
DBXplorer: A System for Keyword-Based Search over Relational Databases

Sanjay Agrawal
Microsoft Research

sagrawal@microsoft.com

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

Gautam Das
Microsoft Research

gautamd@microsoft.com

Abstract

Internet search engines have popularized the keyword-
based search paradigm. While traditional database
management systems offer powerful query languages,
they do not allow keyword-based search. In this paper,
we discuss DBXplorer, a system that enables keyword-
based search in relational databases. DBXplorer has
been implemented using a commercial relational
database and web server and allows users to interact via
a browser front-end. We outline the challenges and
discuss the implementation of our system including
results of extensive experimental evaluation.

1. Introduction

Internet search engines have popularized keyword-
based search. Users submit keywords to the search engine
and a ranked list of documents is returned to the user. An
alternative to keyword search is structured search where
users direct their search by browsing classification
hierarchies. Both models are tremendously valuable –
success of both keyword search and the classification
hierarchy are evident today.

A significant amount of the world’s enterprise data
resides in relational databases. It is important that users
be able to seamlessly search and browse information
stored in these databases as well. Searching databases on
the internet and intranet today is primarily enabled by
customized web applications closely tied to the schema of
the underlying databases, allowing users to direct
searches in a structured manner. Examples of such
searches within, say a bookseller’s database may be
“Books → Travel → Lonely Planet → Asia”, or “Books
→ Travel → Rough Guides → Europe”.

While such structured searches over databases are no
doubt useful, unlike the documents world, there is little
support for keyword search over databases. Yet, such a
search model can be extremely powerful. For example,
we may like to search the Microsoft intranet on ‘Jim
Gray’ to obtain matched rows, i.e., rows in the database
where ‘Jim Gray’ occur. Note that such matched rows

may be found in more than one table, perhaps even from
different databases (e.g., address book and mailing lists).
Our goal is to enable such searches without necessarily
requiring the users to know the schema of the respective
databases. Yet, today’s customized web applications as
described above and traditional SQL applications require
knowledge of the schema.

Enabling keyword search in databases that does not
require knowledge of the schema is a challenging task.
Note that one cannot apply techniques from the
documents world to databases in a straightforward
manner. For example, due to database normalization,
logical units of information may be fragmented and
scattered across several physical tables. Given a set of
keywords, a matching row may need to be obtained by
joining several tables on the fly. Secondly, the physical
database design (e.g., the availability of indexes on
various database columns) needs to be leveraged for
building compact data structures critical for efficient
keyword search over relational databases. In this paper
we describe DBXplorer, an efficient and scalable
keyword search utility for relational databases. The task
of building DBXplorer gives rise to several research
questions that we address in this paper.
Alternatives in Symbol Table Design: Traditional
information retrieval techniques for enabling keyword
search in document collections use data structures such as
inverted lists [2] that efficiently identify documents
containing a query keyword. A straightforward mapping
of this idea to databases is a symbol table that stores
information at row level granularity, i.e., for each
keyword we keep the list of rows that contains the
keyword. Alternative symbol table designs are possible
where we can leverage the physical design of the
database. For example, if a column has an index then we
only need column level granularity, i.e., for each
keyword, we only store the list of columns where they
occur. The above approach can result in vastly reduced
space requirement and improved search performance. In
this paper, we study the trade-offs among these various
alternatives.
Symbol Table Compaction: We introduce a novel
technique that leverages commonality of keywords
among database columns to compress symbol tables. This

technique is used in conjunction with hashing and other
known compression techniques.
Efficient Search across Multiple Tables: Often, the
results of a query are matching rows that span multiple
tables. For example, consider the schema graph of a book
retailer’s database Pubs in Figure 1, where the nodes are
the tables and the edges represent foreign key
relationships. Suppose a user is searching for books on
‘programming’ by ‘Ritchie’. The two keywords are not
present in a single row in any one table. The required
information is distributed across the tables Authors,
Books and AuthorsBooks. The rows need to be generated
by joining tables on the fly by exploiting the schema as
well as content of the database.

Efficient Generalized Matches using SQL: When an
attribute value is a string containing multiple keywords,
retrieving rows where a keyword matches a substring
(e.g., LIKE “%kwd%”) cannot exploit an index lookup on
the attribute. In such cases, full text search functionality
is necessary for efficiency. We show a novel alternative
for doing such matches using SQL. We explore the
applicability and limitations of our scheme.

DBXplorer supports conjunctive keyword queries, i.e.,
retrieval of only documents that contain all query
keywords. This is, in fact, the most widely used paradigm
for Internet search.

We have implemented DBXplorer using commercially
available Microsoft SQL Server 2000 database server and
Microsoft IIS web server. It communicates with
databases using the standard ODBC interface, and thus
can be supported over virtually any relational database.
Our design ensured that DBXplorer leverages the
functionality of the relational engine effectively.
DBXplorer is currently deployed on our corporate
intranet, and several databases have been enabled for
keyword search using this tool.

The rest of this paper is organized as follows. In
Section 3, we present an overview of DBXplorer.
Sections 4 and 5 describe the preprocessing component
responsible for creating the symbol table. Section 6
describes the search component that answers keyword
searches once the symbol table has been built. Section 7
discusses extensions needed for generalized keyword
matches described above. Section 8 presents experiments
that demonstrate the effectiveness of our solution. An
appendix containing screen shots of user interactions with
DBXplorer is included to provide a better feel for the
front-end.

2. Related Work

Keyword-based search is a well studied problem in the
world of text documents and Internet search engines.
Inverted lists are common data structures used for solving
keyword queries [2, 5, 15, 23, 24]. An interesting post-
search activity is the ranking of results [2, 14]. Our work
differs from canonical use of inverted lists because we
need to generate hits within a database that span multiple
tables, as materializing all table joins and publishing each
as a document (and using a text search engine) is not a
scalable solution. This has ramifications for symbol table
design as will be discussed in Section 4.

