The Complexity of Query Reliability

Erich Gradel
University of Technology Aachen
graedel@informatik.rwth-aachen.de

Abstract

The reliability of database queries on databases with uncer-
tain information is studied, on the basis of a probabilistic
model for unreliable databases.

While it was already known that the reliability of quantifier-
free queries is computable in polynomial time, we show here
that already for conjunctive queries, the reliability may be-
come highly intractable. We exhibit a conjunctive query
whose reliability problem is complete for FP#F. We further
show, that FP*F is the typical complexity level for the re-
liability problems of a very large class of queries, including
all second-order queries.

We study approximation algorithms and prove that the re-
liabilities of all polynomial-time evaluable queries can be
efficiently approximated by randomized algorithms.

Finally we discuss the extension of our approach to the
more general metafinite database model where finite rela-
tional structures are endowed with functions into an infinite
interpreted domain; in addition queries may use aggregate
functions like in SQL. Our result that reliability problems of
first-order queries have complexity FP#F also holds on this
extended model.

1 Introduction

In this paper, we investigate the reliability of queries on
databases with uncertain information.

We consider a probabilistic model: An unreliable database
is given by a pair (A, u) where 2 is a finite database (i.e. a
finite relational structure) and p is a function that assigns
to every atomic statement Ra about 2 an error probability
u(Ra). The value p(Ra) is to be interpreted as the proba-
bility that the truth value of Ra on the observed database
2 differs from the truth value of Ra on the actual database.
Thus, an unreliable database (2,) gives rise to a probabil-
ity space of databases B of the same format (that is having
the same vocabulary and the same universe) as 2, with a
probability distribution v that assigns to B the probabil-

Yuri Gurevich
Universtity of Michigan
gurevich@umich.edu

Colin Hirsch
University of Technology Aachen
hirsch@informatik.rwth-aachen.de

ity that the actual database is ®B. As we will see below,
the probabilities v(B) can be easily calculated, given (2, p)
and B. A very similar model has been considered by de
Rougemont [9].

Suppose that a user is given an unreliable database © =
(A, 1) and wants to evaluate a query ¢(z). She can evalu-
ate ¢ on the observed database 2 and gets ® := {a : A =
(@)} , but of course, what she really wants is 9™, the set
of tuples satisfying 1 on the actual database B. Even if the
error probabilities of the atomic statements on 2 are small,
it is not clear how reliable the answer ©® will be. In any
case, the user would be interested to know how closely
approximates the result of ¢) on the actual database. Since
the actual database is available only as a random variable,
the relevant notions measuring the reliability are of a statis-
tical nature.

The ezpected error Hy (D) of ¢ on an unreliable database ©
is the expected Hamming distance between the query eval-
uated on the observed database and the query evaluated on
the actual database, that is, the number of tuples where %
differs from ™. The reliability or fault tolerance of a k-ary
¥ on D is

Hy (D)

1 ¥\ ~)

Ry(D) == e

where n is the cardinality of the database. More details are
given in Sect. 2.

We study here the complexity of computing the reliability of
queries in various query languages. We formulate this more
precisely: Fix a query language L; the reliability problem
for an L-query v (Z) is this: Given an unreliable database
D, compute the reliability Ry (D).

It would be desirable to have efficient algorithms for calcu-
lating query reliabilities. One could then combine (efficient)
query evaluation with efficient algorithms calculating relia-
bilities. As answer to a query, the user then not only gets
the evaluation on the observed database, but also some in-
formation on how good this evaluation can be expected to
be.

Note that we measure the complexity of the reliability prob-
lem of a query v in terms of the size of (an appropriate
encoding of) the unreliable database. In database terminol-
ogy, we study the data complexity (rather than the expres-
sion complexity or combined complexity) of query reliability.
This makes sense since the queries are usually given by small
expressions, whereas the size of the databases may be huge.

De Rougemont [9] proved that the reliability is computable
in polynomial time for all quantifier-free queries. He further
claimed that the same holds for all first-order queries. How-
ever, this is unlikely to be true, since we will prove below
that there exist first-order queries, in fact even conjunctive
queries, whose reliability problem is complete for FP#F | the
class of functions computable in polynomial-time with ac-
cess to an oracle computing a #P-function. Since it is gen-
erally conjectured that #P is a much larger class than P (it
comprises the entire polynomial-time hierarchy), we cannot
hope for efficient algorithms for the reliability of arbitrary
conjunctive queries, let alone first-order queries.

We will then show that FP#Y is the typical complexity level
for the reliability of database queries. Indeed, for all second-
order queries (i.e. for all queries in the polynomial-time
hierarchy), the reliability problem is in the class FP#F. This
strengthens another claim of de Rougemont.

