
AlphaSort: A RISC Machine Sort

Chris Nyberg, Tom Barclay, Z2trka Cvetanovic, Jim Gray, Dave Lomet
Digitat Equipment Corporation, SaoFrancisco SystemsCenter

455 Market S&SanFrancisco, CA. 94105
(Barctay, Gray, Lomet, Nyberg, Zarka] @ SFbay.enet.dec.com

Abstract A new sort algorithm, called AlphaSort,
demonstrates that commodity processors and disks can
handle commercial batch workloads. Using Alpha AXP
processors, commodi~ memory, and arrays of SCSI disks,
AlphaSort runs the industry-standard sort benchmark in
seven seconds. This beats the best published record on a
32-cpu 32-disk Hypercube by 8:1. On another benchmark,
AlphaSort sorted more than a gigabyte in a minute.

AlphaSort is a cache-sensitive memory-intensive sort
algorithm. It uses file striping to get high disk bandwidth.
It uses QuickSort to generate runs and uses replacement-
selection to merge the runs. It uses shared memoq
multiprocessors to break the sort into subsort chores.

Because startup times are becoming a sign~icant part of the
total time, we propose two new benchmarks:
(1) MinuteSort: how much can you sort in a minute, and
(2) DollarSort: how much can you sort for a dollar.

1.Introduction

In 1985, an informal group of 25 database experts from a
dozen companies and universities defined three basic
benchmarks to measure the transaction processing
performance of computer systems.
DebitCredit: a market basket of database reads and writes,

terminal IO, and transaction commits to measure on-
line transaction processing performance (OLTP). This
benchmark evolved to become the TPC-A transactions-
per-second and dollars-per-transaction-per-second
metrics [12].

Sean: copy a thousand 100-byte records from disk-todisk
with transaction protection. This simple mini-batch
transaction measures the ability of a file system or
database system to pump data through a user
application.

Sort: a disk-to-disk sort of one million, 100-byte records.
This has become the standard test of batch and utility
performance in the database community [3,4, 6,7, 9,
11, 13 18, 21, 22]. Sort tests the processor’s, IO
subsystem’s, and operating system’s ability to move
data.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

SIGMOD 94- 5/94 Minneapolis, Minnesota, USA
@ 1994 ACM 0-89791 -839-5/94/0005..$3.50

DebitCredit is a simple interactive transaction. Scan is a
mini-batch transaction. Sort is an IO-intensive batch
transaction. Together they cover a broad spectrum of basic
commercial operations.

2. The sort benchmark and prior work on sort

The Datarnation article [1] defined the sort benchmark as:
● Input is a disk-resident file of a million 100-byte records.
● Records have 10-byte key fields and can’t be compressed.
● The input record keys are in random order,
● The output tile must be a permutation of the input file

sorted in key ascending order.

The performance metric is the elapsed time of the following
seven steps:

(1) launch the sort program.
(2) open the input file and create the output file.
(3) read the input file.
(4) sort the rwords in key-ascending order.
(5) Wite the output file.
(6) close the files,
(7) terminate the program

The implementation may use all the “mean tricks” typical of
operating systems utilities, It can access the files via low-
level interfaces, it can use undocumented interfaces, and it
can use as many disks, processors and as much memory as it
likes. Sort’s price-performance metric normalizes variations
in software and hardware configuration, The basic idea is to
compute the 5-year cost of the hardware and software, and
then prorate that cost for the elapsed time of the sort [1, 12].
A one minute sort on a machine with a 5-year cost of a
million dollars would cost 38 cents (0.38$).

In 1985, as reported by Tsukerman, typical systems needed
15 minutes to perform this sort benchmark [1, 6, 21]. As a
super-computer response to Tsukerman’s efforts, Peter
Weinberger of ATT wrote a program to read a disk file into
memory, sort it using replacement-selection as records
arrived, and then write the sorted data to a file [22]. This
code postulated 8-byte keys, a natural size for the Cray, and
made some other simplifications. The disks transferred at 8
MB/s, so you might guess that it took 12,5 seconds to read
and 12,5 seconds to write for a grand total of 25 seconds,
However there was about 1 second worth of overhead in
setup, file creation, and tile access. The result, 26 seconds,
stood as the unofficial sort speed record for seven years. It
is much faster than the subsequently reported Hypercube
and hardware sorters.

233

‘able 1: Published sort Performance on the Datamation 100 MB benchmark in chronoloctical order. Extratmlations
narksd by (’). Prices are estirr

System

Tandem
Beck

Tsukerrnan + Tandem
Weinberger + Cray

Kitsuregawa
Baugsto

Graefe + Sequent
Baugsto

DeWitt + Intel iPSC/2
DEC Alpha AXP 7000
DEC AIDha AXP 4000
DEC Afiha AXP 7000

ed.

Hme(sec) I $/sort(*) I Cost M$* I CPUS I Disks I Reference

3600 4.61 .2.?? 2 2 [1, 211
1.92 .1 4 4 [7]

980 1.25 .2 3 6 [20]

26 1.25 7.5 1 1 [22]
320* 0.41 .2 1+ 1 [15]
180 0.23 .2 16 16 [4]
83 0.27 .5 8 4 [11]
40 0.26 1.? 100 100 [4]

58 0.37 1.0 32 32 [9]
9.1 0.022 ,4 1 16 1993
8.2 0.011 .2 2 14 1993
7 0.014 .5 3 28 1993

Since 1986. most sorting effort has focused on than a brute-force one-pass memory intensive sort. Until
multiprocessor sorting, either ~sing shared memory or using
partitioned-data designs. DeWitt, Naughton, and
Schneider’s efforts on an Intel Hypercube is the fastest
reported time: 58.3 seconds using 32 processors, 32 disks
and 224 MB of memory [9]. Baugsto, Greispland and
Kamberbeek mentioned a 40-second sort on a 100-processor
100-disk system [4], These parallel systems stripe the input
and output data across all the disks (30 in the Hypercube
case). They read the disks in parallel, performing a
prelimhmry sort of the data at each source, and partition it
into equal-sized parts. Each reader-sorter sends the
partitions to their respective target partitions. Fach target
partition processor merges the many input streams into a
sorted run that is stored on the local disk. The resulting
output file is striped across the 32 dkks. The Hypercube
sort was two times slower than Weinberger’s Cray sort, but
it had better price-performance, since the machine is about
seven times cheaper.