The approach in [5] addresses the problem of keyword
search over XML documents. It parses XML documents
to generate and load inverted file information (i.e., a map
of values to individual rows) into a relational database.
Our design provides an alternative where symbol tables
map keywords to columns that have available indexes.
The work in [6] addresses the problem of proximity
search over semi-structured stores. In contrast, our core
focus is on finding exact matches in a multi-relation
database that contains all keywords specified in the
query, requiring us to study design alternatives for
symbol tables as well as to develop techniques for join
tree enumeration.

The Telegraph FFF engine searches for facts and
figures from selected sites on the Internet, and allows
them to be combined and analyzed in complex ways [18].
Since our work allows websites to expose their tabular
information for enabling keyword search, the FFF search
mechanism at the websites that provides facts and figures
may be augmented by DBXplorer technology.

The search component of DBXplorer bears
resemblance to work on universal relations [20], where a
database is viewed as a single universal relation for
querying purposes, thus hiding the complexity of schema
normalization. The challenge in the universal relation
approach is to map a selection query over the universal
relation to a SQL query over the normalized schema.
Although certain aspects of our search algorithm (such as
join trees, see Section 6.1) are similar to universal
relations concepts (such as window functions, see [20]),
an important difference is that keyword searches have to
deal with the additional complexity that the names of
columns in the selection conditions are not known.

DataSpot [3] is a commercial system that supports
keyword-based searches by extracting the content of the
database into a hyperbase. Thus, this approach duplicates
the content of the database, which makes data integrity
and maintenance difficult. Microsoft’s English Query
[11] provides a natural language interface to a SQL
database. However, unlike the keyword-based approach,
it “guesses” a single SQL statement that best fits a query
expressed in a natural language.

Authors

Figure 1. Pubs database

StoresBooksStoresBooksAuthorsBooks

Most major commercial database vendors allow a full
text search engine (e.g., [10, 12]) to be invoked while
processing SQL (that is extended by specialized
predicates). However, such engines cannot by themselves
identify matching rows that result from joining multiple
stored tables on-the-fly (see Section 6).

3. Overview of DBXplorer

Given a set of query keywords, DBXplorer returns all
rows (either from single tables, or by joining tables
connected by foreign-key joins) such that the each row
contains all keywords. Enabling such keyword search
requires (a) a preprocessing step called Publish that
enables databases for keyword search by building the
symbol table and associated structures, and (b) a Search
step that gets matching rows from the published
databases. Although for lack of space, we discuss only
the case where there is a single database, our techniques
extend to keyword search over multiple databases.

3.1. Overview of Publish and Search Steps

Publish: A database (or a desired part of it) is enabled for
keyword search through the following steps.
Step 1: A database is identified, along with the set of
tables and columns within the database to be published.
Step 2: Auxiliary tables are created for supporting
keyword searches. The most important structure is a
symbol table S that is used at search time to efficiently
determine the locations of query keywords in the
database (i.e., the tables, columns, rows they occur in).

Search: Given a query consisting of a set of keywords, it
is answered as follows.
Step 1: The symbol table is looked up to identify the
tables, and columns/rows of the database that contain the
query keywords.
Step 2: All potential subsets of tables in the database that,
if joined, might contain rows having all keywords, are
identified and enumerated. A subset of tables can be
joined only if they are connected in the schema, i.e., there
is a sub-tree (called a join tree) in the schema graph that
contains these tables as nodes (and possibly some
intermediate nodes).
Step 3: For each enumerated join tree, a SQL statement is
constructed (and executed) that joins the tables in the tree
and selects those rows that contain all keywords. The
final rows are ranked and presented to the user.

3.2. System Architecture

DBXplorer has been deployed on real databases from
the intranet within Microsoft. For its implementation, we
leverage IIS web server and Active Server Pages (ASP)

[8]. The main Publish and Search components are
packaged as two separate COM (Component Object
Model [9]) objects. The publish component provides
interfaces to (a) select a database, (b) select
tables/columns within the database to publish, and (c)
modify/remove/maintain the publication. For a given set
of keywords, the search component provides interfaces to
(1) retrieve matching databases from a set of published
databases, and (2) selectively identify tables,
columns/rows that need to be searched within each
database identified in step (1). The specific interfaces for
the latter include (i) for a given set of keywords, find all
the matching tables/columns, (ii) for a given set of
keywords, find all rows in the database that contain all of
the keywords.

Packaging these components as COM objects enables
them to be used in a variety of applications. For example,
Figure 2 shows two different applications that are
connecting to the Publish and/or Search COM objects –
the first uses web server/Active Server Pages (ASP) and
second is an application in C++/VB or any scripting
language. For the former, two separate ASP pages are
used as front-ends for publishing and search which in turn
call the interfaces provided by the respective COM
components. This model allows use of a standard web
browser to publish any database at a web server.
Similarly, for search, the user connects to the search ASP
using a browser and issues a keyword-based query to get
matching rows. The system also allows one to search
multiple databases simultaneously. (See the appendix for
screenshots of the system.)

4. Design Alternatives for Symbol Table

In this section we present and analyze different
symbol table designs. We only consider the exact match
problem; i.e., where each keyword in the query must

Figure 2. Architecture of DBXplorer

Publish and Search
COM objectsBrowser

C++/VBScript/other
language Application

Http

ODBC

SQL
Database

SQL
Database

No Web Server

APIs

ODBC

ODBC

APIs

ASP
APIs

Publish and Search
COM objects

APIs
ASPHttp

Web Server

match the value of an attribute in a row of a table. We
defer handling of more generalized matches to Section 7.
The symbol table is the key data structure used to look up
the respective locations of query keywords in the
database. An important design consideration is deciding
the location granularity i.e., for a given keyword, what
information needs to be stored in the symbol table to
identify the location of the keyword in the database. The
two interesting granularity levels are: (a) column level
granularity (Pub-Col), where for every keyword the
symbol table maintains the list of all database columns
(i.e., list of table.column) that contain it, and (b) cell level
granularity (Pub-Cell), where for every keyword the
symbol table maintains the list of database cells (i.e., list
of table.column.rowid) that contain it.

