
Efficient Record Linkage in Large Data Sets

Liang Jin, Chen Li, and Sharad Mehrotra
Department of Information and Computer Science
University of California, Irvine, CA 92697, USA

�liangj,chenli,sharad�@ics.uci.edu

Abstract

This paper describes an efficient approach to record link-
age. Given two lists of records, the record-linkage problem
consists of determining all pairs that are similar to each
other, where the overall similarity between two records is
defined based on domain-specific similarities over individ-
ual attributes constituting the record. The record-linkage
problem arises naturally in the context of data cleansing
that usually precedes data analysis and mining. We ex-
plore a novel approach to this problem. For each at-
tribute of records, we first map values to a multidimensional
Euclidean space that preserves domain-specific similarity.
Many mapping algorithms can be applied, and we use the
FastMap approach as an example. Given the merging rule
that defines when two records are similar, a set of attributes
are chosen along which the merge will proceed. A multidi-
mensional similarity join over the chosen attributes is used
to determine similar pairs of records. Our extensive exper-
iments using real data sets show that our solution has very
good efficiency and accuracy.

1 Introduction

The record-linkage problem – identifying and linking
duplicate records – arises in the context of data cleansing,
which is a necessary pre-step to many database applications.
Databases frequently contain approximately duplicate fields
and records that refer to the same real-world entity, but are
not identical, as illustrated by the following example.

EXAMPLE 1.1 A hospital has a database with thousands
of patient records. Every year it receives new patient data
from other sources, such as the government or local organi-
zations. It is important for the hospital to link the records
in its own database with the data from other sources. How-
ever, usually the same information (e.g., name, SSN, ad-
dress, telephone number) can be represented in different
formats. For instance, a patient name can be represented

as “Tom Franz” or “Franz, T.” or other forms. In addition,
there could be typos in the data. The main task here is to
link records from different databases in the presence of mis-
matched information. �

With the increasing importance of data linkage in a va-
riety of data-analysis applications, developing effective and
efficient techniques for record linkage has emerged as an
important problem. It is further evidenced by the emer-
gence of numerous organizations (e.g., Trillium, FirstLogic,
Vality, DataFlux) that are developing specialized domain-
specific record-linkage and data-cleansing tools.

Three primary challenges arise. First, it is important to
determine similarity functions to link two records as dupli-
cates [2, 17]. Such a similarity function consists of two
levels. First, similarity metrics need to be defined at the
level of each field to determine similarity of different val-
ues. Next, field-level similarity metrics need to be com-
bined to determine overall similarity between two records.
The second challenge is to provide user-friendly interactive
tools for users to specify different transformations, and use
the feedback to improve the data quality [3, 5, 15].

The third challenge is that of scale. Often it is computa-
tionally prohibitive to apply a nested-loop approach to use
the similarity function(s) to compute the distance between
each pair of records. This issue has previously been studied
in [7], which proposed an approach that first merges two
given lists of records, then sorts records based on lexico-
graphic ordering for each “key” attribute. A fixed-size slid-
ing window is applied, and records within a window are
checked to determine if they are duplicates using a merg-
ing rule for determining similarity between records. Notice
that, in general, records with similar values for a given field
might not appear close to each other in lexicographic or-
dering. The effectiveness of the approach is based on the
expectation that if two records are duplicates, they will ap-
pear lexicographically close to each other in the sorted list
based on at least one key. Even if we choose multiple keys,
the approach is still susceptible to deterministic data-entry
errors, e.g., the first character of a key attribute is always
erroneous. It is also difficult to determine a value of the

window size that provides a “good” tradeoff between accu-
racy and performance. In addition, it might not be easy to
choose good keys to bring similar records close.