Table 1 and Graph 2 show that prior to AlphaSort,
sophisticated hardware-software combinations were slower

now, a Cray Y-MP su”per-comput& with a gigabyte of
memory, a fast disk, and fast processors was the clear
winner. But, the Cray approach was expensive.

Weinberger’s Cray-based sort used a fast processor, a fast-
parallel-transfer dkk, and lots of fast memory. AlphaSort’s
approach is similar, but it uses commodity products to
achieve better price/performance. It uses fast one-chip
processors, commodity memory, and cornmodhy disks. It
uses file striping to exploit parallel disks, and it breaks the
sorting task into subtasks that exploit multi-processors.
Using these techniques, AlphaSort beats the Cray YMP in
two dimensions: it is about 4x faster and about 100x less
expensive.

3. Optimizing for the memory hierarchy

Goodexternal sort programs have atways tried to minimize
the wait for data tmmsfers between disk and main memory.
While t.hk optimization is well known, minimizing cache
miss waits is not as widely recognized. AlphaSort has the

10,00(

1,Ooc

Gv

g 100
alw
Cz

E ‘o
1=

1

Time and Cost to Sort 1M Records

1~ Time(s) 1 T
10

.10

.01

%aph 2: The performance and price-performance trends of sorting displayed in chronological order. Until now, the
;ray sorl was fastest but the parallel sorts had the best price-performance.

234

traditional optimizations, but in addition it gets a 4:1
processor-speedup by minimizing cache misses and
minimizing the time processors wait for memory transfers.
If all cache misses were eliminated, it could get another 3:1
Speedttp.

AlphaSort is an instance of the new programming style
dictated by one-chip RISC architectures. These processors
run the SPEC benchmark very well, because most SPEC
benchmarks fit in the cache of newer RISC machines [14].
Unfortunately, commercial workloads, like sort and TPC-A,
do not conveniently fit in cache [5]. These commercial
benchmarks stall the processor waiting for memory most of
the time. Reducing cache misses has replaced reducing
instructions as the most important processor optimization.

The need for algorithms to consider cache behavior is not a
transient phenomenon. Processor speeds are projected to
increase about 70% per year for many years to come. This
trend will widen the speed gap between memory and
processor caches. The caches will get larger, but memory
speed will not keep pace with processor speeds.

The Alpha AXP memory hierarchy is:
● Registers,
. On-chip instruction and data caches (I-cache & D-cache),
● Unified (program and data) cptt-board cache (B-cache),
. Main memory,
● Disks,
. Tape and other near-line and off-line storage.

To appreciate the issue, consider the whimsical analogy in
Figure 3. The scale on the left shows the number of clock
ticks to get to various levels of the memory hierarchy
(measured in 5ns processor clock ticks). The scale on the
right is a more human scale showing time based in human
units (minutes). If your body clock ticks in seconds, then
divide the times by 60.

AlphaSort is designed to operate withh the processor cache
(“This Campus” in Figure 3). It minimizes references to
memory (“Sacramento” in Figure 3). It performs disk IO
asynchronous y and in parallel – AlphaSort rarel y waits for
disks (“Pluto” in Figure 3).

Suppose AlphaSort paid no attention to the cache, suppose
rather that it randomly accessed main memory at every
instruction. Then tbe processor would run at memory speed
– about 2 million instructions per second – rather than the
200 million instructions per second it is capable of, a 100:1
execution penalty. By paying careful attention to cache
behavior, AlphaSort is able to minimize cache misses and to
ntn at 72 million instructions per second.

This careful attention to memory accesses does not suggest
that we can ignore dk.k IO and sorting algorithms. Rather,

once the traditional problems are solved, one is faced with
achieving speedups by optimizing the use of the memory
hierarchy.

How Far Away Is The Data?

t
109 Taps /Optical

*A
2,000Yssrs

Robot t

Disk

{&,

J

Pluto

Memory cramsn o

CMBoard cache la mpus
On Chip Cachs

Rs@sters ~ ~Head

I
i

2 Yeats ~&
E

10 mln

1 mln

Figure 3: A whimsical analogy between %mputer time and
human time as seen from San Francisco. The scale on the
left shows the number of processor cycles to get to various
levels of the memory hierarchy (measured in 5ns processor
clock ticks), The scale on the right is a more human scale
showing time based in human units (minutes).

4. MINIMIZING CACHE-MISS WAITS

AlphaSort uses the following techniques to optimize its use
of the processor cache
1. QuickSort input record groups as they arrive from disk.

QuickSort has good cache locality. Dividing into groups
allows QuickSorting to be overlapped with file input.

2. Rather than sort records, sort (key-prefix, pointer) pairs.
This optimization reduces data movement.

3. The runs generated by QuickSort are merged using a
replacement-selection tree. Because the merge tree is
small, it has excellent cache behavior. The record
pointers emerging from the tree are used to gather (copy)
records from where thev were read into memory to oututtt
buffers. Records are ofiy copied this one time.- The C6PY
operation is memory intensive.

By comparison, OpenVMS sort uses a pure replacement-
selection sort to generate runs [17]. Replacement-selection
is best for a memory constrained environment. On average,
replacement-selection generates runs twice as large as
memory, while the QuickSort runs are typically smaller than
half of memory. However, in a memory-rich environment,
QuickSort is faster because it is simpler, makes fewer
exchanges on average, and has superior address locality to
exploit processor caching.