Some choices of the granularity levels are not quite as
interesting. For example, our experiments have shown
that row level granularity symbol tables (that maintain
list of rows that contain a keyword) have little advantage
over cell level granularity as far as the size of the symbol
table is concerned, yet certain functionalities (e.g., to
“un”-publish a column, i.e., to stop making the column
available for keyword search) are harder to implement
because column information is absent.

There are several factors that influence the appropriate
granularity level to adopt: (a) space and time
requirements for building the symbol table, (b) effect on
keyword search performance, and (c) ease of symbol
table maintenance. We discuss these factors next.

4.1. Space and Time Requirements

The symbol table size is a critical factor in system
performance; larger symbol tables increase I/O costs
during search. Pub-Col symbol tables are usually much
smaller than Pub-Cell symbol tables. This is because
unlike the latter, if a keyword occurs multiple times in a
column (corresponding to different rows), no extra
information needs to be recorded in Pub-Col. Our
experiments on test databases show orders of magnitude
differences between the two symbol table sizes (see
Section 8.1). The time to build Pub-Col symbol table is
also correspondingly less, since unlike Pub-Cell we only
need to record the distinct values in a column.

4.2. Keyword Search Performance

As will be discussed in Section 6, each keyword
search query results in a set of SQL statements, which are
then executed to retrieve matching rows. Search
performance depends on the efficient generation and
subsequent execution of these SQL statements. SQL
generation requires that the tables and columns where the
keywords may occur be known. This is achieved by

retrieving symbol table entries. We now discuss the effect
of alternative symbol table designs on SQL generation.

Consider the o_orderpriority column in the Orders
table in a 100MB TPC-H database. In this database, the
Orders table has 150,000 rows and o_orderpriority has 5
distinct values. While using a Pub-Cell table, a search on
a value in o_orderpriority can lead to approximately
30,000 cells (i.e., 150,000/5, assuming uniform data
distribution) being retrieved from a Pub-Cell symbol
table. To retrieve the matching rows, SQL queries will
need to be generated that explicitly refer to the rowids
corresponding to the 30,000 cells identified above from
the symbol table. In contrast, with a Pub-Col table we
will retrieve only one entry o_orderpriority (the column
name) and the corresponding SQL has the simple form
select * from Orders where Orders.o_orderpriority
=$keyword. Of course, Pub-Col is effective only if
database indexes are available for the published columns
(e.g., on o_orderpriority) so that the generated SQL
statements can be efficiently executed.

4.3. Ease of Maintenance

Maintenance of symbol tables as data in databases
change is an important consideration. For insertions, Pub-
Col is easier to maintain as it requires an update only if
the insertions cause new values to be introduced in some
column data. In contrast, Pub-Cell needs to be updated
for every inserted row. Likewise, every deleted row does
not necessarily cause an update in a Pub-Col table.
Updates are handled in a similar fashion. One can use
triggers or time stamps to update the symbol table with
changes in underlying data.

4.4. Summary

The Pub-Col symbol table alternative is almost always
better than the Pub-Cell table, unless certain columns do
not have indexes. In general, a hybrid symbol table is
needed where the granularity is tied to the physical
database design: if an index is available for a column, we
publish the column contents with Pub-Col granularity,
otherwise we publish it with Pub-Cell granularity.

5. Storing Symbol Tables in Databases

5.1. Pub-Col Representation

A naive implementation of the Pub-Col symbol table
is to store it as a relation with two attributes: Keyword
and ColId (assume that each database column has been
mapped to a unique ColId). However, a simple but
effective compression strategy is to keep hashed values
of keywords in the symbol table (i.e., attribute Keyword
is replaced by attribute HashVal), since storing keywords

directly is wasteful as they may be potentially long
strings of varying lengths. Despite this optimization, there
are significant opportunities for further compression, as
we show in this section.

We show how the Pub-Col symbol table may be
compressed by taking advantage of the occurrences of
keywords among multiple columns. We present two
algorithms in this section. The compression algorithm,
FK-Comp, works as follows. If the set of values in
column c1 is a subset of the values in another column c2

due to a key-foreign key relationship, we retain only a
single hash table entry for keywords common to both as
(keyval, c1), since the foreign key constraint can be used
to infer presence of keyval in c2.

We now describe a more general compression
algorithm, CP-Comp that can take advantage of situations
where pairs or sets of columns share common keywords,
but are not necessarily tied by foreign key relationships,
e.g., {OldEmployer, CurrentEmployer}, {PurchaseDate,
ShipDate, ReceiveDate}. The algorithm is based on
bipartite clique partition techniques [4]. Let HashVal =
{v1, v2,…, vn} be the set of distinct hash values of all
keywords, and ColId = {c1, c2, …cm} be the set of all
distinct columns. We map the symbol table S to a
bipartite graph H having two node sets, HashVal and
ColId, where every row (v, c) in table S corresponds to an
edge in H. The two key steps in CP-Comp are: (a)
Partition H into a minimum number of bipartite cliques (a
bipartite clique is any subgraph of H with a maximal
number of edges). (b) Compress each clique. We begin
by describing step (b) first. Consider the uncompressed
hash table in Table 1. The corresponding bipartite graph
contains the clique with the two node sets {v2, v3, v4} and
{c1, c2}, and all edges between them. We compress this
clique by deleting all its edges, introducing a new “super”
node x that represents the set of columns {c1, c2}, and
adding edges from each node in {v2, v3, v4 } to x. The
resultant hash table is shown in right of Table 2. Note that

we also keep a separate table ColumnsMap to keep track
of the relationship between the derived “super” node and
the original nodes {c1, c2} (Table 3).
We now describe step (a). Partitioning a bipartite graph
into a minimum number of cliques is NP-complete [4].
However, CP-Comp uses an efficient heuristic that works
as follows. For each hash value v, we compute the set of
columns that contain one or more keywords that map to
the hash value v. Let {ColId1,…,ColIdp} be the set of
distinct column subsets computed in this manner. We
partition HashVal into subsets {HV1,…,HVp}, where
keywords mapping to hash values in HVi can only occur
among columns in ColIdi. Note that each {HVi, ColIdi}
pair induces a clique in the graph H. We can compress
these cliques as described in step (a).