Recently many new techniques have a direct bearing
on the record-linkage problem. In particular, techniques
to map similarity spaces into similarity/distance-preserving
multidimensional Euclidean spaces have been developed.
Furthermore, many efficient multidimensional similarity
joins have been studied. In this paper, we develop an effi-
cient strategy to record linkage that exploits these advances.
We first consider the situation that a record consists of a sin-
gle attribute. The record-linkage problem then reduces to
linking similar strings in two string collections based on a
given similarity metric. We propose a two-step solution for
duplicate identification. In the first step, we combine the
two sets of records, and map them into a high-dimensional
Euclidean space. (A similar strategy is used in [14] to map
event sequences.) Many mapping techniques can be used.
As an example, in this paper we focus on the FastMap algo-
rithm [4] due to its simplicity and efficiency. We develop a
linear algorithm called “StringMap” to do the mapping, and
it is independent of the distance metric.

In the second step, we find similar object pairs in the
Euclidean space whose distance is within a new thresh-
old, which is closely related to the old threshold of string
distances. Again, many similarity-join algorithms can be
used, and we use the algorithm proposed by Hjaltason and
Samet [8] as an example. For each object pair in the result
of the second step, we check their corresponding strings to
see if their original distance is within the original thresh-
old, and find those similar-record pairs. Our approach has
the following advantages. (1) It is “open” to many mapping
functions (the first step) and high-dimensional similarity-
join algorithms (the second step). (2) It does not depend
on a specific similarity function of strings. (3) Extensive
experiments on real large data sets show this approach has
very good efficiency and accuracy (greater than 99%).

We next study mechanisms for record linkage when
many attributes are used to determine overall record sim-
ilarity. Specifically, we consider merging rules expressed
as logical expressions over similarity predicates based on
individual attributes. Such rules would be generated, for
example, if a classifier such as a decision tree was used to
train an overall similarity function between records using
a labeled training set. Given a merging rule, we choose a
set of attributes over which the similarity join is performed
(as discussed in the single-attribute case), such that similar
pairs can be identified with minimal cost.

This work is conducted in the Flamingo Data-Cleansing
Project at UC Irvine. The rest of the paper is organized as
follows. Section 2 gives the formulation of the problem.
Section 3 presents the first step of our solution, which maps
strings to a Euclidean space. Section 4 presents the second

step that conducts a similarity join in the high-dimensional
space. Section 5 studies how to solve the record-linkage
problem if we have a merging rule over multiple attributes.
In Section 6 we give the results of our extensive experi-
ments. We conclude in Section 7.

2 Problem Formulation

Distance Metrics of Attributes: Consider two relations
� and� that share a set of attributes��� � � � � ��. Each
attribute�� has a metric�� that defines the difference a
value of���� and a value of���� . There are many ways
to define the similarity metric at the attribute level, and
domain-specific similarity measures are critical. We take
two commonly-used metrics as examples: edit distance and
q-gram distance.

Edit distance, a.k.a. Levenshtein distance [13], is a com-
mon measure of textual similarity. Formally, given two
strings�� and��, their edit distance, denoted������ ���,
is theminimum number of edit operations (insertions, dele-
tions, and substitutions) of single characters that are needed
to transform�� to ��. For instance,��(“Harrison Ford”,
“Harison Fort”) = 2. It is known that the complexity of
computing the edit distance between strings�� and �� is
������ � �����, where���� and���� are the lengths of�� and
��, respectively [18].

Given a string� and an integer�, the set ofq-grams of �,
denoted	���, is obtained by sliding a window of length�
over the characters of string�. For instance:

	(“Harrison Ford”)=�’Ha’, ’ar’, ’rr’, ’ri’, ’is’, ’so’, ’on’, ’n
’, ’ F’, ’Fo’, ’or’, ’rd’ �.

	(“Harison Fort”)=�’Ha’, ’ar’, ’ri’, ’is’, ’so’, ’on’, ’n ’, ’
F’, ’Fo’, ’or’, ’rt’ �.

Therelative q-gram distance between two strings�� and
��, denoted������ ���, is defined as:

������ ��� � ��
�	���� �	�����

�	���� �	�����

For example,��(“Harrison Ford”, “Harison Fort”) = 1 -
��

��
� ����. Clearly the smaller the relative q-gram distance

between two strings is, the more similar they are.
Similarity Merging Rule: Given distance metrics for

attributes��� ��� � � � � ��, there is anoverall function that
determines whether or not two records are to be considered
as duplicates. Such a function may either be supplied manu-
ally by a human, or alternatively, learned automatically us-
ing a classification technique. While the specifics of the
method used to learn such a function are not of interest to
us in this paper, we do make an assumption that the function
is captured in the form of a rule discussed below. The form
of rules considered include those that could be learned us-
ing inductive rule-based techniques such as decision trees.