Given that the reliability is easy only for quantifier-free
queries, and hard to compute already for conjunctive queries,
it is desirable to have efficient approzimation algorithms. We
will prove that there do exist fully polynomsial-time random-
ized approzimation schemes (FPTRAS) for the probabili-
ties of existential sentences on unreliable databases. This
is a rather strong notion of approximability which is often
used in the context of counting and probability problems. It
means that the result can be efficiently approximated with
any desired degree of certainty to any desired degree of ac-
curacy. (A precise definition is given in Sect. 5.) The ex-
istence of FPTRAS for the probabilities of existential sen-
tences implies a slightly weaker notion of approximability
for the reliability of any existential or universal query. Our
version of approximability gives a bound on the absolute er-
ror, rather than the relative error as in an FPTRAS. We
then discuss whether this weaker notion (which is sufficient
for most practical purposes) can be strengthened to an FP-
TRAS for reliability. Some observations on the complexity
of absolute reliability imply that this is unlikely. Not even
the reliability problems of all existential queries admit an
FPTRAS, unless NP collapses to BPP. We then proceed
to show that our weaker version of approximability can be
extended to include the reliability of all polynomial-time
evaluable queries.

In the last section, we briefly discuss the extension of our ap-
proach to the more general metafinite database model where
finite relational structures are endowed with functions into
an infinite interpreted domain; in addition queries may use
aggregate functions like in SQL. Our result that reliability
problems typically have complexity FP#Y also holds on this
extended model.

Related Work Considerable research has been conducted
on other aspects of probabilistic databases. Zimdanyi [13]
gives an in-depth study of queries and query evaluation
methods on probabilistic relational databases, that are given
by probabilistic first-order theories. A relational algebra
query applied to such a database yields a probabilistic re-
lation, where each tuple is assigned a probability. A sound
and complete method for evaluating queries is developed.
Notably query decomposition requires an extension to how
intermediate results are stored in order to correctly cal-
culate the result probabilities. Lakshmanan and Subrah-
manian present another version of probabilistic databases
and can even document a successfull implementation [6]. A
large number of results specialize on probabilistic deductive
databases (see [5, 10] for details and further references).

2 Unreliable databases

Definition 2.1. An unreliable database is a pair © = (U, p)
where ® is a finite relational structure and g a probability
function on the set of atomic statements Ra about 2. The
value p(Ra) is the probability of the event that the truth
value of Ra on 2 is wrong (i.e., that either Ra holds in
but not in the actual database, or that Ra holds in the actual
database, but not in). We call 2 the observed database.

For every sentence ¢, let Wrong(y) be the event that the
truth-value of ¢ in the observed database 2 differs from the
truth-value of ¢ in the actual database. Thus p(Ra) is the
probability of the event Wrong(Ra). It is supposed that the
events Wrong(Ra) are independent.

An unreliable database © = (2, p) induces a probability
space (D) of databases B that have the same format as 2
(i.e. the the same universe and the same vocabulary), with
a probability distribution v such that v(8) is the probablity
that the actual database is B. We are going to define the
space (D) precisely and compute the probabilities v(8).

For every atomic statement ¢, let

Doy = d L ulp) A=
(¢)_{u(¢) if A = —p.

v(¢p) is the probability that ¢ holds in the actual database.
We extend v to literals (atomic statements and negated
atomic statements) in the obvious way, by putting v(—¢p) :=
1 —v(p). Let Lit(*B) be the set of literals that are true in
8. Then

p€ELit(*B)

Note, that given (2, 1) and a database B of the same format
as 2, the probability v(B) can be easily computed.

Remark. There is another way of defining an unreliable
database. Instead of presenting 2 and p, just give, for every
atomic statement R(a@) the probability v(Ra) that Ra holds
in the actual database. This directly leads to the probability
distribution over the possible databases and does not start
out from a particular observed database. For theoretical
considerations it does not really matter which approach is
chosen. However, we believe that the definition used here
represents the situation in practice more closely.

Query reliability. For every relational query v(Z) of
arity k > 0, and every database 2, let ¥* = {a € A
2 = (a)}. The Hamming distance between ¢* and ™
is the cardinality of the symmetric difference ¢ A ™, i.e.
the number of tuples contained in ¢ but not in ¥ or vice
versa.

Definition 2.2. Fix an unreliable database ® = (2,) and
a k-ary query v. The expected error Hy(®D) of ¢ on D is
E(|p* A ™]), the expected Hamming distance between *
and ¥® for randomly selected B € Q(D). The reliability or
fault-tolerance of 1 on ® is Ry (D) := 1 — [Hy(D)/n*].

Note that in the important case where k = (0, we have that
0§H¢§1andR¢=1—H¢.

For any fixed query v, the expected error Hy and the relia-
bility R, are numerical invariants, i.e functions assigning to

any unreliable database © the numbers Hy (D) and Ry (D)
respectively. We are interested in the complexity of these
invariants for queries in various query languages.

Complexity. For all complexity considerations, we as-
sume that the error probabilities in the given unreliable
databases are rational numbers, encoded in some standard
way. FP denotes the class of functions that are computable
in polynomial-time. The class #P consists of all functions
f from strings over a finite alphabet into N for which there
exists a nondeterministic polynomial-time Turing machine
M such that the number of accepting computations on any
input for M coincides with the value of f on that input.
A function is #P-hard, if there are polynomial-time Turing
reductions to it from all problems in #P. If, in addition,
the function is in #P, it is #P-complete. For many NP-
complete decision problems and also for some problems in
P, the related problem of counting the number of witnesses
(rather than determining whether there exists at least one) is
#P-complete. For background on #P we refer to [3, 7, 11].
Many query reliability problems are closely related to the
class #P, although they technically do not belong to this
class, since they are not taking values in N. They belong to
the class FP#Y | i.e. they are computable by a polynomial-
time algorithm with access to an oracle for a #P-function.
Obviously, a function is FP#¥-hard if and only if it is #P-
hard. To prove that a reliability problem in FP#¥ is in fact
FP#Y_complete, it therefore suffices to reduce a #P-hard
function to it.

