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Abstract 

We revisit the issue of the complexity of database queries, 
in the light of the recent parametric refinement of com- 
plexity theory. We show that, if the query size (or 
the number of variables in the query) is considered as 
a parameter, then the relational calculus and its frag- 
ments (conjunctive queries, positive queries) are classi- 
fied at appropriate levels of the so-called W hierarchy 
of Downey and Fellows. These results strongly suggest 
that the query size is inherently in the exponent of the 
data complexity of any query evaluation algorithm, with 
the implication becoming stronger as the expressibility 
of the query language increases. For recursive languages 
(fixpoint logic, Datalog) this is provably the case [14]. 
On the positive side, we show that this exponential de- 
pendence can be avoided for the extension of acyclic 
queries with # (but not <) inequalities. 

1 Introduction 

The complexity of query languages has been -next 
to expressibility- one of the main preoccupations of 
database theory ever since the paper by Chandra and 
Merlin twenty years ago [4]; see [6, l] for extensive 
overviews of the subject. It has been noted rather early 
[14] that, when considering the complexity of evaluating 
a query on an instance, one has to distinguish between 
two kinds of complexity: Data complexity is the com- 
plexity of evaluating a query on a database instance, 
when the query is fixed, and we express the complexity 
as a function of the size of the database. The other, 
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called combined complexity, considers both the query 
and the database instance as input variables; the com- 
bined complexity of a query language is typically one 
exponential higher than data complexity.’ Of the two, 
data complexity is widely regarded as more meaning- 
ful and relevant to database research, since the query 
is typically much smaller than the database, and hence 
the query size can be productively assumed to be fixed 
by comparison. 

For a broad range of important query languages (re- 
lational languages like conjunctive queries, first-order 
(i.e., full relational algebra and calculus), Datalog, fix- 
point logic, as well as constraint languages, i.e., cx- 
tensions with constraints such as arithmetic compar- 
isons, linear and polynomialinequalities etc.) data com- 
plexity predicts that the query evaluation problem is 
perfectly tractable: the complexity classes spanned by 
these query languages range from AC0 to P, well within 
what is considered satisfactory in complexity theory. 
These tractability results are often quoted in the liter- 
ature to suggest that the corresponding computational 
problems are tractable, well-understood, solved, under 
control. This implication is based on the thesis, broadly 
accepted in the theory of algorithms, that, as a rule, 
polynomial algorithms that arise in practice are usually 
fast, practical, with tolerable constant coefficient and 
reasonable exponents. Is this conclusion justified in the 
context of database query processing? 

It seems to us that neither of the two notions of 
complexity is completely satisfactory. On the one hand, 
combined complexity is rather restrictive because it treats 
queries and databases as part of the input the same way, 
even though the size p of queries is typically orders of 
magnitude smaller than the size n of the database, In- 
deed it is for this reason that the study of the complex- 
ity of query languages has mostly concentrated on data 
complexity. However, on the other hand, polynomial 
time in the context of data complexity means time ng, 

IA third kind, expression complezify assun~cs that tho 
database instance is fixed, and is rarely differentiated from tho 
combined complexity. 



and in fact the known algorithms that place the above 
mentioned languages in P have precisely such a running 
time. Moreover, in the case of fixpoint logic, this is 
known to be inherently unavoidable [14]. Even though 
q << n, it is not reasonable to consider q fixed, because 

even for small values of q, a running time of nq hardly 
qualifies as tractable, especially in view of the fact that 
n is typically huge. What should the notion of complex- 
ity be then? What we would like to have is a running 
time in which n is not raised to a power that depends 
on q, i.e. the dependence on n is of the form nc where 
c is a constant independent of the query (and hopefully 
very small). 

Let us draw an analogy with the computer-aided 
verification area. The basic problem there is the model 
checking problem: does a given program P (the ‘model’) 
satisfy a desired property 4 (expressed in some specifi- 

cation language such as LTL, propositional linear tem- 
poral logic). There have been significant advances in 
recent years in the development of algorithms and tools 
in this area, especially for finite-state programs, which 
cover an important set of critical applications. The 
model checking problem for finite state programs P and 
LTL specifications 4 is PSPACZcomplete. However, 
usually specifications are rather small (like queries) and 
programs are quite large (like databases). Fortunately, 

it turns out that the model checking problem for LTL 
specification (6 and program P can be solved in time 
exponential in 141 and linear in lPl [9]. 