Furthermore, this form of merging rules are consistent with
the merging functions considered in [7].

Let
 and� be two records whose similarity is being de-
termined. Amerging rule for records
 and� is of the the
following disjunctive format.

������ � Æ��� 	 � � � 	������ � Æ���

 ������ � Æ��� 	 � � � 	������ � Æ���

...

 ������ � Æ��� 	 � � � 	������ � Æ���

For each conjunct������ � Æ��� (� � �� � � � � �, and �
�� � � � � �), the valueÆ��� � is a threshold using the metric
function�� on attribute�� . The conjunct means that two
records
 and� should satisfy���
��� � ����� � Æ��� .

For instance, given three attributes about papers,title
(“T”), name (“N”), and year (“Y”), suppose we use the edit
distance�� as a metric for attributesname andyear, and the
relative q-gram function�� as a metric for attribute�����.
Then we could have the following rule:

���� � � ���� 	 ����� � � 	 ���� � � �

 ���� � � ���	 	 ����� � � 	 ���� � � �

The record-linkage problem is to find pairs of records
�
� �� from relations� and�, such that each pair satisfies
the merging rule defined above. The quadratic nested-loop
solution is not desirable, since as the size of the data set in-
creases, this solution becomes computationally prohibitive.
For instance, in our experiments, it took more than
 hours
to use this approach on two single-attribute relations, each
with just ��� names, assuming the edit-distance function
is used (see Section 6 for our experimental setting). Since
by definition, the record-linkage problem is based onap-
proximate matching of those individual metrics for different
attributes, an efficient solution that might miss some pairs
(but with a high accuracy) can often be more preferable.

3 Mapping Strings to Euclidean Space

We first consider the single-attribute case, where� and
� share one attribute�. Thus the record-linkage prob-
lem reduces to linking similar strings in� and� based
on a given similarity metric. Formally, given a predefined
threshold valueÆ, we want to find pairs of strings�
� �� from
� and� respectively, such that according to the metric�

of attribute�, the distance of
 and� is within Æ, i.e.,

��
��� ���� � Æ�

Such a string pair is called asimilar-string pair; otherwise,
it is called adissimilar-string pair. Our proposed approach
has two steps. In the first step, we map strings to objects in
a multidimensional Euclidean space, such that the mapped
space preserves the original string distances. In the second
step, a multi-dimensional similarity join is conducted in the
Euclidean space. In this section we discuss the first step.

3.1 StringMap
In the first step, we combine the strings from the two

relations into one set, and embed them into a Euclidean
space. Many mapping/embedding functions can be used,
such as multidimensional scaling [12, 19], FastMap [4],
Lipschitz [1], SparseMap [10], and MetricMap [16]. These
algorithms have different properties in terms of their effi-
ciency, contractiveness, and stress. (See [9] for a good sur-
vey.) In this paper we use the FastMap algorithm because of
its efficiency and distance-preserving capability. We mod-
ify the FastMap slightly and propose an algorithm called
“StringMap,” as shown in Figure 1 (a). StringMap iterates
to find pivot strings to form� orthogonal directions, and
computes the coordinates of the� strings on the� axes.
The function������� �������� �� ���
�� �� selects two
strings to form an axis for the�-th dimension. These two
strings should be as far from each other as possible, and the
function iterates� times to find the seeds. A typical�
value could be	. The algorithm assumes the dimensional-
ity � of the target space, and we will discuss how to choose
a good� value shortly.