3 Quantifier-free and conjunctive queries

We first consider queries from very basic languages, with
extremely restricted expressive power, so that there is hope
to get efficient algorithms for calculating the reliability. In-
deed, the quantifier-free queries do admit such algorithms.

Proposition 3.1 (de Rougemont).
Let ¥(Z) be any quantifier-free query. Then Ry, the relia-
bility problem for 1, is computable in polynomial time.

Proof. Let 1 be a k-ary quantifier-free query and © = (2, p)
a probabilistic database. Due to the linearity of expectation
we can swap expectation and summation. Hence it suffices
to show that Hy 5y can be calculated in polynomial-time for
any tuple a. The claim then follows due to

1
Rw = 1 - WZHw(d)

For each tuple @ we interpret ¢(a) as a propositional formula
by taking the atomic statements as propositional variables
UV=01...Un(yp)- Since the number of atoms in 1 is indepen-
dent of the database we only have a fixed number n(1)) of
propositional variables. Using the error function g we can
assign a probability to each truth assignment of v. Hence by
evaluating ¥ once for each such truth assignment and com-
paring the result against ¢ we can calculate the expected
€error. O

However, as we prove next, it is unlikely that Proposition 3.1
can be generalized to all first-order queries. In fact, not
even the expected errors of all conjunctive queries can be
computed in polynomial time, unless all #P-functions are
polynomial-time computable.

Recall that conjunctive queries are queries of the form
Elacl---Eka(cpl /\"'/\(,0[)
where each ¢; is atomic.

Proposition 3.2. There ezist conjunctive queries v such
that the problem of calculating the ezpected error Hy (and
hence the reliability Ry) is #P-hard.

Proof. We will reduce the problem #MONOTONE 2-SAT to
the problem of computing Hy for a particular conjunctive
Boolean query 1. The problem #MONOTONE 2-SAT was
proved to be #P-complete by Valiant [11]. Its input in-
stances are propositional formulae in 2-CNF without nega-
tions, i.e. formulae of the form /\?=1 Y; V Z; where Y; and
Z; are propositional variables. The desired answer is the
number of satisfying assignments.

A propositional formula of this form can be modeled by a
structure (A, L, R) where the universe A is the (disjoint)
union of the set of clauses and the set of propositional vari-
ables of the formula, and the atomic statements Luv (resp.
Ruv) express that the left (resp. right) variable in clause u
is v. Further, we model an assignment of truth values to the
propositional variables by the set S of variables that are set
to false under this assignment.

Given a positive 2-CNF formula A, Y; V Z; one can con-
struct in polynomial time the unreliable database (2, p)
where 2 = (A, L, R, S) models the given formula together
with the assignment that sets all variables to false (thus S
is the set of all variables in the formula). The error prob-
abilities are defined as follows: All atomic statements Luv,
Ruv have error probability 0, and

1/2 if v is a variable
S =
n(5v) {0 otherwise.

Thus the probability space associated with (2,) is essen-
tially the uniform distribution over all assignments of truth
values to the variables in the given 2-CNF formula.

Now, consider the conjunctive query
¢ = JxIyFz(Lxy A Rxz A Sy A Sz)

which expresses, on A = (A, L, R, S), that the assignment
defined by S does not satisfy the formula modeled by (A, L, R).
Clearly 2 = ¢ and the expected error Hy (2, p) is just the
number of assignments that satisfy the given formula, di-
vided by the total number of assignments. Thus, if we could
calculate the expected error of v in polynomial time, we
could solve #MONOTONE 2-SAT (and thus any problem in
#P) in polynomial-time.

It is easy to see that computing Hy and Ry is in FP#" for
all conjunctive . In fact, we will prove a much more general
result below.

Remark. The model for unreliable databases studied by de
Rougemont [9] is slightly different from ours. In his model,
only positive data are unreliable. To put it differently, he
only considers unreliable databases (2, u) where A = —Ra
implies that p(Ra) = 0. For complexity considerations this
gives no essential difference. In particular, Proposition 3.2
holds also for the restricted model. In fact, our proof carries
over directly, since the reduction from #MONOTONE 2-SAT
assigns positive error probabilites to positive atomic facts
only. For further details, see [2].

4 Second-order queries

In this section we prove that the reliability problem is in the
class FP#Y for all second-order queries. In particular, this
includes all Datalog queries (for which the result has already
been proved by de Rougemont) and all fixed point queries,
but goes far beyond these languages.

The proof is straightforward for queries that can be evalu-
ated in polynomial time'. The extension to arbitrary second-
order queries is based on two facts.

First, it is a well-known result in finite model theory, that
the problems expressible in second-order logic are precisely
the problems in the polynomial-time hierarchy PH. The sec-
ond fact is a theorem from structural complexity theory, due
to Regan and Schwentick [8], which gives a very special pre-
sentation of arbitrary problems in PH in terms of a single
bit of a #P-function.

Theorem 4.1 (Regan, Schwentick).