The main steps of constructing a Pub-Col symbol table
construction are summarized in Figure 3. Maintenance of
the compressed symbol table is similar to the
uncompressed Pub-Col table but extra updates are
necessary for the ColumnsMap table.

5.2. Pub-Cell Representation

A Pub-Cell symbol table can be stored as a two
column table consisting of (Hashval, Cellid) pairs.
However, such a normalized representation turns out to
be especially disadvantageous for Pub-Cell since the
same keyword may occur in many cells. Retrieving all
these locations for SQL generation during search can
become very slow as potentially many rows of Pub-Cell
symbol table needs to be accessed. Thus, we adopt a
more efficient design in which the symbol table has two
attributes, HashVal and CellIdList. The latter is a variable
length column in which we keep a list of the CellIds of all
the cells in which a keyword appears (a non first normal

HashVal ColId
v1 c1

v2 c1

v3 c1

v4 c1

v2 c2

v3 c2

v4 c2

v5 c2

NewColId ColId
x c1

x c2

Algorithm Computing a Pub-Col Symbol Table
Inputs: A database
Outputs: A symbol table S and ColumnsMap table
//Compute hash table S:

Set S to empty
Scan database, and for each keyword K in column c

Insert (hash(K), c) into S if it does not already occur
//Compress S using Algorithm CP-Comp:

Set table ColumnsMap to empty
Compute {ColId1,…, ColIdp} and {HV1,…, HVp}

For i = 1 to p
If |HVi|*|ColIdi| > |HVi| + |ColIdi|

Remove from S all entries involving HVi

Create artificial column xi

For each v in HVi, insert (v, xi) into S
For each c in ColIdi, insert (c, xi) into
ColumnsMap

Output S and ColumnsMap

Figure 3. Constructing Pub-Col symbol table

HashVal ColId
v1 c1

v2 x
v3 x
v4 x
v5 c2

Table 1. Uncompressed
hash table

Table 2.
Compressed hash
table

Table 3. ColumnsMap table

form representation). As a result, retrieving all locations
for a keyword is achieved by looking up a single row
from the Pub-Cell symbol table.

We cannot compress a Pub-Cell symbol table using
the CP-Comp algorithm described above, since a cell
contains only one keyword. However, algorithms that
compress relational implementations of inverted lists
(e.g., see [15]) do apply to Pub-Cell. Incidentally, CP-
Comp can be pipelined with algorithms in [15] for
additional compression of Pub-Col.

6. Finding Matches for Keyword Search

In this section we discuss the search component and
focus only on the exact match case. Let {K1, K2,…, Kk}
be the keywords specified in a query. Recall from Section
3.1 that keyword search has three steps. In the first step,
the symbol table is searched (using generated SQL) to
identify the database tables, columns/cells that contain at
least one of the keywords in the query. The next two
steps are that of enumerating join trees and identifying
matching rows that are described in detail below.

6.1. Enumerating Join Trees

This step is similar for all symbol table granularities.
Let MatchedTables be the set of database tables that
contain at least one of the query keywords. If we view the
schema graph G as an undirected graph, this step
enumerates join trees1, i.e., sub-trees of G such that: (a)
the leaves belong to MatchedTables and (b) together, the
leaves contain all keywords of the query. Thus, if we join
the tables that occur in a join tree, the resulting relation
will contain all potential rows having all keywords
specified in the query. This important step filters out a
large number of spurious join scenarios from being
passed on to the subsequent step of the search.

For example, consider the schema graph G in Figure 4
over five tables. Let the query keywords be {K1, K2, K3}.
The black nodes represent the MatchedTables set, while
the rest are white. Assume that K1, K2 and K3 all occur in
T2 (in different columns), K2 occurs in T4, and K3 occurs
in T5. The four possible join trees are shown on the right
(including the singleton node, T2). In contrast, for
example the tree induced by {T4, T3, T5} cannot be a join
tree, as these tables do not contain all keywords.

We outline our algorithm for enumerating join trees.
For simplicity of exposition, we assume G itself is a tree.
We first prune G by repeatedly removing white leaves,
until all leaves are black (this resembles ear removal

1
Traditionally, the term join tree refers to the ordering of join

operations determined by the query optimizer for a given query. We
have overloaded the term to refer to a kind of subgraph (as defined
above) of the schema where edges depict key foreign key relationship.

operations for computing window functions in universal
relations [20]; see also [7, 21]). The resulting tree, G’, is
guaranteed to contain all potentially matching join trees.
Our next task is to enumerate all qualifying sub-trees of
G’, i.e., sub-trees such that all keywords in the query
occur among the black nodes of the sub-tree. For efficient
enumeration, we adopt a heuristic for picking the first
node of the candidate qualifying sub-trees as follows: We
pick the keyword that occurs in the fewest black nodes of
G’. We now do breadth-first enumeration of all sub-trees
of G’ starting from each of the black nodes identified
above and check if it is a qualifying sub-tree. Using this
heuristic considerably reduces the number of trees
enumerated. Note that if we cannot assume that G is a
tree (i.e., if it contains cycles), the join tree enumeration
involves bi-connected component decomposition [17] of
G, followed by the enumeration of join trees on a
possibly cyclic schema graph [13, 16]. We omit further
details due to lack of space.