Can we hope for such algorithms in the query eval- 
uation of important query languages? What are natural 
classes of queries that possess this type of algon’thms? 
These are the questions we seek to address. 

Parametric complexity provides a framework to ex- 
amine these problems. We now know that there is a 
class of reasonably natural problems that do not fall into 
this mold: parametric problems, such as “does graph 
G have a clique of size It. 7” This problem, like many 
others like it, is currently solvable only by algorithms 
of complexity nk. & uer evaluation problems lie omi- y 
nously within the scope of this category, with query 
length being the obvious analog of h in the parametric 
clique problem above. Researchers in complexity have 
recently developed a theory of limited nondeterminism 
and fixed-parameter tractability [3, 11, 5] which seeks to 
make important distinctions, along the lines suggested 
above, between problems below NP. 

In particular, parametric problems with input, say, 
(G, /?) which are solvable in polynomial time when k? 
is fixed, can be subdivided into two broad categories: 
Those for which the polynomial is of the form nf@) - 
i.e., “has k in the exponent”- and those for which it 
is of the form g(rl’) nc or some constant c, called respec- f 
tively parametrically (orfixed-parameter) intractable and 
tractable. It is of great interest to distinguish between 

these two categories, and to develop rigorous tools that 

classify problems with respect to them. Downey and 
Fellows have introduced a sequence of complexity classes 
of parametric problems, collectively called the W hierar- 
chy, which capture reasonably well this important issue 
[5]. The classes of the W hierarchy are indexed by the 

numbers 1,2 , . . ., plus two limiting classes W[SAT] and 

W[P]. These classes are quite rich in complete problems; 
the higher the W class, the less likely that the problem 
has a polynomial algorithm with time bound of the form 

s(kW. 

A point of this paper is that parametric complexity 
theory is a productive framework for studying the com- 
plexity of query languages, which puts the well-known 
tractability results of the query languages mentioned 
above under a different perspective, one that is perhaps 
more realistic, and less confusing and misleading. In 
particular, we prove that the parametric versions of the 

query evaluation problem for conjunctive queries, posi- 
tive queries, and first-order queries (i.e. relational alge- 
bra and calculus) are hard for higher and higher levels 
of the W hierarchy. Therefore, it is likely that any algo- 
rithm for the corresponding query languages must have 
the parameter inherently in the exponent; furthermore, 
this likelihood increases measurably with the express- 
ibility of the language. At present, this is only a ‘like 

lihood’ and not a ‘proof’, because proving that these 
languages are indeed not parametrically tractable would 
imply that P # NP and P # PSPACE resolving long- 
standing conjectures. For languages with recursion, like 
fixpoint logic and Datalog, there is however no such ob- 
stacle and parametric intractability is provable: Vardi 
showed already in [14] that there are flxpoint queries 
(and the proof can be adapted for Datalog) such that 
the query size must inherently appear in the exponent. 

We analyse the complexity of relational queries for 
two types of parameters: the query size q and the num- 
ber of variables v that appear in the query. The lat- 
ter parameter is motivated by recent work of Vardi [15], 
who studied the complexity of queries assuming that the 
number of variables v is fixed, while the size of the query 
can grow along with the database. He found that this 
assumption brings the combined complexity closer to 
data complexity, namely polynomial time for the above 
languages, although the polynomial now has v instead 
of q in the exponent of n. Our analysis for the two 
parameters yields generally similar results (with some 
subtle differences). 

Finally, we show a positive result which generalizes 
the main tractability result known so far in database 
theory, namely, that acyclic conjunctive queries can be 
evaluated efficiently (even with respect to combined com- 
plexity). We show that the extension of acyclic queries 
with inequalities (conjuncts of the form z # y) is para- 
metrically tractable, in that the queries can be evalu- 
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ated in time almost linear in the size of the database 
and the output, and exponential in the size of the query 
or the number of variables (this exponential dependence 
on the parameter is unavoidable, as the inequalities turn 
the combined complexity of the problem from polyno- 
mial to NP-complete). Trying to extend this further to 
< constraints leads however to parametric hardness. 