The worst-case behavior of replacement-selection is very
close to its average behavior, while the worst-case behavior

of QuickSort is terrible (N2) – a strong argument in favor of
replacement-selection. Despite this risk, QuickSort is
widely used because, in practice, it has superior
performance, Baugsto, Bitton, Beck, Graefe, and DeWitt
used QuickSort [4, 6, 7, 9, 11]. On the other hand,
Tsttkerman and Weinberger used replacement-selection [21,
22] . IBM’s DFsort and (apparently) Syncsortm use

235

replacement selection in conjunction with a technique called

offset-vahte coding (OVC). We are evaluating OVC 1.

We were reluctant to abandon replacement-selection sort – it
has stability and it generates long runs. Our first approach
was to improve replacement-selection sort’s cache locality.
Standard replacement-selection sort has terrible cache
behavior unless the tournament fits in cache. The cache
thrashes on the bottom levels of the tournament. If you
think of the tournament as a tree, each replacement-selection
step traverses a path from a pseudo-random leaf of the tree
to the root. The upper parts of the tree may be cache
residen~ but the bulk of the tree is not (see Figure 4).

Figure 4. The tournament tree of replacement-selection sort
at left has bad cache behavior unless the entire tournament
fits in cache. The diagram shows the memory references as
a winner is removed and a new element is added to the
tournament. Each traversal of the tree has many cache
misses at the leaves of the tree. By contrast, the QuickSort
diagramed on the right fits entirely in the on-board cache,
and partially in the on-chip cache. I

We investigated a replacement-selection sort that clusters
tournament nodes so that most parent-child node pairs are
contained in the same cache line. That reduces cache misses
by a factor of two or three. Nevertheless, replacement-
selection sort is still less attractive than QuickSort because:
1. The cache behavior demonstrates less locality than

QuickSorts. Even when quicksort runs did not fit entirely
in cache, the average compare-exchange time did not
increase significant y.

2. Tournament sort is more cpu-intensive than QuickSort.
Knuth, [17, page 149] calculated a 2:1 ratio for the
programs he wrote. We observed a 2.5:1 speed advantage
for QuickSort over the best tournament sort we wrote.

The key to achieving high execution speeds on fast
processors is to minimize the number of references that
cannot be serviced by the on-board cache (4MB in the case
of the DEC 7000 AXP). As mentioned before, QuickSort’s
memory access patterns are sequential and so have good

1 Offset-value coding of sort keys is a generalization of key-prefix-
pointer sorting. It lends itself to a tournament sort [2, 8]. For
binary data, like the keys of the Datamation benchmark, offset
value coding will not beat AlphaSort’s simpler key-prefix sort. A
distributive sort that partitions the key-pairs into 256 buckets based
on the first byte of the key would eliminate 8 of the 20 compares
needed for a 100 MB sort. Such a partition sort might beat
AlphaSort’s simple QuickSort.

cache behavior. BUL even within the QtdckSort algorithm,
there are opportunities to improve cache behavior. There
are three forms of QuickSort with varying cache behaviors:
Record Sort: the record array is sorted in place, Comparison

operators reference the keys in the records and exchange
records if appropriate.

Pointer sort: an array of pointers to records is sorted.
Comparison operations follow the pointers to reference
the record keys, compare the keys and exchange the
pointers if appropriate.

Key Sort: an array of (record-key, record-pointer) pairs is
sorted. Comparison operators just examine the keys in the
array and exchange pairs if appropriate.

To analyze the cache behavior of these three QuickSorts, let
R denote the record length (in bytes), K the key length, and
P the length of a pointer. For the Datamation sort, these
numbers are R= 100, K=1O, and P=4.

Record sort has three distinct advantages. (1) It has no setup
time, (2) has low storage overhead, and (3) it leaves the
records in sorted order. The third issue is important: record
sort has about a 30% fewer cache misses during the merge
phase. Record sort merges sequential record streams to
produce a sorted output stream. Pointer and key sorts must
randomly access records to produce the sorted output
stream.

If the record is short (e.g., R S 16), record sort has the best
cache behavior. If the record is large, then record sort has
poor cache behavior. For the Datarnation sort parameters
(R=1OO), record sort was 30% slower than pointer sort and
270% slower than key sort (these comparisons are for CPU
time). Record sort is slower because each compare (1)
references a key from a new record in main memory, (2)
compares it to another key, and (3) 25% if the time performs
a record exchange. These exchanges are expensive. They
move records (2R bytes) rather than moving short pointers
(2P bytes) or key-pointer pairs (2(K+P) bytes) and so have
significantly more cache faults.

Pointer sort is better than record sort for large records – it
moves less data. Pointer sort has poor reference-locality
because it accesses records to resolve key comparisons.
Even if the pointer array fits in the cache, the records may
not. This suggests a detached key sort [19]: storing the key
with the pointer in the array: if K + P c e R., key-pointer
sort is a good idea. In the Datamation benchmark case, the
key-pointer QuickSort runs three times faster than pointer
sort. The later stages of key-pointer QuickSort benefit from
running entirely within the 8 KB on chip cache. Even in the
early stages, on-chip cache faults get both the pointer (4
bytes) and the key (lO-bytes) all in one cache fault. The
entire cache line of 32 bytes is brought into the on-chip
cache when the pointer or key is accessed. Key-pointer sort
runs with at most one on-chip data cache fault per step.

The observation that QuickSort can ran in the on-chip data
cache (D-cache) suggests an optimization if K is large. The
number of entries in the D-cache can be maximized by using

236

a prefix of the key rather than the full key. The key prefix
can also be normalized to an integer type (assuming the key
type can be mapped to art integer), allowing most com-
parisons to be resolved with an integer comparison.
AlphaSort employs a key-prefix sort rather than a key sort.
For the Datamation benchmark, the QuickSort time
improved by 25~0.