6.2. Searching for Rows

The input to this final search step is the enumerated
join trees. Each join tree is then mapped to a single SQL
statement that joins the tables as specified in the tree, and
selects those rows that contain all keywords. In fact, this
is the only stage of the search where the database tables
are accessed. For a Pub-Col symbol table, the generated
SQL statement will have selection conditions on
columns, whereas for a Pub-Cell symbol table, the
selection conditions will involve rowids (and for a hybrid
table, the selection condition will involve a mix of both
types of conditions). The execution efficiency depends on
several factors, e.g., availability of column indexes for
the Pub-Col based approach. We observe that there may
be commonalities among the generated SQL statements
for a given keyword search query, with potential
applications of multi-query optimization for further
efficiency.

The retrieved rows are ranked before being output.
Our approach is to rank the rows by the number of joins
involved (ties broken arbitrarily); the reasoning being that
joins involving many tables are harder to comprehend.

T5
K3

T1 T2 T3

T4

K1, K2, K3 K2

T2 T3 T5

T3

T4T2

T2

T2 T3

T4

T5

Schema graph G

Figure 4. Join trees

This has parallels with certain ranking methods used in
document retrieval (e.g., documents in which keywords
occur close to one another are ranked higher than
documents in which keywords are far apart). Since our
enumeration algorithm generates join trees in order of
increasing size (due to breadth first enumeration), the join
tree enumeration step can be pipelined and thus followed
immediately by the SQL generation corresponding to the
join tree. We summarize the main steps of search in
Figure 5.

7. Supporting Generalized Matches

In this section we discuss more general kinds of
keyword matches. Specifically, we focus on the important
case of token matches where the keyword in the query
matches only a token or sub-string of an attribute value
(for text string attributes, e.g., addresses, where we may
wish to retrieve rows by specifying only a street name).

7.1. Token Matches

As a simple example, consider a database with a table
T as shown in Table 4. Let the hash values of the
searchable tokens i.e., ‘string’, ‘ball’ and ‘round’ be 1, 2
and 3 respectively (we ignore stop words such as ‘this”,
‘is’ etc.). During publishing (for all symbol table
granularities) we tokenize each cell, hash and store each
distinct token along with appropriate location information
in the respective symbol table.

Consider searching with a Pub-Col symbol table. If a
query keyword is ‘string’, this symbol table tells us that it
occurs in column T.C. For a join tree that has T.C as a
node, the generated SQL will need to have clauses with
substring predicates such as WHERE T.C LIKE
‘%string%’. Since traditional B+ tree indexes cannot be
used for index seeks to exploit such predicates. As an
alternative, most recent commercial database systems
support full-text indexes that enable token search in text

columns (e.g., Microsoft SQL Server [12]). If a full-text
index is present for column T.C, the generated SQL will
have clauses such as WHERE CONTAINS(C, ‘string’),
which can be efficiently executed. In this section, we
present a novel technique that uses some pre-computation
but can perform token searches using B+ indexes that are
supported on all traditional SQL databases. The trade-
offs and the range of this applicability are also studied
experimentally in Section 8.

The search component for Pub-Cell symbol tables
remains the same as in the exact match case (See Section
6). Essentially, these symbol tables mimic some of the
functionalities of full-text indexes. However, recall from
Section 4.1 that Pub-Cell symbol tables may be large and
could rival the size of the database itself.

We now present Pub-Prefix, a method that efficiently
enables token match capabilities by exploiting available
traditional B+ tree indexes. It is based on the following
crucial observation: B+ tree indexes can be used to
retrieve rows whose cell matches a given prefix string.
That is, clauses of the form WHERE T.C LIKE ‘P%K%’
where P is any prefix string can be efficiently computed.
During publishing of a database, for every keyword K,
we keep in the symbol table the entry (hash(K), T.C, P) if
there exists a string in column T.C which (a) contains a
token K, and (b) has prefix P. For example if we publish
the database table shown in Table 4, the resulting Pub-
Prefix symbol table is shown in Table 5 (assuming we
stored two character long prefixes).

Consider searching for the keyword ‘ball’. Looking up
this keyword in Table 4 returns the prefixes ‘th’ and ‘an’,
and the subsequent SQL will contain clauses such as
WHERE (T.C LIKE ‘th%ball%’) OR (T.C LIKE
‘an%ball%’). Such clauses can be efficiently evaluated
with traditional B+ tree indexes (in the above example,
rows 3 and 5 will be retrieved from the database). Pub-
Prefix tables can be compressed using the CP-Comp
algorithm, except that instead of hash values we use (hash
value, prefix) pairs.

We expect the search performance of Pub-Prefix
method to be comparable to Pub-Cell method when the
column width is small (e.g., columns such as name and
address which are typically less than 100 characters). For
columns with strings of several hundred characters (e.g.,

Hash
Val

Col
Id

Prefix

1 c th
1 c no
2 c th
2 c an
3 c an

RowId C

1 this is a string

2 this string

3 this is a ball

4 no string

5 any ball is round

Algorithm SEARCH
Inputs: A query consisting of keywords K1, K2,…, Kk

Outputs: All database rows matching all keywords,
including rows derived by joining tables on the fly
//Search symbol table:

Look up symbol table S to determine the tables, columns
or cells containing query keywords

//Enumerate join trees:
Compute G’ from G by ear removal operations
Enumerate join trees in G’

//Search for rows:
For each join tree (in increasing size), construct

and execute SQL statement to retrieve matching rows

Figure 5. Search

Table 4. Database table T Table 5. Pub-Prefix
table

product reviews) Pub-Cell can outperform Pub-Prefix
significantly. The Pub-Prefix table size depends largely
on the column data and the prefix length to store in
symbol table. An interesting issue is determining an
appropriate prefix length. As the prefix length is
increased, its discriminating abilities (and symbol table
size) increases, and in the limit the prefix method
degenerates to the Pub-Cell method. On the other hand,
as the prefix length is decreased, its discriminating
abilities (and the symbol table size) decreases, and in the
limit the prefix method degenerates to the Pub-Col
method. We evaluate different prefix lengths through
experiments in Section 8.4. Note that we can tune Pub-
Prefix even further by allowing different prefix lengths
for different tokens. We are presently investigating these
extensions in our design.