In the next section we give the necessary definitions 
from the (evolving) field of parametric complexity. In 
Section 3 we give the necessary definitions for applying 
this theory to query problems. In Section 4 we prove 
our classification results. Finally, in Section 5 we discuss 
acyclic queries with inequalities. 

2 Parametric Complexity Theory 

We introduce next the main concepts from the com- 
plexity theory of parametric problems. Our definitions 
generally follow [5]. A parametric problem is a set L of 
pairs (2, k), where z is a string and L an integer param- 
eter. A parametric problem is called fixed parameter 
(Jp.) t rat a e I t t bl ‘f h ere is an algorithm A that deter- 
mines whether (2, L) E L in time bounded by a function 
of the form f(h) . 1~1~ f or some constant c; we will say 
that A runs in f.p. polynomial time. 

Several NP-complete problems when supplied with 
a meaningful, natural parameter yield parametric prob- 
lems that are f.p. tractable. Examples: Given a graph 
and K pairs of nodes, are there node-disjoint paths be- 
tween all pairs of nodes? [12] Given a graph and an in- 
teger It, is there a path of length R in the graph? [lo, 23 
Both problems, and many others like them, have algo- 
rithms with running time f(h) . nc, where n is the input 
size and c a constant. 

In contrast, several other NP-complete problems do 
not seem to be tractable when considered as paramet- 
ric problems with the natural parameter; examples in- 
clude important problems such as clique, dominating 
set, bandwidth, etc. All these problems are solvable in 
time growing as O(nk) or a similar function, where n is 
the input length and Ic the parameter (desired clique 
size, dominating set size, and bandwidth size in the 
three examples above), and, despite considerable effort 
to this end, no algorithm for each one of them is known 
with running time without k appearing in the exponent. 

It would be very interesting to develop a refinement 
of NP-completeness theory that anticipates this sophis- 
ticated form of apparent intractability. Such a the- 
ory has been emerging from the work of many people, 
but most recently and notably Downey and Fellows [5]. 
There appears to be a hierarchy of parametric problems, 
called the W hierarchy, which classifies many of these 
problems. We first need to introduce an appropriate no- 
tion of reduction (in the literature one finds several more 
general kinds of reductions, but the one given next turns 
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out to be the more useful one, certainly for the purposes 
of this paper). 

A parametric reduction between two parametric prob- 
lems A and B is an algorithm which solves any instance 
(z:, k) of A using the answers to several instances (n, .&) 
of B, where (1) all & are upper bounded by g(lz) (inde- 
pendent of Z) for some function g, and (2) the instances 
of B and the final answer can be constructed in time 
h(k)j@, for some function la and integer s. Such reduc- 
tions are often parametric transformations, producing 
for any instance (z:, k) of A an equivalent instance (y, 4) 
of B, and running in time h(k)l# for some function h 
and integer s. 

Consider a Boolean circuit with AND, OR, and NOT 
gates and one output. We allow OR and AND gates of 
unbounded fan-in. The depth of a circuit is the longest 
path from any input to the output. Let us now de 
fine depth-t weighted satisfiability for t > 1, to 
be the following parametric problem: Given a depth-t 
circuit C and an integer k, is there a setting of the in- 
puts of C with k inputs set to 1 so that the output of 
C is l? For t = 1 we require that the given circuit C 
be a 3-CNF formula. Also, the (unrestricted) weighted 
circuit satisf iability is the same problem with no 
depth restriction: Given a circuit C and an integer k, is 
there a setting of the inputs of C with k inputs set to 1, 
so that the output of C is l? Finally, the weighted 
formula satisfiability problem is the case where 
the circuit has fan-out 1 (i.e. it is a Boolean formula). 

We are now ready to define the classes in the W hi- 
erarchy; we give the definition in terms of their com- 
plete problems. We define W[t] to be the set of all 
parametric problems that reduce to depth-t weighted 
satisf iability. The limiting classes W[SAT] and W[P], 
are the sets of all parametric problems that reduce re- 
spectively to weighted formula and weighted circuit 
satisfiability, with unlimited depth. In [5] it is 
pointed out that these classes have many natural com- 
plete problems, under parametric reductions. For ex- 
ample, clique is W[l]-complete and dominating net 
is W[2]-complete, while bandwidth is W[t]-hard for all 
t > 0. If a parametric problem is W[t]-hard, this means 
that it is very unlikely that it is tractable. The higher 
the t for which W[t]-hardness is proved (or, at the limit, 
W[P]-hardness) the stronger the implication of intractabil- 
ity. 