For every problem D in the polynomial-time hierarchy and
every polynomial q, there ezxist a #P-function f and a poly-
nomial t such that for every input & (of length n) for D, the
binary representation of f(x) has the form

yoq(n) D(z)oq(n) z

where y,z € {0,1}", |z| = ¢(n) and where D(z) =1 ifx € D
and D(z) = 0 otherwise.

Theorem 4.2. Let ¢ be a second-order query. Then the
problem of computing the reliability Ry is in the class FP#Y,

Proof. Let v be a k-ary second-order query. Since Ry (D) =
1 —[Hy(®)/n*] and

Hy(®)=) Hy@()
acAk

where Hy (D) is the expected error of the Boolean query
(@), it suffices to show that the expected error of Boolean
queries is in FP#Y. In the sequel, ¢ is a second-order sen-
tence.

We have to show that there exists an FP#¥-algorithm which,
given an unreliable database © = (2,), computes Hy (D),
which in this case is just the expectation that ¢ # ¢ for
randomly chosen B € Q(D).

We first evaluate 1 on 2 and store the truth value »® for
later use. Since PH C P#¥ this is within complexity FP#F.
We then calculate (in polynomial-time) the least natural
number g such that v(B) - g € N for all B € Q(D).

We can compute g in polynomial time as follows. Given
(A, .u) we can easily compute the sequence of probabilities
v(Ra) for all atomic statments of 2. Further we can assume
that these probabilities are normalized, i.e. numerator and
denominator are relatively prime. Initially let ¢’ = 1. Then
successively calculate the gcd b between the so-far result g’
and the next denominator d. If b = d then d is a factor of g’
and we continue the loop. Otherwise take g’ - d/b as g for
the next round. In the end let g = ¢'.

1In fact even for all UP-queries, where UP (for unambigous poly-
nomial time) is the class of languages decided by nondeterminstic
polynomial-time Turing machines with at most one accepting compu-
tation path.

This indeed yields the smallest possible g. According to the
choice of g there can be no g’ < g which always produces an
integer when multiplied with the denominators of the prob-
abilities. The existence of a ¢’ < g which always produces
integers when multiplied with the probabilities themselves
would imply the existence of a factor h > 1 occuring in
all numerators. Since ¢’ | ¢ this contradicts the fact that
all probabilities were assumed to be given in a normalized
representation.

We claim that there exists a nondeterministic algorithm M
such that g - Pr[B =] is computable in polynomial time
from the number of accepting computation paths of M on 2.
From g - Pr[®B & ¢] and ¢, we can immediately calculate
Hy (D).

The algorithm M nondeterministically guesses truth values
for all atomic statements Ra on 2. In the resulting compu-
tation tree each leaf sees a different database B € Q(D). At
each leaf, the computation tree is then split again v(B) - g
times to reflect the probability of the guessed database. (Re-
call that v(B) and g are computable in polynomial time.)
Then 1 is evaluated on ‘B.

In the case that ¢ can be evaluated in polynomial-time,
the algorithm just checks at each leaf, whether B = 1.
Thus the number of accepting computation paths will just
be g - Pr[B = v].

In the case that ¢ is in PH but not in P, we apply Theo-
rem 4.1. Let the polynomial ¢ be chosen in such a way that
29" exceeds the number of leaves of the computation tree
constructed above (where n is the length of the input D). At
each leaf we apply to B the nondeterministic polynomial-
time algorithm whose number of accepting computations on
B has a binary representaion of the form

y()fl(n)w‘B 0¢(m) ,

with |z| = ¢(n), t a polynomial. The total number of ac-
cepting paths of M on ® is the sum over all these numbers.
Note that we add up less than 297*) numbers of this kind,
and in each of these, the relevant bit ® is separated from
the ‘junk’ y and z by g(n) 0’s. Thus, even after adding up,
the ‘junk’ cannot interfere with the relevant information, i.e.
in the total sum we can still see the sum of the relevant bits
¢ which is precisely g - Pr[B | v]. O

Thus, we have proved that the reliability problem is in FP#¥
for all second-order queries, and that there even exist con-
junctive queries whose reliability problem is FP#F_complete.

5 Approximability and absolute reliability

In this section we will establish an approximability result for
the reliability of existential and universal queries. We use a
rather strong notion of approximation algorithms which is
often used for #P-functions, namely fully polynomial-time
randomized approrimation schemes. Let f be a function
with values in an ordered numerical domain like N, Q or R,
and let €, 6 be positive rational numbers. We say that f has
a polynomial time randomized (g,0) approzimization algo-
rithm, if there is a polynomial-time randomized algorithm
M, such that for all inputs x € dom(f)

P @) >e| <9 (1)

A fully polynomial-time randomized approzimization scheme
(FPTRAS) for f is an algorithm M that takes besides z also
¢ and ¢ as inputs, such that (1) holds for all £, > 0 and the
running time of M is polynomially bounded in the length
of z, and also in 1/¢ and 1/4. It is known that a number
of #P-complete functions admit an FPTRAS. We will show
that this is also the case for the probabilities of existential
queries.

We proceed as follows: We will reduce the problem of calcu-
lating the probability of an existential query to the problem
of calculating the probability that a given propositional for-
mula in kDNF is true given a probability for each of its
variables. For this problem, we can show the existence of an
FPTRAS using a result of Karp and Luby [4].