The risk of using the key-prefix is that it may not be a good
discriminator of the key - in that case the comparison must
go to the records and key-prefix-sort degenerates to pointer
sort. Baer and Lin made similar observations [21. They
recommended keys be prefix compressed into codewords so
that the (pointer,codeword) QuickSort would fit in cache.
We did not to use their version of codewords since they
cannot be used to later merge the record pointers.

Traditionally, key sort has been used for complex keys
where the cost of key extraction and conditioning is a
significant part of the key comparison cost [21]. Key
conditioning extracts the sort key from each record,
transforms the result to allow efficient byte compares, and
stores it with the record as an added field. This is often
done for keys involving floating point numbers, signed
integers, or character strings with non-standard collating
sequences. Comparison operators then do byte-level
compares on the conditioned strings. Conditioned keys, or
their prefixes can be stored in the pointer-key array.

To summarize, for small records, use record sort.
Otherwise, use a key-prefix sort where the prefix is a good
discriminator of the keys, and where the pointer and prefix
are cache line aligned. Key-prefix sort gives good cache
behavior, and for the Datarnation benchmark gives more
than a 3:1 CPUspeedup over record sort.

Once the key-prefixipointer runs have been QuickSorted,
AlphaSort uses a tournament sort to merge the runs. In a
one-pass sort there are typically between ten and one
hundred runs – the optimal run size balances the time lost
waiting for the first run plus time lost QuickSorting the last
run, against the time to merge another run during the second
phase. The merge results in a stream of in-order record
pointers. The pointers are used to gather (copy) the records
into the output buffers. Since the records do not fit in the
board cache and are referenced in a pseudo-random fashion,
the gathering has terrible cache and TLB behavior. More
time is spent gathering the records than is consumed in
creating, sorting and merging the key-prefix/pointer pairs.
When a full buffer of output data is available, it is written to
the output file.

5. Shared-memory multiprocessor optimization

DEC AXP systems may have up to six processors on a
shared memory. When running on a multiprocessor,
AlphaSort creates a process to use each processor. The first
process is called the roo#, the other processes are called
workers. The root requests affinity to cpu zero, the i’th

worker process requests affinity to the i’th processor.
Affinity minimizes the cache faults and invalidation’s that
occur when a single process migrates among multiple
processors.

The root process creates a shared address space, opens the
input files, creates the output files and performs all IO
operations. The root initiates the worker processes, and
coordinates their activities. In its spare time, the root
performs sorting chores.

The workers start by requesting processor affinity and
attaching to the address space created by the root. With this
done, the workers sweep through the address space touching
pages. This causes VMS to allocate physical pages for the
shared virtuat address space. VMS zeroes the allocated
pages for security reasons, Zeroing a 1 GB address space
takes 12 cpu seconds - this chore has terrible. cache
behavior, The workers perform it while the root opens and
reads the input files.

The root process breaks up the sorting work into
independent chores that can be handled by the workers.
Chores during the QuickSort phase consist of QuickSorting
a data run. Workers generate the arrays of key-prefix
pointer pairs and QuickSort them. During the merge phase,
the root merges all the (key-prefix, pointer) pairs to produce
a sorted string of record pointers. Workers perform the
memory-intensive chores of gathering records into output
buffers using the record pointer string as a guide. The root
writes the sorted record streams to disk.

6. SOLVING THE DISK Bottleneck PROBLEM

IO activity for a one-pass sort is purely sequential: sort reads
the sequential input file and sequentially creates and writes
the output file. The first step in rnaldng a fast sort is to use a
parallel file system to improve disk read-write bandwidth.

No matter how fast the processor, a 100MB external sort
using a single 1993-vintage SCSI disk takes about one
minute elapsed time. This one-minute bamier is created by
the 3 MB/s sequential transfer rate (bandwidth) of a single
commodity disk. We measured both the OpenVMS Sort
utility and AlphaSort to take a little under one minute when
using one SCSI disk. Both sorts are dkk-limited. A faster
processor or faster algorithm would not sort much faster
because the disk reads at about 4.5 MB/s and writes at about
3.5 MB/s. Thus, it takes about 25 seconds to read the 100
MB, and about 30 seconds to write the 100 MB answer filez.
Even on mainframes, sort algorithms like SyncSort and
DFsort are limited by this one-minute barrier unless disk or
file striping is used,

2 SCSI-II discs support write cache enabled (WCE).that allows the

controller to acknowledge a write before the data is on disc. We
did not enable WCE because commercial systems demand disk
integrity. If WCE were used, 20% fewer discs would be needed.

237

Disk striping spreads the input and output file across many
disks [16]. This allows parallel dkk reads and writes to give
the sum of the individual dkk bandwidths. We investigated
both hardware and software approaches to striping.

The Genroco disk array controller allows up to eight dkks to
be configured as a stripe set. The controller and two fast IPI
drives offers a sequential read rate of 15 MB/s (measured).
We used three such Genroco controller? each with two fast
IPI disk drives in some experiments reported below.

Software file striping spreads the data across commodity
SCSI disks that cost about 2000$, hold about 2 GB, read at
about 5 MB/s, and write at about 3 MB/s. Eight such disks
and their controllers are less expensive than a super-
computer disk, and are faster. We implemented a file
striping system layered above the OpenVMS file system.. It
allows an application to spread (stripe) a file across an array
of diskis. A striped file is defined by a stripe deftition file,
a normal file whose name has the suffix, “ .str”. For every
file in the stripe, the definition file includes a line with the
file name and number of file blocks per stride for the file.
Stripe opens or creates are performed with a call to
s t r-ipeop en () , which works like a normal open/create

except that if the specified file is a stripe definition file then
all files in the stri@ are opened or created.

The file striping code bandwidth is near-linear as the array
grows to nine controllers and thirty-six disks. Bottlenecks
appear when a controller saturates; but with enough
controllers, the bus, memory, and OS handle the IO load.