It should be noted that the W hierarchy, as defined 
in [5], does not appear to have the classification power 
of, say, NP-completeness theory and of the polynomial 
hierarchy, in that many natural problems are only par- 
tially classified, proved hard for one class and in another, 
higher one (or, as in the case of bandwidth, W[t]-hard 
for all t > 0 but not known to be in W[P]). This im- 
perfect classification power is apparent in our results as 
well. 



3 Parametric Complexity of Query 

Languages 

We review briefly first basic definitions on databases 
and queries. A database d = {D; RI,. . . , R,,,) consists 
of a domain D and a set of relations RI, . . . , R, over 
D. A query Q is a function that maps a database d to 
a relation Q(d) (of certain arity) over the same domain 
D. Queries are specified using que y languages. A query 
language is capable of expressing a corresponding class 
of queries. 

We will discuss in this paper the following languages 
(classes of queries): conjunctive queries, positive queries, 

first-order queries, and Datalog. Conjunctive queries 
correspond to relational algebra with selection, projec- 
tion, join and renaming (or calculus with conjunction 
and existential quantification); positive queries add union 
(disjunction in calculus) to this list. First order queries 
add set difference (negation in calculus). Datalog adds 
recursion to the positive queries. We refer to the text- 
books [13, l] for a detailed exposition. 

In the evaluation problem for a query Q, we are given 
database d and wish to compute Q(d). In the decision 
problem, we are given in addition to the database d a 
tuple t, and wish to decide if t E Q(d). When discussing 
the comple.xity of these problems, we assume a standard 
encoding of databases and queries. The complexity of 
query languages is usually measured in database theory 
via the decision problem. The combined complexity of 
a query language A is the complexity of the decision 
problem (set) {(Q,d,t)lQ E h,t E Q(d)}. The data 
complexity of a query language A is the complexity of 
the sets {(d,t)]t E Q(d)], for queries Q E A; that is, the 
query is regarded as fixed. Thus for example, the data 
complexity of a query language A is polynomial if there 
is a function f : A 4 N from queries to positive integers 
such that for every Q E A, there is an algorithm which 
on input a database d of size n and a tuple t decides if 
t E Q(d) in time 0(&(Q)). 

In order to define the parametric complexity of query 
languages, we must first decide on the appropriate pa- 
rameter to use. Two possible parameters come to mind: 
The query size q (the length of the string needed to ex- 
press the query in A), and the number of variables v ap- 
pearing in the query. Another relevant issue is whether 
we assume that the schema (set of relations and their 
arity) is ilxed or can vary. The relationship between 
the resulting four parametric problems (the query com- 
plexity problem above parameterized with v as param- 
eter, or with q as parameter, each with fixed or variable 
schema) is as depicted in the partial order below: 

V, variable schema 

V, fixed schema q, variable schema 

q, fixed schema 

Figure 1 

Proposition 1 If one of the four parametric problems 
in Figure 1 is hard for a class in the W hierarchy, then 
all problems above it are also hard. If a problem is in 
some class in the W hierarchy, then all problems below 
it are also in the same class. 

Proof.The identity map is a valid parametric reduction 

for all four arcs in the partial order. u 
It turns out that in most cases the assumption on the 

schema makes no difference (upper bounds hold for vari- 
able schema, lower bounds for fixed schema). We will 
assume in the following by default a variable schema, 
and in the few cases where a fixed schema makes a dif- 

ference we will mention what happens. 

4 A Classification of Query Lan- 
guages 

We consider the following query languages: (1) Con- 
junctive queries; (2) Positive queries; (3) First-order 

queries. All these query languages are known to have 
data complexity ACs (which is contained in LOGSPACE 
and P). 