Function	������ ������� � ��� !� ��� �� ���
����
computes the distance between strings (indexed by and
!) after they are mapped to the first� � � axes. As shown
in Figure 1 (b), it iterates over the� � � dimensions, and
does the computation using only the two strings and their
already-computed coordinates on the� � � dimensions.
There are a few observations about the algorithm. (1) It
removes the recursion in FastMap. (2) The computation
of ���
���� �� is not symmetric with respect to values"
and #. (3) In function	������ �����, it is known that
���� � ���� � $ � $ can be negative [16]. In StringMap,
we take the square root of theabsolute value to compute
the new distance. In our experiments we tried other ways
to deal with this case, as described in [9]. Our results
indicated that the approach of taking the absolute value
keeps the distance well.

All the steps in StringMap are linear on the number of
strings� . Its complexity is���� �� � ��, assuming it
takes���� time to compute�� � !�. Notice that a major
cost in the algorithm is spent in function������� ������.
We can reduce the cost in the function as follows. At each
step in the function, we want to find a new string that is as
far from a string (e.g.,�����) as possible. Instead of scanning
the whole� strings, we can just do sampling to find a string
that is very far from�����. Or we can just stop once we find
a string that is “far enough” from�����, i.e., their distance is
above certain value.

3.2 Choosing Dimensionality �

A good dimensionality value� used in StringMap should
have the property that after the mapping, similar strings can

Algorithm StringMap
Input: • N strings: t[1, . . . , N].

• d: Dimensionality of Euclidean space.
• M : Metric function on strings.

Output: N corresponding objects in the new space.
Variables: • PA[1,2][1,. . . ,d]: 2 × d pivot strings.

• coord[1,. . . ,N][1,. . . ,d]: object coordinates.

Method:
for (h = 1 to d) {

(p1, p2) = ChoosePivot(h,M); // choose pivot strings
PA[1,h]= t[p1]; PA[2,h] = t[p2]; // store them
dist = GetDistance(p1, p2, h, M);
if (dist == 0) {

// set all coordinates in the h-th dimension to 0
for (i = 1 to N) { coord[i,h] = 0 };
break;

}
// compute coordinates of strings on this axis
for (i = 1 to N) {

x = GetDistance(i, p1, h, M);
y = GetDistance(i, p2, h, M);
coord[i,h] = (x*x + dist*dist - y*y) / (2*dist);

}
}

(a) The main algorithm

// choose two pivot strings on the h-th dimension
Function ChoosePivot(int h, Metric M)
{

seed t[sa] = a random string from t[1], . . . , t[N];
for (i = 1 to m) { // a typical m value could be 5

// use function GetDistance(.,.,h,M)
// to compute distances
seed t[sb] = a farthest point from t[sa];
seed t[sa] = a farthest point from t[sb];

}
return (sa, sb);

}
// get distance of two strings (indexed by a and b)
// after they are projected onto the first h − 1 axes
Function GetDistance(int a, int b, int h, Metric M)
{

A = t[a]; B = t[b]; // get strings
dist = M(A, B); // get original metric distance
for (i = 1 to h − 1) {

// get their difference on dimension i
w = coord[a,i] - coord[b,i];

dist =
√

|dist × dist − w × w|;
}
return (dist);

}

(b) Functions

Figure 1. Algorithm StringMap.

be differentiated from those dissimilar ones. It cannot be
too small, since otherwise those dissimilar pairs will not
“fall apart” from each other. In particular, the distances
of similar-string pairs are too close to those of dissimilar
ones.� cannot be too high either, since (1) the complexity
of the StringMap algorithm (see above) is linear to��; (2)
we need to do a similarity join in the second step, and we
want to avoid the curse of dimensionality. As� increases,
it becomes more time-consuming to find object pairs whose
distance is within a new threshold. We choose a dimension-
ality � as follows.

1. Randomly select a small number (say, 1K) of strings
from the data sets� and�. Use the nested-loop ap-
proach to find all similar-string pairs within threshold
Æ in the selected strings.

2. Run StringMap using different� values. (Typically�
is between	 and��.) For each�, compute the new
distances of the similar-string pairs. Find their largest
new distance$.

3. Find a dimensionality� with a lowcost:

���� �
of object pairs within distance$

of similar-string pairs
(1)

Intuitively, the cost is the average number of object
pairs we need to retrieve in step 2 for each similar-
string pair, if$ is used as the new thresholdÆ � for se-
lecting similar-object pairs in the mapped space.