I 3 Disks being read in parallel to make a striped file 1

Im 9 n- I
&
~

Astride of the striped filecumposedGf ttasksfromeachdisc I
kgure 5. A stride of a striped file being read from three
disks. Each disk contributes a track of information to the
stride. The reads woceed in parallel so that one can read atI
the sum of the speeds of the /ndividual disks. I

Soft SCSI arrays are less expensive than a special disk
array, and they have more bandwidth than a single controller
or port. File striping is more flexible than disk striping since
the stripe width (number of disks) can be chosen on a file-
by-file-basis rather than dedicating a set of disks to a fixed
stripe set at system generation time. Even with hardware
disk arrays, one must stripe across arrays to get bandwidths
beyond the limit of a single array. So, software striping
must be part of any solution.

Table 6 compares two arrays: (1) a large array of
inexpensive disks and controllers, and (2) a smaller array of
high-performance disks and controllers. The many-slow
array has slightly better performance and price performance
for the same storage capacity.

Table 6. Two different disk arrays used in the benchmarks.

I many - slow RAID I few - fast RAID

drives 36 RZ26 12 RZ28 +
6 Velocitor

controllers 9 SCSI (kzmsa) 4 SCSI+
3 IPI-Genroco

capacity 36 GB 36 GB

disk speed 1.8 MB/s scsi: 4MB/s
(measured) ipi: 7 MB/s

stripe read rate 64 MB/s 52 MB/s

stripe write rate 49 MB/s 39 MBIs

list price 85 k$ 122 k$
includes cabinets ! I I
It might appear that striping has considerable overhead since
opening, creating, or closing a single logical file translates
into opening, creating or closing many stripe files. A N-
wide striping does introduce overhead and delays,
st ripeope n () needs to call the operating system once to

open the descriptor, and then N times to open the N file
stripes. Fortunately, asynchronous operations allow the N
steps to proceed in parallel, so there is little increase in
elapsed time. With 8-wide srnping the fixed overhead for
AlphaSort on an 200 Mhz processor is:
Load Sort and process parameters .11
Open stripe descriptor and eight input stripes ,02
Create and open descriptor and eight output stripes .01
Close 18 input and output files and descriptors .01
Return tos hell 05
Total Overhead .19 seconds

This is relatively small overhead.

To summarize, AlphaSort overcomes the IO bottleneck
problem by striping data across many disks to get sufficient
IO bandwidth. Asynchronous (NoWait) operations open the
input files and create the output files in parallel. Triple
buffering the reads and writes keeps the disks transferring at
their spiral read and write rates. SCSI buffering is
especially advantageous in this respect. Striping eight ways
provided a read bandwidth of 27 MB/s and a write
bandwidth of about 22 MB/s. This put an 8-second limb on
our sort speed. Later experiments extended thk to 36-way
striping and 64 MB/s bandwidth.

A key IO question is when to use a one-pass or two-pass
sort, When should the QuickSorted intermediate runs be
stored on dkk? A two-pass sort uses less memory, but uses
twice the disk bandwidth.

Even for surprisingly large sorts it is economic to perform
the sort in one pass. A two-pass sort requires twice the disk
bandwidth to carry the runs being stored on disk and being
read back in during merge phase. The question becomes:
What is the relative price of those scratch disks and their
controllers versus the price of the memory needed to allow a
one-pass sort? Using 1993 prices for Alpha AXP, a disk
and it’s controller costs about 2400$ (see Table 6). Striping
requires 16 such scratch disks dedicated for the entire sort,

238

for a total price of 36k$. A one-pass main memory sort uses
a hundred megabytes of RAM. At 100$/MB this is 10k$. It
is 360% more expensive to buy the disks for a two-pass sort
than to buy IOOMB of memory for the one-pass sort. The
computation for a 1 GB sort suggests that it would be 15~o
less expensive to buy 36 extra disks, than to buy the 1 GB of
memory needed to do the 1 GB sort (see Table 6).

Multi-gigabyte sorts should be done as two-pass sorts, but
for things much smaller than that, one-pass sorts are more
economical. In particular, the Datamation sort benchmark
should be done in one pass.

Having addressed the IO problem, we now turn to the more
interesting problem of minimizing processor waits for
transfers among levels of the electronic memory hierarchy.

7. AlphaSort measurements on several platforms

With these ideas in place, let’s walk through the 9.11 second
AlphaSort of a million hundred-byte records on a uni-
processor. The input and output files are striped across
sixteen disk drives.

AlphaSort first opens and reads the descriptor file for the
input stripe set. Each of the 16 input stripe files is opened
asynchronous y with a 64 KB stride size. The open call
returns indicates a 100MB input file, Asynchronous y,
AlphaSort requests OpenVMS to create the 100MB striped
output file, and to extend the process address space by 110
MB. AlphaSort immediately begins reading the 100MB
input file into memory using triple buffering,

It is now 140 milliseconds into the sort. As each stride-read
completes, AlphaSort issues the next read. AlphaSort is

completely IO limited in this phase.

When the fwst 1 MB stripe of records anives in memory,
AlphaSort extracts the 8-byte (record address, key-prefix)
pairs from each record. These pairs are streamed into an
array. When the array grows to 100,000 records, AlphaSort
QuickSorts it. This QuickSort is entirely cache resident.
When it completes the processor waits for the next array to
be built so that it too can be QuickSorted. The pipeline of
steps (readdisk array-build then QuickSort) is disk bound at
a data rate of about 27 MB/s.

The read of the input file completes at the end of 3.87
seconds. AlphaSort must then sort the last 100,000 record
partition (about .12 seconds), During thk brief interval,
there is no IO activity.

Now AlphaSort has ten sorted runs produced by the ten
QuickSort steps. It is now 4 seconds into the sort and can
start writing the output to the striped output file.
Meanwhile, it issues close () on all stripes of the input file.