Theorem 1 The parametric versions of the query eval- 
uation problems corresponding to these query languages 
are classified as described in the table. 

querv parameter 

Note: In the case of fixed schema, all the entries 
are the same, except that the (conjunctive, parameter 
v) problem is in W[l] (and thus, W[l]-complete) if the 
arities are fixed. 

I 

I . 
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Sketch of proof. 1. Conjunctive queries. The lower 
bounds follow by a simple reduction from the clique 
problem, which is known to be W[l]-complete [5]. For 
any instance (G, Iz) of clique we construct a database 
consisting of one binary relation G(., .) (the graph). The 
query for parameter X: is simply 

P + A G(xi,xj). 
l_<i<j_<k 

The goal proposition (0-ary relation) P is true iff G has 
a clique of size Iz. The query size is q = O(k2), while 
the number of variables is v = k, so this is a reduction 
to both problems. Note that this query just asks if the 
join of a set of binary relations is empty. 

For the upper bounds, in the case of parameter q, we 
can express any conjunctive query in 3-CNF by having 
Boolean variables that express the mapping from atoms 
of the query to tuples in the database. In the case of the 
parameter v, we have Boolean variables for the mapping 
from the query variables to the database constants. We 
omit the details from this abstract. 

2. Positive queries. For the upper bound of W[l] 
(parameter q), we transform the query into a union of 
(exponentially many in q) conjunctive queries; note that 
in this case we need the full power of parametric re- 
ductions, as opposed to transformations. The W[SAT] 
lower bound (parameter v) is by a reduction from the 
weighted formula satisf iability problem (omitted). 

3. First-order queries. The reduction is similar 
for the two cases. It is from the monotone weighted 
circuit satisf iability problem, which is known to 
be W[P]-complete. We can assume that the given cir- 
cuit alternates between OR and AND gates, and that 
the output is an OR gate, at level 2t. Our database 
contains only a binary relation C, describing the wiring 
diagram (dag) of the given circuit; the constants are 
gates (and therefore the variables will stand for gates). 
Define the following sequence of first-order queries, for 
the even (OR) levels of the circuit 

e,(x) = [c(x, xl) v c(x:, x2) v * ’ -v c(x:, zk)], 

02i(X) = $/[C(~I Y) A vX(7C(Y, 3) V fl23-2(2)]. 

Finally, the query is 

Q = 3x1322 . . .3xk82t(o), 

where o is the constant standing for the output gate 
Note: Bst is expanded fully using inductively the previ- 
ous formulas in the sequence; the formula of the query 
has size O(t + k) an uses k + 2 variables. Intuitively, d 
0si(x) means “OR gate 2 at level 2i is true, when inputs 
21, x2,. . . , Xk are set to 1,” and thus the query is true 
if and only if the given instance of weighted circuit 
satisfiability has a solution. Notice that a fixed 
schema (only a binary relation) is required. 13 
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For recursive query languages like fixpoint logic and 
Datalog, the exponential dependence on the query size 
is actually provable. Vardi showed in [14] that there are 
fixpoint (and similarly, Datalog) queries of size polyno- 
mial in k that can be computed in time nk, but not in 
nk-l, i.e. the query size is provably inherently in the 
exponent in this case. This holds even if the database 
(EDB) relations have all fixed arity, although in the Dat- 
alog case the IDB relation does not (it has arity O(k)), 
If we restrict all EDB and IDB relations to have fixed 
arity (independent of the parameter), then it can be 
shown that Datalog is in W[l] (and thus W[l]-complete) 
for both parameters. 

Can we prove for the first order languages an un- 
conditional result, as in the case of recursive languages? 
At present, this is not possible without resolving at the 
same time some of the classical conjectures in complex- 
ity theory. Recall that the combined complexity of con- 
junctive and positive queries is NP and of first order 
queries is PSPACE. Hence in the unlikely event that P 
= NP or P = PSPACE, these query languages would 
be tractable. By contrast, the combined complexity of 
fixpoint logic and Datalog is EXPTIMEcomplete and 
it is known that P # EXPTIME by the Time Hierarchy 
Theorem. 

5 A Tractable Case 

Is there a nontrivial class of queries that is paramet- 
rically tractable? Even some simple queries that in- 
volve joins are NP-complete in combined complexity, 
and, as we saw, probably parametrically intractable as 
well. Acyclic joins with projection and selection form 
the major exception to this. We will show in this section 
a nontrivial extension of that result. 