From FPTRAS for the probabilities of existential sentences
we obtain a slightly weaker notion of approximability for the
reliability of any existential or universal query. This weaker
version is sufficient for most practical purposes. We then
discuss whether it can be strengthened to an FPTRAS for
reliability.

Definition 5.1. Let C be a class of propositional formulae.
Then #C' is the corresponding counting problem and Prob-
C is the corresponding probability problem:

e #C': Given a formula ¢ € C, calculate the number of
assignments (to the variables in ¢) that make ¢ true.

e Prob-C: Given a propositional formula ¢ € C, and a
probability function v that assigns to each variable X
of ¢ a probability v(X) = Pr[X = 1], calculate the
induced probability v(¢) of ¢ being true.

In the following we are interested in DNF, the class of propo-
sitional formulae in disjunctive normal form, and kKDNF, the
class of DNF-formulae where each disjunct has at most k lit-
erals.

Theorem 5.2 (Karp, Luby).
The problem #DNF admits an FPTRAS.

We use this theorem to derive a similar result for the prob-
lems Prob-kDNF.

Theorem 5.3. For all k € N, the problem Prob-kDNF ad-
mits an FPTRAS.

Proof. Let p be a kDNF formulaandletv: {X1,... ,Xn} —
[0, 1] be a probability function on the variables of . We will
transform (i, v) into an appropriate instance " for # DNF.

For each variable X of ¢, with probability v(X) = p/q we in-
troduce new propositional variablesY = Y;_;,..., Y, where
¢ = len(q), the length of the shortest binary representation
of g. We write val(Y) for the natural number with binary
representation Y.

We first note that for every b € N and ¢ > len(b), we can
efficiently construct DNF-formulae of length O(£?) express-
ing “val(Y) < b” and “val(Y) > b”, respectively. Indeed,

if bp_1---bo represents b in binary then “val(Y) < b” is ex-
pressed by

i<l i<j<4L
b;=1 bj=0

The formula for “val(Y’) > b” is similar.

We now replace in ¢ every occurence of the literal X by
the formula “val(Y) < p” and every occurrence of =X; by
“val(Y) > p”. This operation is performed for all variables
X of ¢ (taking a sequence of fresh variables ¥ for each X)
and the resulting formula is transformed into DNF to obtain
¢'. Note that this process may increase the length of ¢’ ex-
ponentially in k£ but (since the original formula is in kDNF)
only polynomially in the length of ¢ and in the number of
bits used for the probabilities.

In the case that all probabilities v(X) are dyadic rationals,
i.e. of the form 10/2‘57 we are done. Indeed, for each variable
X of the original formula ¢, we have £ variables Y; there
are p assignments satisfying the formula “val(Y’) < p” cor-
responding to the literal X, and 2° —p assignments satisfying
“val(Y) > p” corresponding to the literal ~X. Hence the
probability v(¢) is just number of assignments satisfying ¢’
divided by the total number of assignments.

However, if the denominators of the probabilities v(X) are
not powers of two, this is no longer the case. Consider the
case that v(X) = p/q with ¢ < 2Z._We still have p assign-
ments satisfying the formula “val(Y) < p” (corresponding
to X) and 2° — p assignments satisfying “val(Y) > p” (cor-
responding to —X). However, we should have only ¢ — p <
2t —p assignments corresponding to —X. Call an assign-
ments to Y illegal if it satisfies the formula “val(Y) > ¢”.
The probability v(p) is the number of legal assignments sat-
isfying ¢’ divided by the total number of legal assignments.
We can easily calculate the total number of legal assign-
ments (the product of all denominators of the probabilities
v(X)) and hence the total number of illegal assignments. To
determine the number of legal assignments satisfying ¢, we
transform ' into a new formula ¢” that is implied by ¢’
and, in addition, is satisfied by all illegal assignments. For
instance, we can take for ¢’ the disjunction of ¢’ with the
formulae “val(Y') > ¢” for all sequences Y that we have in-
troduced for the variables of . Clearly ¢ is in DNF and
can be constructed in polynomial time.

The number of legal assignments satisfying ¢’ is the number
of all assignments satisfying ¢” minus the total number of il-
legal assigments. Hence, by using the FPTRAS of Karp and
Luby for #DNF to approximate the number of assignments
for ¢", we get an FPTRAS for calculating v(yp). O

We are now in a position to prove our approximability result.

Theorem 5.4. Let) be any boolean existential query. Then
the probability v(v) (that ¢ holds in the actual database) ad-
mits an FPTRAS.

Proof. Let ¥ = Jyp(y) be an existential query, where ¢ is
quantifier-free and in kDNF, for some k£ € N.

Given a probabilistic database © = (2, u) with n elements,
we first calculate (as explained in Sect. 2) the probabilities
v(a) for all atomic statements « on 2. We then replace the
quantifiers in ¢ by disjunctions over all possible values:

$(@) = 3hp(@,5) — \/ (@,b) = ¢'(@).

b

Now we let 1" be the propositional formula obtained from 1’
by replacing equalities by their truth values and considering
atomic statements Rc as propositional variables. Note that
the number of variables per conjunction does not depend
on the size of ®, so ¢" is a propositional formula in kDNF

whose length is polynomial in 7, and the function v defines
probabilities for the variables of ¢". Obviously v(y") is
just the expectation that v holds in a randomly chosen B €
Q(®). By Theorem 5.3 we have an FPTRAS for calculating

v(y'"). O

Theorem 5.4 implies that the reliability of existential and
universal queries can be approximated in the following sense.