AlphaSort runs a tournament scanning the ten QuickSorted
runs of the (key-prefix,pointer) pairs in sequential order,
picking the minimum key-prefix among the runs. If there is
a tie, it examines the full keys in the records. The winning
record is gathered (copied) to the output buffer. When a full
stripe of output buffer is produced, Stripewrite () is called

to write the sorted records to the target stripe file in disk.

~s merge-gather runs more slowly than the QuickSort step

because many cache misses are incurred in gathering the

records into the output buffers. It takes almost four seconds

of processor and memory time (the use of multi-processors

speeds tkds merge step). This phase is also disk limited,

taking 4.9 seconds.

Where the time goes:
clock ticks used by each AlphaSort Component

Figure 7. A pie chart showing where the time is going on the DEC 10000 AXP 9-sacond sort. Even though AlphaSoti spends
GREAT effort on efficient use of cache, the processor spends most of its time waiting for memory. The vast majority of such
waits are for data, and the majority of the time is spent waiting for main memory . The low cost of VMS to launch the sori
program, open the files, and move 200 MB through the 10 subsystem is impressive. Not shown is the 4% of stalls due to
branch mis-prediction.s.

239

When the tournament completes 8.8 seconds have elapsed.
AlphaSort is ready to close the output files and to return to
the shell. Closing takes about 50 milliseconds. AlphaSort
then tmninates for a total time of 9.1 seconds. Of this 0.3
seconds were consumed loading the program and returning
to the command interpreter. The sort time was 8.8 seconds,
but the benchmark definition requires that the startup and
shutdown time be included

Some interesting statistics about this sort are:
● The cpu time is 7.9 seconds, 1.1 seconds is pure disk wait.

Most of the dkk wait is in startup and shutdown.
● 6.0 seconds of the CPUtime is in the memory-to-memory

sort.
● 1.9 seconds are used by OpenVMS AXP to:

load the sort program
allocate and initialize a 100MB address space
open 17 files
create and open 17 output files and allocate 100MB of

disk on 16 drives.
close all these files
return to command interpreter and print a time stamp.

. Of the 7.9 seconds of cpu time, the processor is issuing
instructions 2970 of the time. Most of the rest of the time
it is waiting for a cache miss to be serviced from main
memory (56910). SPEC benchmarks have much better
cache hit ratios because the program and data fit in cache.
Database systems executing the TPC-A benchmark have
worse cache behavior because they have larger programs
(so more I-cache misses).

● The instruction mix is: Integer (51%), Load (15’?Io),Branch
(15%), Store (12%) Float (O%). PAL (9%) mostly
handling address translation buffer (DTB) misses. 8.4%
of the processor time is spent dual issuing.

DThe processor chip hardware monitor indicates that 29?10of
the clocks execute instructions, 4~0 of the stall time is due
to branch mis-predictions, 11‘ZOis I-stream misses (4’%0I-
to-B and 770 B-to-main), and 56% are D-stream misses
(12% D-to-B and 44% B-to-main).

* The time spent dual-issuing is 8%, compared to 21 YOspent
on single-issues. Over 40~0 of instructions are dual issued.

AlphaSort benchmarks on several AXP processors are
summarized in Table 8. All of these benchmarks set new
performance and price/performance records. The AXP-
3000 is the price-performance leader. The DEC AXP 7000
is the performance leader. As spectacular as they are, these
numbers are improving. Software is making major
performance strides as it adapts to the Alpha AXP
architecture. Hardware prices are dropping rapidly.

To S~ ze, AlphaSort optimizes IO by using host-based
file striping to exploit fast but inexpensive disks and disk
controllers – no expensive RAID controllers are needed. It
uses lots of RAM memory to achieve a one-pass sort. It
improves the cache hit ratio by QuickSorting (key-prefix,
pointer) pairs if the records are large. If multiprocessors are
available, AlphaSort breaks the QuickSort and Merge jobs
into smaller chores that are executed by worker processors
while the root process performs all IO.

8. New sort metrics: MinuteSort and DollarSort

The original Datamation benchmark has outlived its

usefulness. When it was defined, 10OMB sorts were taking

ten minutes to one hour. More recently, workers have been

reporting times nea one minute. Now the mark is seven

seconds. The next significant step is 1 second. ‘Ilk will

give undue weight to startup times. Already, startup and

shutdown is over 2570 of the cost of the 7-second sort, So,

the Datamation Sort benchmark is a startup/shutdown

benchmark rather than an IO benchmark.

To maintain its role as an IO benchmark, the sort benchmark

needs redeftition. We propose the following:

MinuteSort:
● Sort as much as you can in one minute.
● The input file is resident on external storage (dkk).
● The input consists of 100-byte records (incompressible).
● The fkst ten bytes of each record is a random key.
● The output file is a sorted permutation of the input.
● The input and output files must be readable by a program

using conventiortat tools (a database or a record manager.)

The elapsed time includes the time from calling the sort

program to the time that the program returns to the caller –

this totat time must be less than a minute. If Sort is an

operating system utility, then it can be launched from the

command shell. If Sort is part of a database system, then h

can be launched from the interactive interface of the DBMS.

MinuteSort has two metrics:

Size (bytes): the number of gigabytes you can sort in a

minute of elapsed time

Price. performance ($/sorted GB): The list price of the
hardware and operating system needed to run the
benchmark divided by one million. This is the
approximate cost of the hardware, software, and
maintenance for a minute, if the hardware is depreciated
over 3 years. This number reflects the cost (price). To
get a priCe-peI’fOMtanCe me~iC, the price is divided by
the sort size (in gigabyte).