Consider a conjunctive query Q: 

G(h) + Ri, (tl), . . . , Ii!&) 

Form a hypergraph H, which has the variables of Q as 
its nodes and has a hyperedge for every atom in the 
body of Q which contains the variables that occur in 
the atom. The query Q is called acyclic if the hyper- 
graph H is acyclic. We can evaluate Q as follows. For 
every atom .&j(tj) in the body of Q, compute a rela- 
tion 5” over the set of attributes corresponding to the 
variables of tj such that a tuple is in S’ iff the corre- 
sponding instantiation of tj is in relation fij of the given 
database; 5” can be computed by performing appropri- 
ate selections and projection on ej. Let Z be the set of 
attributes corresponding to the variables of the tuple to 
in the head. Compute nz(Sr W . . . W Sd) from which we 
can easily construct the result of the query Q(d), If Q is 
acyclic, this evaluation can be done in time polynomial 
in the size of the input database d and the output Q(d) 
[16]. If we only want to check whether Q(d) is empty 



or whether a specific given tuple t is in Q(d), we can 
do it in time polynomial in the size of d (substitute the 

constants oft in the body of the rule and evaluate the 
resulting query which will be either empty or contain 
one tuple, t). 

Suppose now that in the body of the conjunctive 
query we have, in addition to the relational atoms, in- 

equality atoms xi # xj or xi # c between the variables 
or variables and constants. In this case we would nor- 
mally include in the hypergraph also edges (xi, Zj) cor- 
responding to the inequalities between the variables (see 
[13]). However, inclusion of these edges destroys acyclic- 
ity even in very simple cases. Some examples: find the 
employees t,hat work on more than one projects (G(e) + 

EP(e, P), -We, $1, p # P’, where EP is the employee- 

project relation); Find the students that take courses 
outside their department (G(s) t D(s, d), SC(s, c), 
CD(c, d’), d # d’). Of course, in general we may have 

more complicated queries with multiple relations and 
which may not be binary (i.e., a genuine hypergraph). 

Suppose that we have a conjunctive query with in- 

equalities and that the hypergraph defined by consider- 
ing only the relational atoms is acyclic. We call this an 
acyclic query with inequalities. Is the combined com- 
plexity still polynomial? Unfortunately, not: the prob- 
lem becomes NP-complete. For example, the Hamilto- 
nian path problem can be easily reduced to it. Given a 
graph (V, E), let Q be the query 

G + E(xl,x2),E(x2,~3), . . .,E(xn-I+,), 

~1#~2,~1#~3,...,~,-1#~~ 

The goal proposition (0-ary relation) G is true iff the 
graph is Hamiltonian. Here the query is as big as the 
database. However, in the more interesting case where 
the query is ‘small’, the problem remains tractable, but 
now in the fixed parameter (f.p.) sense. 

Theorem 2 The class of acyclic conjunctive queries 
with inequalities is f.p. tractable, both with respect to 
the query size and the number of variables as the pa- 
rameter. Furthermore, we can evaluate such a query in 
f.p. polynomial time in the input and the output. 

A special case is the problem of finding simple paths 
of a specified length II- in a graph. This problem was 
proved f.p. tractable by Monien [lo], and an improved 
algorithm was given in [2] using an elegant “color-coding” 
(hashing) technique. Our algorithm combines this tech- 
nique with acyclic query processing techniques. 

The basic idea is to hash the domain D into a smaller 
domain (with size bounded by the number of variables), 
and use the hash values to check inequalities, while us- 
ing the original values to check equality on the join at- 
tributes. Let Q be an acyclic query with inequalities, 
and let H = (V, E) be its hypergraph. Partition the 

inequality atoms of Q into the set 11 of atoms xi # xj 
such that the variables xi, xi do not occur together in 
any hyperedge (relational atom), and the set Iz of the 
remaining atoms (xi # c and xi # xj such that xi, zj 
are in a common hyperedge). Let VI be the set of vari- 
ables that occur in 11 and let L = IVll. Let h be a 
function that maps D to the set (1,. . . , II-). Consider 
an instantiation r of the variables. We say that r is 
consistent with h if for every inequality xi # ij of I1 
we have h(T(xi)) # h(T(y)); clearly this implies also 

that r(xi) # r(xj), b t u no necessarily vice-versa. The t 
instantiation T is satisfying if it satisfies all the (rela- 
tional and inequality) atoms in the body of Q. Let Oh 
be the set of all consistent satisfying instantiations, and 

let &h(d) = {r(tO)]T E Oh). 