Corollary 5.5. Let ¢ be an existential or a universal query.
Then there exists a polynomial-time randomized algorithm
M such that for all unreliable databases ® and all €,6 > 0

Pr[|Ry (D) — M(D)| >] < 0.

Proof. If 1 is an existential or universal Boolean query this
is immediate from Theorem 5.4, since for every database
D = (A, p) either Hy = v(¢) and Ry = 1 — v(y) or vice
versa, depending on whether ¢ holds in 2, or not.

For k-ary queries with k > 0, we can approximate Hy by
taking the sum of appropriate approximations (with error
e/n* and probability d/n"*) for Hy(a) over all k-tuples a.
Since Ry = 1 — Hy /n" this gives the desired result. d

The notion of approximability used in Corollary 5.5 is tech-
nically weaker than the existence of an FPTRAS, since ¢
bounds the absolute rather than the relative difference of
M(®) and Ry (D). For practice, this weaker notion is of
course sufficient: It is certainly good enough to compute
the reliability up to an absolute error of, say, 1/10°000, even
if the actual value is very close to 0 (and we hence cannot
say anything about the relative error).

Nevertheless it is theoretically interesting, whether the relia-
bility of existential or universal queries admits an FPTRAS.
By analyzing the associated decision problem, we see that
this is unlikely.

Definition 5.6. Fix any query v¢. Let ARy, be the set of
all unreliable databases © where Ry (D) = 1. We call de-
termining whether a given ® belongs to ARy the absolute
reliability problem.

Lemma 5.7. Let v be a quantifier free query.
Then ARy € P.

Lemma 5.8. Let ¢ be a polynomial-time evaluable query.
Then ARy € Co-NP.

The proofs are simple: In the first case Ry is computable
in polynomial time. In the second case guess a database B
and check whether the truth values ¥* and ™ differ. For
our further observations we take a closer look at existential
queries.

Lemma 5.9. There exist ezistential queries 1 such that AR,
1s Co-NP-hard.

Proof. We reduce the problem of 4-colourability of graphs
to the complement of ARy for some existential query .

Besides the edge relation E we let our language contain two
unary relations Ri, R» together giving one of 4 colours for
each node. Now consider the query

¢ = Jzy(Exzy A (Riz <> R1y) A (R2z <> Ray))

expressing that two connected nodes share the same color,
i.e. that Ry, R2 do not represent a correct 4-colouring.

Given an arbitrary graph G = (V, E) we now construct a
database ©® = (2,). The universe V and graph relation
E are taken unchanged. For our given database A we let
Ry, R> = @ giving all nodes the same colour. The error
function p is such that p(Euwv) = 0 and p(R;v) = 1/2 for
all nodes u,v € V, i = 1,2. Note? that 2 | ¢. For this
construction the existence of a 4-colouring for G is equivalent
to ® € ARy. O

For our existential non-4-colouring query 1 we can approx-
imate the reliability Ry, however we do not know how to
approximate the expected error Hy. A simple observation
shows that the existence of an FPTRAS for the reliability of
all existential queries without precondition for ® (and hence
the approximability of both H, and R, for all existential or
universal queries) is highly unlikely.

Lemma 5.10. Let f be any function such that the associ-
ated decision problem {z : f(z) > 0} is NP-hard. If, for
some e < 1, 6 < 1/2, f admits a randomized polynomial-
time (g,0)-approzimation algorithm, then NP C BPP.

The proof is straightforward.

Note that the decision problem associated with the expected
error Hy is the complement of the absolute reliability prob-
lem ARy. Hence there exist existential queries (such as the
non-4-colouring query) whose expected error does not admit
an FPTRAS, unless NP C BPP.

As we cannot expect any positive results using an FPTRAS
for reliability calculations we take a look back at Corol-
lary 5.5. Relaxing our bound on the allowed error gave
us a positive, if weaker, approximability result. We will
now derive a similar result for all polynomial-time evaluable
queries. The proof is based on methods used in [4] for de-
veloping an FPTRAS for #DNF. We will make some mod-
ifications in order to obtain a result for all polynomial-time
evaluable queries.

Lemma 5.11 (Karp, Luby).

Let {X;} be a sequence of independent random variables, all
tdentically distributed with values in [0,1] and ezpectation
p:=E(X;) < 0.5 for all i. Then for all e € (0,1),

X; 4+ -+ X —2e2tp
Pr[%—p‘%ﬁ-p] <2-e(9(1"’)).

Theorem 5.12. Let v be a polynomial-time evaluable query.
Then there exists a polynomial-time randomized algorithm
M such that for all probabilistic databases ® and £,6 > 0

Pr[|Ry(D) — M(D)| > €] < 4.

Proof. The proof is based on methods used by Karp and
Luby in [4] for constructing an FPTRAS for #DNF.

In case v is not a Boolean query we use the same idea as in
the proof of Lemma 5.5 and approximate the query reliabil-
ity using the sum over all approximations for each possible
valuation of the free variables, if with stricter bounds. For
the following let) be a polynomial-time evaluable Boolean
query and let® ¢ € (0,1/2) be a rational.