Table 8. Performance and price/performance of 100MB Datamation sort benchmarks on Alpha AXP systems (October 1993).
Svstem cDu&C]Ock controllers drives Q@ time(s) total Drice disk+ctlr $/serf

DEC-7000-AXP 3x5ns 7 fast-SCSI 28 RZ26 256 7.0 312k$ 123k$ 0.014$
DEC-4000-AXP 2x6.25ns 4 SCSI, 3 IPI 12scsi+6ipi 256 8.2 312k$ 95k$ 0.016$

DEC-7000-AXP lx5ns 6 fast-SCSI 16 RZ74 256 9.1 247k$ 65k$ 0.014$
DEC-4000-AXP lx6.25ns 4 fast-SCSI 12 RZ26 384 11.3 166k$ 48k$ 0.014$
DEC-3000-AXP lx6.6ns 5 SCSI 10 RZ26 256 13.7 97k$ 48k$ 0.009$

240

This metric includes an Nfog(N) term (the number of

comparisons) but in the range of interest range (N > 230),
log(N) grows slowly compared to N. As N increases by a
factor of 1,000, log(N) increases by a factor of 1.33.

A three-processor DEC 7000 AXP sorted 1.08 GB in a
minute. The 1993 price of this system (36 disks, 1.25 GB of
memory, 3 processors, and cabinets) is 5 12k$. So the 1.1
GB MinuteSort would cost 51 cents (=512k$/lM). The
MinuteSort price-performance metric is the cost over the
size (.5 1/1. 1) = 0.47$/GB. So, today AlphaSort on a DEC
7000 AXP has a 1.1 GB size and a 0.47$/GB
price fperforrnance.

MinuteSort uses a rough 3-year price and omits the price of
high-level software because: (1) this is a test of the
machine’s IO subsystem, and (2) most of the winners will be
“special” programs that are written just to win this
benchmark – most university software is not for sale (see
Table 1). There are 1.58 million minutes in 3 years, so
dividing the price by lM gives a slight (30%) inflator for
software and maintenance. Depreciating over 3 years, rather
than the 5-year span adopted by the TPC, reflects the new
pace of the computer business.

Minute sort is aimed at super-computers. It emphasizes
speed rather than price performance – it reports price as an
afterthought. This suggests a dual benchmark that is fixed -
price rather than fixed-time: DollarSort. DollarSort is just
like MlnuteSort except that it is limited to using one dollar’s
worth of computing. Recall that each minute of computer
time costs about one millionth of the system list price. So
DollarSort would allow a million dollar system to sort for a
minute, while a 10,000$ system could sort for 100 minutes.
PCs could win the DollarSort benchmark.
Dollar Sorti

● Sort as much as you can for less than a dollar.
c Otherwise, it has the same rules as MinuteSort

The dollar limit price is computed as:

1$ > elapsed time XV
stem list price

1000000

Dollar Sort reports two metrics:
Size (bytes): the number of gigabytes you can sort for a

dollar.
Elapsed Time: The elapsed time of the sort (reported in to

the nearest millisecond).

MinuteSort and DollarSort are an interesting contrast to the
Datamation sort benchmark, Datarnation sort was fixed size
(1OOMB) and so did not scale with technology. MinuteSort
and DollarSort scale with technology because they hold end-
user variables constant (time or price) and allow the problem
size to vary.

Industrial-strength sorts will always be slower than

programs designed to win the benchmarks. There is a big

difference between a program like AlphaSort, designed to
sort exactly the Datamation test data, and an industrial-

strength sort that can deal with many data types, with
complex sort keys, and with many sorting options.
AlphaSort slowed down as it was productized in Rdb and in
OSF/1 HyperSort.

This suggests that there bean additional distinction a street-
legal sort thatrestricts entrants to sorts sold and supported
by someone. Much as there is an Indianapolis Formula-1
car race run by specially built cars, and a Daytona stock-car
race run by production cars, we propose that there be an
Indy category and a Daytona category for both minute-sort
and DollarSort. This gives four benchmarks in all:
Indy-MinuteSort: a Formula-1 sort where price is no object.
Daytona-MinuteSort: a stock sort where price is no object.
lndy-Dollar Sort a Formula-l biggest-bang-for-the buck

sort.
Daytona-Dollar Sort: a stock sort giving the biggest-bang-

for-the buck.
Super-computers will probably win the MinuteSort and
workstations will win the DollarSort trophies.

The past winners of the Datamation sort benchmark
(Barclay, Baugsto, Cvetanovic, DeWitt, Gray, Naughton,
Nyberg, Schneider, Tsukerman, and Weinberger) have
formed a committee to oversee the recognition of new sort
benchmark results. At each annual SIGMOD conference
starting in 1994, the committee will grant trophies to the
best MinuteSorts and DollarSorta in the Daytona and Indy
categories (4 trophies in all). You can enter the contest or
poll its status by contacting one of the committee members.

9. Summary and conclusions

AlphaSort is a new algorithm that exploits the cache and IO
architectures of comrnodhy processors and disks. It runs the
standard sort benchmark in seven seconds. That is four
times better than the unpublished record on a Cray Y-MP,
and eight times faster than the 32-CPU 32-disk Hypercube
record [9, 23], It can sort 1.1 GB in a minute using
multiprocessors. This demonstrates that commodity
microprocessors can perform batch transaction processing
tasks. It also demonstrates speedup using multiple
processors on a shared memory.

The Alpha AXP processor can sort VERY fast. But, the sort
benchmark requires reading 100MB from disk and writing
100MB to disk – it is an IO benchmark. The reason for
includlng the Sort benchmark in the Datamation test suite
was to measure “how fast the real IO architecture is” [1].

By combining many fast-inexpensive SCSI disks, the Alpha
AXP system can read and write disk data at 64 MB/s.
AlphaSort implements simple host-based file striping to
achieve thk bandwidth. Wirh it, one can balance the
processor, cache, and IO speed. The result is a breakthrough
in both performance and price-performance.

In part, AlphaSort’s speed comes from efficient compares,
but most of the cpu speedup comes from efficient use of CPU

241

cache. The elapsed-time speedup comes from parallel IO
performed by an application-level striped file system.

