B × C}

Answer: no! [Paredaens&Van Gucht]
 Nested Relational Algebra is a <u>conservative</u> extension of the Relational Algebra

6. Nested Relations and Iteration

- Q: What if we combine <u>nested relations</u> + <u>iteration</u>?
- A: you can compute powerset!
 powerset: {A} → {{A}}
- Also: conservativity theorem no longer holds
- Lesson: you don't don't want to do that
- However, if you add <u>bounded iteration</u> then the conservativity theorem still holds
- Question: is this the right language design?

Paper: Bounded fixpoint

Discussion: alternate proof of conservativity

7. Parallelism

Writing a user defined aggregate:

```
agg : \{A\} \rightarrow B
```

Two ways:

combine: $B \times A \rightarrow B$

or merge: B × B → B

 It turns out that the former captures PTIME, the latter captures NC

Paper: A Query Language for NC

Discussion: automatic rewriting combine to merge?

8. While Languages

- GraphLab, Pregel consists of a while-loop plus (a-)synchronous updates
- "Updates" are key constraints:
 If R(A, B) has key A, then:
 R(x,y): some expression
 could mean "replace y with new values"
- Conflicts? Asynchronous, non-determinstic
- In logic this is captured by the W operator

Paper: May want to change...

Discussion: GraphLab and/or pregel

Outline of 590q

Monday, 10/7	Comprehension	Main: Buneman et al: Comprehension Syntax. SIGMOD Record, 1994 Optional: A modern nested data model: Protobuf Optional: Wadler: Comprehending Monads, 1992 (Sec. 2, 3 only)
Monday, 10/14	Principles	Main: Tannen et al: Naturally Embedded Query Languages. ICDT 1992 (Sec 1-4 only)
Monday, 10/21	Case Studies	Main: Melnik et al., Dremel: interactive analysis of web-scale datasets. CACM 2011 Optional: The Asterix Query Language Optional: Olston et al: Pig latin: a not-so-foreign language for data processing, SIGMOD 2008 Optional: Jaql
Monday, 10/28	Implementation	Main: Melnik et al, Dremel: Interactive Analysis of Web-Scale Datasets. PVLDB 2011 Optional: Abadi et al, Column-stores vs. row-stores: howdifferent are they really? SIGMOD 2008 Optional: Liefke, Suciu: XMILL: An Efficient Compressor for XML Data. SIGMOD 2000
Monday, 11/4	Conservativity (1)	Main: Wong: Normal Forms and Conservative Properties for Query Languages over Collection Types. PODS 1993
Monday, 11/11		external speakers
Monday, 11/18	Conservativity (2)	Main: Suciu: Bounded Fixpoints for Complex Objects. Theor. Comput. Sci. 1997
Monday, 11/25	Parallelism	Main: Suciu, Tannen: A Query Language for NC. J. Comput. Syst. Sci. 1997
Monday, 12/2	While-Language	Main: Abiteboul, Vianu: Fixpoint Extensions of First-Order Logic and Datalog-Like Languages. LICS 1989