Let ® = (2, 1) be a probabilistic database and ¢, > 0. We
begin with a modification of © and . Let R be a new unary
relation and let ¢, d be two new constants. We define a new
database ®' = (', u’) and query ', where

2Quietly ignoring the case where E = &.
3Note that ¢ is chosen prior to knowing any one of ©, ¢ or 4.

e ' = (A, R,c,d) with R= @ and ¢ #d,

oy)€ ifP=Randa=cora=d,
* w(Pa) = {N(Pa) otherwise,
e ' =(¢V Rc) A Rd.

Now let B’ be a random variable taking values in Qg with
distribution »’ as induced by u'. We define a random vari-
able X through X = 1/)‘3’ and let {X;}i>0 be a sequence of
independent identically distributed random variables where
each X; is distributed as X. It follows that for p := E(X) =
V' (¢") we have

0<&<pLe<)e

For the upper bound of p note that on top-level 9’ contains
a conjunction with the atom Rd. Since R is empty in £,
V' (Rd) = p'(Rd) = €. Tt follows that p = ¢ - € for some
0 < g < 1. For the lower bound note that v’ is true if Rc
and Rd hold. For the number of repetitions in Lemma 5.11
we let

t=t(c,0) = [u%lnﬂ

Due to ¢ being fixed, ¢ is bounded by a polynomial in 2

and 3. Further the X; are polynomial-time computable,

too. It follows that our approximator X = M is

polynomial-time computable. The modifications of ® and
¥ lead to our X satisfying the preconditions of Lemma 5.11.
A few simple transformations on the probability bound in
the result of Lemma 5.11 show that for our choice of ¢t we
get

Pr|:X1+';+Xt

—p‘>€-p]<5. (2)

It follows from our construction that

_ =€)
hence using
_(X-e)
e @
as approximation for (1)) satisfies
Prila —v(y)| > 2 €] <. (5)
To see why (5) holds, first note that £ < 0.5 and therefore
§2
- <1. (6)

We use (3) and (4) to substitute X and p in (2) and obtain
Pr(|(§ — €)@ —v(®)| > & (€ + (- rw)] <4,

or equivalently

Pr |a—1/(1/))|>€-<§_£§2+1/(1/))>] <5,

Due to (6) and v(¢)) < 1 we are done.

Together with above observations that the X; are polynomial-
time computable and that ¢ bounded by a polynomial in %
(and hence in 2/¢) and 1/4, (5) shows that our approximator
satisfies the required bounds. Given an ¢ as allowed error
we simply use €/2 in our algorithm. O

6 Metafinite databases

We have so far considered databases given by finite rela-
tional structures and queries represented in a purely logi-
cal language (like first-order logic, Datalog, or second-order
logic). We briefly discuss the extension to a more general set-
ting, where we may also have functions into possibly infinite
interpreted domains and aggregates or multiset operations.
The formal framework is that of metafinite model theory as
presented in [1]. As pointed out in [1], we believe that ag-
gregates are adequately modeled by multiset operations.

Fix an infinite structure R together with a collection of mul-
tiset operations. In typical applications SR will be many-
sorted, with domains like N, Q etc. and (as in SQL) with
multiset operations like), min, max, average, ... over ap-
propriate domains. We assume that R contains two distin-
guished constants 0,1 and functions corresponding to the
Boolean operations. Further we require that all functions
and multiset operations present in R are efficiently com-
putable (with respect to an appropriate machine model).

Definition 6.1. An unreliable functional database over R
is a pair ® = (2, v), where % = (A, F) consists of a finite
set A and a finite set F of functions of the form f: A¥ - R
(where R is the universe of 2). The probability function
v assigns to every equation of the form f(a) = r (where
f € F, ais atuple over A whose length matches the arity of
f, and r € R) the probability v(f(a) = r) that this equation
holds in the actual database. These events are assumed to
be independent for f(a) =r, f'(a’) = r' provided that f, f’
or @,a’ are distinct. Further we assume that for all f and a,
only finitely many values appear with positive probability
—1ie {r e R:v(f(a) =r) > 0} is finite — and that the
probabilities v(f(a) = r) are defined consistently, that is

for all f and all @ .

This assigns a probability v(2B) to every database B of the
same format as 2. It is an immediate consequence of the
definition just given, that for every unreliable functional
database (21, p)

e The number of databases B with v(8B) > 0 is finite,
and in fact bounded by 2°" where p is a polyno-

mial and 7 is the length of an appropriate encoding
of (A, p).

e For every B, the probability v(B) is efficiently com-
putable.

In the terminology of [1], functional databases are a special
class of metafinite algebras. A query on databases of this
kind is a global function F', associating with 2 a function
F? . A¥ - R. Note that for the case k = 0, the query
associates with every database 2 a numerical value F® € R.

A query language can be defined as a calculus of terms, with
the proviso, that variables range over the finite set A only
(not over R)*.

*As shown in [1], by forbidding the use of variables ranging over the
infinite interpreted domains in %R, one can avoid most of the inherent
evils pertaining to infinite structures.