In summary, if a full-text index is available, use Pub-
Col with the full-text index. Instead, if only a traditional
index is available and the column width is small, use Pub-
Prefix, otherwise use Pub-Cell.

7.2. Other Generalized Matches

We are currently investigating the feasibility of
implementing other generalized match capabilities within
our system. Several of them appear to only require
straightforward adaptations of corresponding techniques
from the information retrieval domain. Allowing matches
with variants of query keywords (e.g., ‘run’ and
‘running’) can be addressed by standard information
retrieval techniques such as stemming [2]. The Pub-Cell
based technique is unaffected by stemming, except that
stemming is applied prior to storing keywords in the
symbol tables and to search keywords as well. The Pub-
Col table is more complicated since to find all variants of
a keyword, they need to be explicitly mentioned in the
WHERE clause of the generated SQL for looking up
matching rows, e.g., Book.title = “cat” or Book.title =
”cats”. For most words in English, an explicit disjunction
can be avoided by using LIKE, e.g., Book.title LIKE
“cat%”. But, a general solution is more complex. For
Pub-Prefix, each returned row will need to be stemmed to
check if it contains acceptable variations of the search
keywords. We are currently investigating the problems of
adding a broader set of matching capabilities, such as
synonyms, fuzzy matches, and disjunctive (and more
general Boolean) keyword queries.

8. Experiments

We present the results of an experimental evaluation
of the publishing and search techniques presented in this
paper (Pub-Col, Pub-Cell and Pub-Prefix). In particular
we show that:

• Pub-Col table is compact compared to Pub-Cell.
Search performances for the two techniques are
comparable when the number of rows selected by
keywords is small. Pub-Col has superior
performance when keywords are not very selective.

• Pub-Col scales linearly with data size, and is
independent of data distribution, both in publishing
time and symbol table size. Search performance
scales with data size and number of search keywords.

• Pub-Prefix table is compact compared to Pub-Cell.
Search performance of Pub-Prefix is significantly
better than Pub-Col when full-text indexes are not
present. For small width columns (order of tens of
characters), search performance of Pub-Prefix is
comparable to Pub-Cell and Pub-Col with full-text
indexes.

Setup: The experiments are on a 450 MHz 256 MB Intel
P-III machine. We used four databases, three of which are
from the intranet of Microsoft Corporation.
Synthetic database: TPC-H data of sizes 100 to 500 MB
(TPCHx denotes TPC-H data of size x MB).
Real databases: USR, a 130 MB employee address book
database with 19 tables; ML, a 375 MB mailing lists
database with 38 tables that contains information such as
owners and participants; and KB, a 365 MB database
with 84 tables that contains information on articles and
help manuals on various shipped products.

8.1. Symbol Table Granularity

We compare the publishing and search performance of
two techniques: Pub-Col and Pub-Cell.

Symbol Table Size Comparison

0

2

4

6

8

10

12

14

16

18

20

TPCH100 USR ML KB

Databases

F
ac

to
r

In
cr

ea
se

In
S

ym
b

o
lT

ab
le

S
iz

e
C

o
m

p
ar

ed
to

P
u

b
-

C
o

l

Symbol Table Size: Figure 6 demonstrates that the Pub-
Col symbol table is an order of magnitude smaller than
Pub-Cell. For the USR database, Pub-Cell is larger by a
factor of 19. Recall that USR has information about
employees and fields such as last name and job titles that
are shared by a number of people. Even for the synthetic
TPCH100 database where strings are arbitrarily

Figure 6. Symbol table size

generated, Pub-Cell is 7 times larger. This shows that
Pub-Col produces the most compact symbol tables. We
also observed that the size of the Pub-Col symbol table is
a small fraction of the base data size (e.g., for USR it is
3%, for ML and KB it is 10%, and for TPCH100 it is
25%).

Publishing Time: Populating the symbol table takes
around 50% of the total publishing time; the rest of the
time includes scanning the database and processing the
data to store in the symbol table. Publishing time for Pub-
Cell is about 7 times that for Pub-Col (Figure 7). This is
primarily because much less data needs to be fetched
from the database by DBXplorer to generate the Pub-Col
symbol table (see Section 4.2).

Comparison of Publishing Time

0%

500%

1000%

1500%

2000%

TPCH100 USR ML KB

Databases

%
In

cr
ea

se
in

T
im

e
C

o
m

p
ar

ed
to

P
u

b
-C

o
l

Search Performance: Two workloads consisting of 100
queries are generated for each database. The number of
keywords in a given query is randomly generated
between 1 and 5. The keywords themselves are randomly
selected from the symbol table of the underlying
database. We denote the workloads for a database D as
D-WKLD-FEW (consists of keywords that select fewer
than 10 records) and D-WKLD-LARGE (consists of
keywords that select more than 100 records).

Figure 8 shows the average end-to-end query time
(normalized with respect to Pub-Col) for the different
techniques. We observe that Pub-Col and Pub-Cell have
similar performances for TPCH100-WKLD-FEW and
USR-WKLD-FEW. SQL generation time is almost the
same for the two techniques, as very few symbol table
entries (needed for SQL generation) match the keywords.
SQL execution time is also almost same due to the
presence of relevant database indexes.

However for TPCH100-WKLD-LARGE and USR-
WKLD-LARGE, Pub-Col has a superior performance
compared to Pub-Cell (see Figure 8). For WKLD-
LARGE the symbol table look-up time for Pub-Cell
increases while remaining relatively unchanged for Pub-
Col. Pub-Cell takes about twice the look-up time
compared to Pub-Col for both USR-WKLD-LARGE and
TPCH100-WKLD-LARGE. This is because Pub-Cell

causes a much larger amount of data (all the matching
row-ids) to be retrieved from the symbol table for
subsequent SQL generation. The additional time is due to
larger symbol table and slower character data processing
(compared to integer data processing in Pub-Col).