Our laboratory’s focus is on parallel database systems.
AlphaSort is part of our work on loading, indexing, and
searching terabyte databases. At a gigabyte-per-minute, it
takes more than 16 hours to sort a terabyte. We intend to
use many processors and many-many disks handle such
operations in minutes rather than hours. A terabyte-per -
minute parallel sort is our long-term goal (not a misprint!).
That will need hundreds of fast processors, gigabytes of
memory, thousands of disks, and a 20 GB/s interconnect..
Thus, this goal is five or ten years off.

10. Acknowledgments

Al Avery encouraged us and helped us get access to
equipment, Doug Hoeger gave us advice on OpenVMS
sort. Ken Bates provided the source code of a file striping
prototype he dld five years ago. Dave Eiche, Ben Thomas,
Rod Widdowson, and Drew Mason gave us good advice on
the OpenVMS AXP IO system, Bill Noyce and Dick Sites
gave us advice on AXP code sequences. Bruce Fillgate,
Richie Lary, and Fred Vasconcellos gave us advice and help
on disks and loaned us some RZ74 disks to do the tests.
Steve Holmes and Paline Nist gave us access to systems in
their labs and helped us borrow hardware. Gary Lidk_tgton
and Scott Tincher helped get the excellent DEC 4000 AXP
results. Joe Nordman of Genroco provided us with fast IPI
disks and controllers for the DEC 4000 AXP tests.

11. References

[1] Anon-Et-Al. (1985). “A Measure of Transaction Processing
Power.” Datamation. V. 31(7): PP. 112-118. also in Readings in
Database Systems, M.J. Stonebraker cd., Morgan Kaufmann,
SanMateo, 1989.

[2] Baer, J.L., Lin, Y.B., “Improving Quicksort Performance with
Codeword Data Structure”, IEEE Trans. on Software
Engineering, 15(5). May 1989. pp. 622-631.

[3] Baugsto, B.A.W., Greipsland, J.F., “Parallel Sorting Methods
for Large Data Volumes on a Hypercube Database Computer”,
Proc. 6th Int. Workshop on Database Machines, Deauville
France, Springer Verlag Lecture Notes No. 368, June 1989, pp.:
126-141 .-

[4] Baugsto, B.A. W., Greipsland, J.F., Kamerbeek, J. “Sorting
Large Data Files on POMA,” Proc. CONPAR-90VAPP IV,
Springer Verlag Lecture Notes No. 357, Sept. 1990, pp.: 536-
547.

[5] Cvetanovic, Z. , D. Bhandarkar, “Characterization of Alpha
AXP Performance Using TP and SPEC Workloads”, to appear in

Proc. Int.Symposium on Computer Architecture, April 1994.

[6] Bitton, D., Design, Analysis and Implementation of Parallel

External Sorting Algorithms, Ph.D. Thesis, U. Wisconsin,

Madison, WI, 1981

[7] BexlG M., Bitton, D., Wilkenson, W.K., “Sorting Large Files on

a Backend Multiproeessor”, IEEE Transactions on Computers,

V. 37(7), pp. 769-778, July 1988.

[8] Conner, W. M., Offset Value Coding, IBM Technical

Disclosure Bulletin, V 20(7), Dec. 1977, pp. 2832-2837

[9] DeWitt, D.J., Naughton, J.F., Schneider, D.A. “Parallel Sorting

on a Shared-Nothing Architecture Using Probabilistic Splitting”,

Proc. First Int Conf. on Parallel and Distributed Info Systems,

IEEE pfCSS, Jan 1992, pp. 280-291

[10] Filgate, Bruce, “SCSI 3.5” 1.05 GB Disk Comparative

Performance”, Digital Storage Labs, Nov. 101992

[11] Graefe, G., “Parallel external sorting in Volcano,” U.

Colorado Comp. Sci. Tech. Report 459, June 1990.

[12] Graefe, G, S.S. Thakkar, “Tuning a ParaJlel Sort Algorithm on

a Shared-Memory Multiprocessor”, Software Practice and

Experience, 22(7), July 1992, pp. 495.

[13] Gray, J. (cd.), The Benchmark Handbook for Database and

Transaction Processing Systems, Morgan Kaufmann, San

Mateo, 1991.

[14] Kaivalya, D., The SPEC Benchmark Suite, Chapter 6 of The
Benchmark Handbook for Database and Transaction Processing
Systems, Second Edition, Chapter 6, Morgan Kaufmann, San

Mateo, 1993.

[15] Kitsuregawa, M., Yang, W., Fushimi, S. “Evaluation of art 18-

stage Pipeline Hardware Sorter”, Proc. 6th htt. Workshop on

Dahbase Machines, Deauville France, Springer Verlag Lecture

Notes No. 368, June 1989, pp. 142-155.

[16] Kim. M.Y., “Synchronized Disk Interleaving,” IEEE TOCS,

V. 35(11), NOV. 1986, pp978-988.

[17] Knuth, E.E., Sorting and Searching, The Art of Computer
Programming, Addison Wesley, Reading, Ma., 1973.

[18] Lorie, R.A., and Young, H. C., “A Low Communications sort

Algorithm for a Parallel Database Machine,” Proc. Fifteenth

VLDB, Amsterdam, 1989, pp. 125-134.

[19] Lorin, H. Sorting, Addison Wesley, Englewood Cliffs, NJ,

1974.

[20] Salzberg, B., et al., “FastSort- An External Sort Using Parallel

Processirw”. Proc. SIGMOD 1990. DD. 88-101.

[21] Tsuker%an, A., “FastSort- An” ~xtemal Sort Using Parallel

Processing” Tandem Systems Review, V 3(4), Dec. 1986, pp.

57-72.

[22] Weinberger, P.J., Private communication 1986.

[23] Yamane, Y., Take, R. “Parallel Partition Sort for Database

Machines”, Database Machines and Knowledge Based

Machines, Kitsuregawa and Tanaka eds., pp.: 1117-130. Klwar

Academic Publishers, 1988.

242