Notice that we only use the pairs of selected strings to
compute the cost. This value measures how well a new
thresholdÆ� � $ differentiates the similar-string pairs from
those dissimilar pairs. In particular, the string pairs whose
new distance is withinÆ� will be retrieved in step 2. Thus
the lower the cost is, relatively the fewer object pairs need
to be retrieved in step 2 whose original distance is more
thanÆ. Figure 3 in Section 6.1 shows that typically a good
dimensionality value is between�	 and�	.

4 Similarity Join in Euclidean Space

In the second step, we find object pairs whose Euclidean
distance is within a new thresholdÆ �. For each candidate
pair, we check the distance of their original strings to see it
is within thresholdÆ.

4.1 Choosing New Threshold Æ �

The selection of the new thresholdÆ � depends on the
mapping function. For instance, we can setÆ � � Æ if the
mapping function iscontractive. That is, for any two strings

 and�, we have��
� �� � � ��
�� ���, where��
� �� is
their distance in the original metric space, and� ��
�� ��� is
the new Euclidean distance of the corresponding objects
 �

and�� in the new space. In general, suppose there are two
constants��� �� � �, such that for any two strings
 and�,
we have: �

��
��
� �� � � ��
�� ��� � �� ��
� ��, then

we can just setÆ� � �� Æ. Properties of different mapping
functions are studied in [9].

Ideally, the thresholdÆ � should be set to a maximal value
of the new distance between any two similar-string pairs
in the original space. Then it will guarantee no false dis-
missals. However, this maximal value could be either too
expensive to find (we do not want to have a nested-loop pro-
cedure), or the theoretical upper bound could be too large.
Since it is acceptable to miss a few pairs, we would like to
choose a threshold such that formost of the similar-string
pairs, their new distances are within this threshold. As
shown in our experimental results, even though a theoret-
ical upper bound could be large, most of the new distances
could be within a much smaller threshold.

In our approach to selecting the dimensionality�, the
threshold$ can be used to identify similar pairs in the
mapped space. Here is how we choose the thresholdÆ �. We
randomly select a small number (say, 1K) of strings from
data sets� and�. (Notice these selected strings might be
different from those used to decide the dimensionality� in
Section 3.2.) We find all the similar-string pairs in these se-
lected strings, and compute their new Euclidean distances
after StringMap. We choose their maximal new distance as
the new thresholdÆ �. We may do this sampling multiple
times (on different sets of selected strings), and chooseÆ �

as the maximal new distance of those similar-string pairs.

4.2 Finding Object Pairs within Æ�

We want to find all those object pairs whose new distance
is within this new thresholdÆ �. Many similarity-join algo-
rithms can be applied, and we use a simplified version of
the algorithm in [8] as an example, due to its simplicity and
availability of the code. We briefly explain the main idea of
the algorithm. We first build two R-trees for the mapped ob-
jects of the two string sets, respectively. We traverse the two
trees from the roots to the leaf nodes to find those pairs of
objects within distanceÆ�. As we do the traversal, a queue
is used to store pairs of nodes (internal nodes or leaf nodes)
from the two trees.1 We only insert those node pairs that
can potentially yield object pairs that satisfy the condition.
Those node pairs that cannot produce results are pruned in
the traversal, i.e., they are never inserted into the queue.

Take Figure 2 as an example. Initially, a pair of the root
nodes���� ��� is inserted into the queue. At each step, we
dequeue the head pair���� ���. If both nodes are internal
nodes, we consider all the pairs of their children. For each
pair���� �	�, we compute their “distance,” which is alower
bound of all the distances of their child objects. (The case
of a node-object pair is handled similarly.) We prune node
pairs as follows: if the distance of a node pair is greater than
Æ�, we do not insert this pair into the queue. If the distance
of two nodes is withinÆ �, we insert this pair into the queue.

1Since we just want to find those object pairs whose distance is within
Æ�, we donot need a priority queue.