We had warmed up SQL Server’s buffers with the
symbol table in the above experiments. However if we
start from cold buffers, the look-up time increases by
another 20% for Pub-Cell, as the larger symbol table size
contributes to more I/O. The increase is much smaller
(about 5%) in the look-up time for Pub-Col. If we have
multiple users accessing different databases concurrently,
having a smaller symbol table can make a significant
difference in search performance.

Query Performance At different Granularity

0

1

2

USR-WKLD-
FEW

USR-WKLD-
LARGE

TPCH100-
WKLD-FEW

TPCH100-
WKLD-LARGE

Database-Workloads

A
ve

ra
g

e
Q

u
er

y
T

im
e

This establishes that it is a better strategy (in both
publishing space and search time) to use Pub-Col,
especially when some keywords might match a large
number of rows in the databases. It is important to note
that if column indexes are not available, search
performance of Pub-Col can degrade rapidly. In that case,
one should use Pub-Cell for the columns.

8.2. Scalability of Pub-Col

Data Size and Distribution: We use TPCH100-WKLD-
FEW (described in Section 8.1) as workload. We use the
TPC-H uniform database and vary the data size from 100
MB to 500 MB. In these databases the number of distinct
keywords is proportional to the data size.

The space required by the symbol table for TPC-H
data varies almost linearly with data size. The publishing
time for TPC-H data also increased almost linearly with
data size. The publishing time is dominated by the time
required to scan the data and populate the symbol table;
both these operations vary linearly with data size.

Figure 9 shows that the average query execution time
(normalized with respect to time taken for TPCH100)
increases very slowly as the data size is increased to 500
MB. This is due to a small increase in symbol table look-
up time (recall that the symbol table sizes increase

Figure 8. Query performance
Figure 7. Symbol table building time

proportionately with data size) and relatively more
expensive SQL execution to fetch the matching rows
from the database.

Query Performance With Data Size

1

1.2

1.4

1.6

100 200 300 400 500 600
Data Size (MB)

A
ve

ra
g

e
Q

u
er

y
T

im
e

To study the impact of data distribution on publish and
search, we generated 100 MB TPC-H data with Zipfian
distribution [22] (zipf = 1,2,3) and compared with TPC-H
uniform data. The distinct keywords in all these databases
were the same. The publishing overhead is almost the
same (same symbol table sizes and similar creation
times). The search performance is also very comparable
(within 3%). This is expected, as publish and search are
not sensitive to the distribution of values as long as the
distinct data values are the same.

Number of Keywords in Search: We show that search
scales with the number of query keywords. We also show
that when databases have complex schema, the search
continues to perform well. We generated five workloads
of 100 queries each for each database. We varied the
number of keywords in each workload from 2 to 10 in
steps of 2. The keywords in each workload were selected
randomly from the underlying database.

Query Performance With Keywords

0.9

1

1.1

1.2

1.3

2 4 6 8 10

Number of Keywords

A
ve

ra
g

e
Q

u
er

y
T

im
e

TPCH100

USR

KB

Figure 10 shows that the search performance (normalized
with respect to time taken for two keywords) for
TPCH100, USR and KB as the number of keywords are
increased to 10. For all three databases, search time
increases slowly. This is expected as (a) symbol table
look-up time remains almost unchanged, and (b) number

of join trees explored (and SQL statements generated to
get matching rows) is small even for KB that has a
relatively complex schema. The results on ML were
similar to KB, thus we do not report them here.

8.3. Effectiveness of Compression Techniques

We compare the compression schemes FK-Comp and
CP-Comp2 (discussed in Section 5.1). Figure 11 shows
that for ML and KB, the compressed symbol table size is
around 50% of the table size generated by Pub-Col. The
compression achieved for FK-Comp is consistently less
compared to CP-Comp for all databases.

In ML (and KB), there are several columns that share
common data that is not captured by FK-Comp (e.g.,
email address of a particular mailing list’s owner is also
embedded in list creation request description) that allow
the data to be compressed significantly. We observed that
the time to compress symbol table using FK-Comp and
CP-Comp was similar. We also observed that
compression added a negligible overhead on search
performance. The reason is because additional look-up
into a relatively small ColumnsMap table (typically
memory resident) is very fast.

Symbol Table Compression

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

TPCH100 USR ML KB

Databases

S
ym

b
o

lT
ab

le
S

iz
e

C
o

m
p

ar
ed

to
P

u
b

-C
o

l

FK-Comp

CP-Comp

8.4. Effectiveness of Pub-Prefix Method

We evaluate the space requirements and search
performance of Pub-Prefix (see Section 7.1). We compare
it to Pub-Cell, Pub-Col with a full-text index present on
the data (referred to as Pub-Col-FTS), and Pub-Col
without any full-text indexes present.

Search Performance Comparisons: We generated a
workload consisting of 100 randomly selected keywords

2 CP-Comp incorporates a heuristic to eliminate from consideration
columns that do not contribute significantly to compression. Our
experiments indicated that only considering columns that together
contribute 80% of the total estimated compression improves the running
time of CP-Comp remarkably.

Figure 9. Search performance for TPCH

Figure 11. Quality of compression techniques

Figure 10. Search on TPCH100, USR, and KB

from a character column of width 64 bytes in the KB
database. The total size of the data in that column was
12.5 MB. Figure 12 shows average search time
(normalized with respect to Pub-Col) when prefix length
is varied from 2 to 16. We observe that Pub-Prefix gives
the best performance at prefix length 8. This is because as
the prefix length is increased, the discriminating power of
a prefix increases and so does the number of prefixes
associated with a keyword. This induces additional
disjunctions in the subsequently generated SQL query.
After a certain limit, for such queries, the optimizer
resorts to a scan of the underlying table instead of an
index seek. Thus the average query execution time
increases. We observe similar behavior for a character
column of length 40 in USR, where the best prefix length
is 6. It is important to note that the nature of the curve
that we obtain is generic; the specific optimum point
depends on the underlying column data.