For instance, the quantifier-free queries on databases (A, F)
over R contain the terms f(Z) for every name f of a func-
tion in F and are closed under applications of functions in
PR (with fixed interpretations like + or -) to terms. Let
us further assume that we have in 98 multiset operations
>, 1], max, min etc. We then get an appropriate notion of
first-order queries by taking the closure of the quantifier-
free queries under applications of multiset operations and
applications of functions in 8. Multiset operations play a
similar, but more general role than quantifiers do in the
relational setting. For instance, given a term F(Z,y), one
defines a new term G(z) of the form }° F(z,y). In par-
ticular, the operations max and min can be seen as more
general variants of existential and universal quantifiers. We
refer to [1] for a more detailed treatement and examples.

Most of the methods and results for the finite relational
case go through for metafinite databases. For instance,
the reliability of quantifier-free queries is still polynomial-
time computable. The reliability of first-order queries is in
FP#P. The proof is essentially the same as for finite rela-
tional databases: On each branch of the computation tree
one of the finitely many possible databases is guessed; the
computation is then split further according to the probabil-
ity of the guessed database. Finally the query is evaluated
and the result compared against the result on the observed
database.

The class of second-order queries on metafinite databases is
defined by extending first-order queries by multiset opera-
tions over relations (rather than tuples). For instance, given
a term F'(S,T,z) with free second-order variables S,7" and

free first-order variables Z, we build a new term Y ¢ F(S, T, Z).

For reasonable choices of second-order operations (like),
max, min) the expressive power of second-order queries lies
between #P and PSPACE. It is in FPCY where CH is the
so-called counting polynomial hierarchy that has been in-
troduced and studied by Wagner [12]. There are a num-
ber of equivalent definitions of the class FPCH; for instance
it is the closure of the polynomial-time computable func-
tions under the #-operation. Other characterizations in-
volve second-order counting quantifiers or closures of some
basic arithmetical functions under exponential summation
and substitution. For details we refer to [12].

The simple algorithm described above for computing the
reliability of first-order queries applies also to second-order
queries. It shows that the reliability problem of every second-
order query is also in FPCH,

The following theorem summarizes these results for some
particular cases.

Theorem 6.2. Let R be the standard arithmetic over N or
the field of rational numbers, equipped with the multiset oper-
ations Y, max, min. Further, let ¢ be a query on functional
databases over ‘R.

(i) If is quantifier-free then the reliability of ¢ is com-
putable in polynomial time.

(ii) If v is first-order, then its reliability problem is in
the class FP#Y .

(#ii) If v is second-order, then the reliability of ¥ is in
FPCH,

Given that metafinite databases can handle numerical values
we have the further advantage that the error probabilities

can themselves be considered as part of the database. The
reliability and the expected error of a query are themselves
database queries. In addition to the complezrity of the relia-
bility problem we can ask whether the reliability of a query
is itself expressible in a given query language. For instance,
it is a result in [1], that the reliability of every quantifier-free
query over finite relational databases is first-order definable
in an appropriate metafinite setting. Similarly the reliability
of any first-order or second-order query over finite relational
databases is second-order definable in such a setting.

Acknowledgement

We are grateful to Thomas Schwentick for pointing out The-
orem 4.1 to us, and to Jacobo Toran and Lane Hemaspaan-
dra for information and references concerning counting com-
plexity classes.

References

[1] E. Gréadel and Y. Gurevich, Metafinite Model Theory,
Information and Computation 140 (1998), 26-81.

[2] C. Hirsch, The Reliability of Queries, Diploma Thesis
(RWTH-Aachen, 1998).

[3] D. Johnson, A Catalog of Complexity Classes, in: J.
van Leeuven (Ed.), Handbook of Theoretical Computer
Science, Vol. A: Algorithms and Complexity, Else-
vier/MIT Press (1990), 67-161.

[4] R. Karp and M. Luby, Monte Carlo algorithms for enu-
meration and reliability problems, Proceedings of the

24th Symposium on Foundations of Computer Science
FOCS 1983, 56-64.

[6] V. Lakshmanan and F. Sadri, Probabilistic deductive
databases, Proceedings of the International Logic Pro-
gramming Symposium, MIT Press (1994), 197-207.

[6] V. Lakshmanan and V. Subrahmanian, Probview, A
flezible probabilistic database system, ACM Transac-
tions on Database Systems 22 (1997), 419-469.

[7] C. Papadimitriou,
Addison-Wesley (1994).

[8] K. Regan and T. Schwentick, On the Power of One Bit
of a #P Function, Proceedings of the Fourth Italian
Conference on Theoretical Computer Science (1992),
317-329.

[9] M. de Rougemont, The reliability of queries, Proc. 14th
ACM Symp. on Principles of Database Systems PODS
(1995), 286-291.

Computational Complezity,

[10] V. Subrahmanian, Stable semantics for probabilistic
deductive databases, Information and Computation
110(1) (1994), 42-83.

[11] L. Valiant, The complezity of enumeration and reliabil-
ity problems, SIAM J. Computing 8 (1979), 410-421.

[12] K. Wagner, Some observations on the connection be-
tween counting and recursion, Theoretical Computer
Science 47 (1986),131-147.

[13] E. Zimanyi, Query evaluation on probabilistic relational
databases, Theoretical Computer Science 171 (1997),
179-219.