Fix a function h : D ---f (1,. . . , k}. We describe an 
f.p. polynomial time algorithm that decides whether 
there is a consistent satisfying instantiation r and com- 

putes &h(d). F irs t, compute as above for each relational 
atom fij(tj) of Q a corresponding relation, apply to it 

selections that incorporate the inequality atoms xi # c 
such that xi OCCUPS in tj and xi # ~1 such that both 
xi, xl occur in tj, and let S’ be the resulting relation on 
set of attributes (variables) Uj. Let Vi be a set of new 
attributes corresponding to VI. If X s V is a set of 
(original) variables, we use X’ to denote the set of new 
attributes {x:]xi E XnVl}. If t is a tuple over X, we can 
extend it to a tuple over XX’ by letting t[xi] = h(t[xi]) 
for each xi E X’. Extend in this manner each relation 
Sj to a relation Sj over the set of attributes UjVi; note 
that 5’; has the same number of tuples as Sj and the 
new attributes take values in {I,. . . , k}. For the empti- 
ness problem, in essence what we will compute is the 
selection on inequalities of the projection on Vi of the 
join of the relations S’. The selections and projections 
can be pushed inside the join for efficiency. In more 
detail we proceed as follows. 

Let T be a join forest for H. Recall that this is a 
forest which has the hyperedges as its nodes, and with 
the property that for every attribute xi, the set of nodes 
of 7’ (i.e. hyperedges of H) that contain xi form a con- 
nected subgraph (i.e. a subtree) Ti. We assume without 
loss of generality in the following that T is a tree (oth- 
erwise, for example, we can add a new dummy node 
corresponding to the empty hyperedge and connect it 
to a node in each component). 

Root the tree at some node. For each node j of T, 
let TVj be the set of variables xi E VI - Uj such that xi 
appears in the subtree rooted at j - hence in a unique 
proper subtree rooted at a child of node j - and there 
is an inequality xi # xl of I; such that xr does not 
occur in the same proper subtree; in other words, node 
j separates the subtree Ti corresponding to xi from the 
subtree z corresponding to xl. Let yj = UjUi Wi. It 
is easy to see that the attribute sets Yj form an acyclic 
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hypergraph with the same tree T as its join tree. 
To test if &n(d) = 0, we perform a bottom-up pass 

of the tree as follows. 

1. Initialize for each node j E T a relation Pj := S’j. 

2. Process all the nodes except the root in bottom-up 
order of T as follows. To process node j of T with 
parent u, compute PU := flF(P, W nYjnY,(Pj)), 

where F is the conjunction of the inequalities xi # 
xf such that xi E Yj - UL and xf belongs to the 
attribute set of P,, at this point but not to Yj. If 
P,, = 0 then quit and report &h(d) = 0. 

3. If all nodes are processed successfully, then report 

&h(d) # 0. 

To compute &h(d) (if it is not empty), we proceed as 
follows. At the end of the first pass we have a set of rela- 
tions Pj over the attribute sets Yj. It is not hard to see 
that the join of the Pi’s is a relation over the attribute 
set VV,l that consists of all tuples r~i such that r is a 
satisfying instantiation that is consistent with h and ri 
is the extension of r to Vi. We do not actually want to 
compute the join (it is too large). We can reduce the 
relations Pj (and Sj, Sj) by removing dangling tuples, 
i.e. tuples that do not participate in the join, using a 
downward pass. We process all the nodes except the 
root top-down. To process node j with parent u, set 
PjZ=PjD<Pu. 

We then perform a second bottom-up pass to com- 
pute &h(d) = TZ(PI W . . . P,), where 2 is the set of 
variables that appear in the tuple to of the head. In 
bottom-up order we process each nonroot node j, say 
with parent u, by setting P,, := P, cu rzj(Pj), where Zj 
consists of Yj nY, and the attributes of 8’ that appear in 
the subtree rooted at node j. At the root r we compute 
rz(Pp) which is Qh(d). 