The performance of Pub-Prefix is comparable to Pub-
Cell and Pub-Col-FTS for both KB and USR (within
5%). Pub-Prefix outperforms Pub-Col (without full-text
indexes) by an order of magnitude (factor of about 30 for
KB and 8 for USR). However, for ML where the data
length in each cell is large (300 bytes) and many cells
have common prefixes, Pub-Col-FTS has the best
performance (5% better than Pub-Cell), while the
performance of Pub-Prefix degrades to linear scan.

Performance With Prefix Length For KB

0

0.1

0.2

0.3

0 2 4 6 8 10 12 14 16 18

PrefixLength

A
ve

ra
g

e
Q

u
er

y
T

im
e

Space Comparisons: We analyze the space requirements
of Pub-Prefix with varying prefix lengths. We observe
that the Pub-Prefix table is an order of magnitude smaller
than the Pub-Cell symbol table. As the prefix length is
increased from 2 to 16 the symbol table size increased
linearly from 1.6 MB to 3.4 MB. Pub-Cell symbol table
size is comparable to the base data size (~12.5 MB).
These experiments show that when the width of the
column is small, Pub-Prefix leads to a more compact
symbol table than Pub-Cell and has comparable search
performance. Note that Pub-Prefix requires a B+ tree
column index on the column.

Acknowledgments

We are very grateful to Vivek Narasayya and Venky
Ganti for their insightful comments on the algorithms and
presentation of this paper

References
[1] S. Abiteboul, Querying Semi-Structured Data, ICDT, 1997.
[2] R. Baeza-Yates, B. Ribeiro-Neto, Modern Information
Retrieval, ACM Press, 1999.
[3] S. Dar, G. Entin, S. Geva, E. Palmon, DTL's
DataSpot.,VLDB, 1998.
[4] T. Feder, R. Motwani, Clique partitions, Graph Compression
and Speeding-Up Algorithms, STOC, 1991.
[5] D. Florescu, I. Manolescu, Integrating Keyword Search into
XML Query Processing, 9th WWW Conf., 2000.
[6] R. Goldman, N. Shivakumar, S. Venkatasubramanian, H.
Garcia-Molina., Proximity Search in Databases, VLDB, 1998.
[7] M. H. Graham, On the Universal Relation. Technical
Report, Univ. of Toronto, 1979.
[8]http://www.microsoft.com/
windows2000/server/evaluation/features/web.asp
[9] http://www.microsoft.com/com/
[10] http://www.microsoft.com/ntserver/web/exec/feature/Index
ServerSummary.asp
[11] http://www.microsoft.com/sql/productinfo/eqmain.htm
[12] http://www.microsoft.com/sql/productinfo/fulltext.htm
[13] S. Kapoor, H. Ramesh, Algorithms for Enumerating all
Spanning Trees of Directed and Undirected Graphs, SIAM J.
Computing, 1995.
[14] J. M. Kleinberg, Authoritative Sources in a Hyperlinked
Environment, SODA, 1998.
[15] S. Melnik, S. Raghavan, B. Yang, H. Garcia-Molina,
Building a Full Text Index for the Web, http://dbpubs.
stanford.edu/pub/2000-29, 2000.
[16] G. J. Minty, A Simple Algorithm for Listing all Trees of a
Graph, IEEE Trans. on Circuit Theory, 1965.
[17] R. E. Tarjan, Depth-first Search and Linear Graph
Algorithms, SIAM J. of Computing, 1972, 146-160.
[18] The Telegraph System, http://fff.cs.berkeley.edu/
[19] TPC Benchmark H (Decision Support) Revision 1.1.0.,
http://www.tpc.org/
[20] J. D. Ullman, Principles of Databases and Knowledge-Base
Systems, Vol II, Computer Science Press, 1989.
[21] C. T. Yu, M. Z. Ozsoyoglu, An Algorithm for Tree-Query
Membership of a Distributed Query, IEEE COMPSAC, 1979.
[22] G.E. Zipf, Human Behavior and the Principle of Least
Effort, Addison-Wesley Press, Inc, 1949.
[23] N. Ziviani, E. Silva de Moura, G. Navarro, R. Baeza-Yates,
Compression: A Key for Next Generation Text Retrieval
Systems, Computer 33(11): 37-44, 2000.
[24] J. Zobel, A. Moffat, K. Ramamohanarao, Inverted Files
versus Signature Files for Text Indexing, ACM TODS, 1998.

Figure 12. Search time versus prefix length

Appendix: User Interfaces for DBXplorer

We illustrate typical user interactions with DBXplorer
via screen shots. Consider a query {‘Livia’, ‘Karsen’,
‘Computer’}; perhaps the user is looking for a book by
the author. The system first returns the set of databases
that contain the given keywords (Figure 13), along with a
brief description of each matching database (auto-
generated from schema description). This aids the user in
selecting a specific database to be explored next.

In the next step, the user explores matches within a
selected database. For each keyword, the system returns a
list of table and column pairs where the keyword occurs
(top half of Figure 14). The system also enumerates a list
of subsets of tables (join trees) such that the relation
obtained by joining these tables may yield rows
containing all keywords (bottom half of Figure 14).

The user has the option of selecting one or more (or even
all) of the join trees for the system to explore. The system
responds by presenting a ranked list of the final matching
rows (Figure 15).

The system also offers browsing capabilities whereby
the user can explore further details of the retrieved rows
by following links into related areas within the database.
Figure 15 shows a book written by ‘Livia Karsen’ that
has navigational links (“incoming” and “outgoing” links
that represent foreign-key relationships) to stores and
publishers of this particular book.

Figure 13. Matching databases

Figure 14. Join trees

Figure 15. Matching rows