Consider a consistent instantiation r and let I be 
the number of distinct values assumed by the variables. 
Then r is consistent with at least a fraction I!/lk > eBk 
of the functions h from D to (1,. . ., k}. Thus, trying 
out a set of O(e”) random functions h will determine 
with high probability whether Q(d) = 0. For a deter- 
ministic algorithm, we can use a k-perfect family F of 
hash functions, i.e., a family F which has the property 
that for every subset S of k (or less) elements of D, there 
is a h E F that hashes S into distinct values. One can 
construct such a family F with 20tk) log IDI hash func- 
tions that can be evaluated in constant time (see [2] 
and the references therein). Then Q(d) = lJh,+&(d). 
The time complexity of the algorithm for determining 
whether Q(d) = 0 or whether a specific given tuple t is 
in Q(d), is certainly bounded by O(g(k)nlog2 n), where 
g(k) = 2O(kW) and n is the size of the database; one 
logn factor is from sorting to perform the joins and 
the second from the perfect hash family. The time to 
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compute Q(d) is bounded by O(g(k)nm log2 n) where 
m = IQ(d)] is the size of the output. 

If the parameter is q, the query size, the same theo- 
rem holds in the case where instead of a conjunction of 
inequalities in the body, we have an arbitrary Boolean 
formula 4 built from inequality atoms using V and A. 
If the parameter is V, the number of variables, then the 
problem becomes W[l]-hard if there are constants in 4, 
i.e., atoms xi # c combined arbitrarily, although it re- 
mains f.p. tractable if the atoms 2; # c appear only 
conjunctively. 

Can we extend the result to acyclic conjunctive queries 
with comparisons (< or 5) between variables or vari- 
ables and constants? Example: Find the employees 
that have higher salary than their manager (G(e) t- 
EM(e, 4, ES(e, 4, ES( m, s’), s’ < s). First, note that 
trivially any equality x = y can be expressed as the 
conjunction of the two inequalities x < y and y < x, so 
the question makes sense only if we first identify equal 
variables (otherwise, we can express trivially any con- 
junctive query by a set of atoms with disjoint variables 
and equalities). Given a conjunctive query Q with a 
set C of comparison atoms, we must first determine if 
C is consistent and find the implied equalities between 
variables and constants, which we then collapse. This is 
done (for dense orders) by forming a graph whose nodes 
are the variables and constants in C, with a directed arc 
u + w between two nodes u, w labeled < or _< if C con- 
tains the corresponding constraint u < w or u 5 UJ or 
u, w are constants with u < w. The system is consis- 
tent iff there is no strongly connected component that 
contains a < arc, and the implied equalities are that 
all nodes of the same strong component are equal (see 
eg. [8]). Let Q’ be the resulting query after collapsing 
equal variables and constants of Q, and C’ its set of 
comparison constraints (which is now acyclic). We say 
that the query is acyclic if the hypergraph correspond- 
ing to the relational atoms in the body of Q’ is acyclic. 
Can we evaluate such a query in f.p. polynomial time? 
Unfortunately, not. 

Theorem 3 The class of acyclic conjunctive queries 
with comparisons is W[l]-hard with respect to both pa- 
rameters q and v. 

Sketch of proof. We reduce from the clique problem. 
Let (G, k) be an instance of the clique problem where 
G has n nodes numbered 0, . . . . n - 1, and assume for 
notational convenience that every node has a self-loop. 
For all edges (i, j) of G and for b = 0, 1, let [i, j, b] 
denote the integer (i + j)n” + Ii - jln2 + bn + i. We 
construct a database with two binary relations P, R, 
The relation P consists of the tuples ([i, j, 01, [i,j, 11) 
for all edges (i, j) of G. The relation R consists of the 
tuples ([i, j, 11, [i, j’, 01) for all i, j, j’. The query Q is as 



follows. 

The hypergraph of the query is a graph that consists of 
paths with alternating P and R edges. It can be shown 
that the goal proposition is true iff G has a clique of size 
k. Cl 

Note that the theorem holds even in restricted cases 
(for binary relations, path queries, only < constraints 
etc.) 
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