When we consider the two child nodes of each of the two
root nodes in the figure, we have four pairs:

���� ���� ���� ���� ���� ���� ���� ���

Suppose each pair has a distance withinÆ �, then we insert
them into the queue. We remove the pair���� ��� from the
queue, and consider pairs of their child nodes:

���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���

For each pair, we compute their distance. If, for exam-
ple, the distance between�� and�� is greater thanÆ�, we
will not consider this pair, since they cannot generate object
pairs that have a distance withinÆ �. In other words, all the
pairs of their descendants are greater thanÆ �.

Suppose only ���� ���� ���� ���� ���� ���� ���� ���
have a distance withinÆ �. Then we insert these pairs into
the queue. The status of the queue is shown in the figure.
Eventually we have a pair ofobjects from the queue. Then
we compute their Euclidean distance to check if it is within
Æ�. If so, we compute the original metric distance of their
original strings. We output this pair of strings if their
original metric distance is within the original thresholdÆ.

Different strategies can be used to traverse the two R-
trees, such as depth first and breadth first. Our experiments
show that the depth-first traversal strategy has several ad-
vantages. (1) It can effectively reduce the queue size, since
object pairs in the leaf nodes can be processed early, and
they can be dequeued. Thus the memory requirement of the
algorithm tends to be small. In our experiments, when each
data set had about 27K strings, the breadth-first strategy re-
quired about 1.2GB memory, while the depth-first strategy
only requested about 30MB memory. (2) It also reduces the
time that the first pair is output, since it can reach the leaf
nodes more quickly than the breadth-first strategy.

Comparison: In [6], the authors proposed an attrac-
tive q-gram-based approach to find similar string pairs in
a DBMS. Compared to that approach, our approach has
several advantages in the context of record linkage. First,
the distance metrics used at individual attributes might not
be edit distance. As argued earlier, domain-specific meth-
ods work better in identifying similar records. Furthermore,
the algorithm in [6] is geared towards finding all the string
pairs that are within a fixed edit-distance threshold. Since
the record-linkage problem, by definition, is based on ap-
proximate matching, solutions that might miss some such
pairs (say those that obtain around 99% accuracy) but re-
sult in significant time savings might be more preferable.
As we will see in Section 6.3, our algorithm works very
efficiently, while still achieving a very high accuracy. In
addition, the implementation of the qgram-based approach
inside a database might be less efficient than a direct imple-
mentation using other languages (e.g., the C language).

���� ���

���� ���

���� ���

���� ���

���� ���

���� ���

���� ���
��

��

��

�� ��

��
��

��

��

�� ��

�� �� �� ��

��

�� ��

��

�� ��

��

��

�� ��

���� ��

�� ��

�� �� �� �� �� �� �� �� �	 ���

�����

��

�� ��

��

�� ��

�� ��

�	 ���

Figure 2. Finding similar-object pairs using R-trees.

5 Combining Multiple Attributes

In this section we discuss how to join over multiple at-
tributes efficiently where the merging rule is of the disjunc-
tive normal form (DNF) discussed in Section 2.

Single Conjunctive Clause: For a single conjunctive
clause, we can process the most “selective” attribute to find
the candidate pairs that satisfy this conjunct condition, and
then check other conjunct conditions. For instance, consider
the following query clause%�.

��������� � ���	 	 ���� ��� � � 	 ���#�
� � �

We could first do a similarity search to find all the record
pairs that satisfy the first condition,��������� � ���	. For
each of the returned candidate pairs, we check if it satisfies
the other two conditions on thename andyear attributes.
Alternatively, we can choose eithername or year to do the
similarity join. Our experiments show that the step of test-
ing other attributes takes relatively much less time than the
step of finding the candidate record pairs, thus we mainly
focus on the time of doing the similarity join that finds the
candidate pairs. We can use existing techniques on estimat-
ing the performance of spatial joins (e.g., [11]), and choose
the attribute that takes the least time to do the correspond-
ing similarity join. (This attribute is called themost selec-
tive attribute for this conjunctive clause.) Notice that sim-
ilar to [7], we could also search along multiple attributes
of the conjunction to improve accuracy. Since the map-
ping in Step 1 does not guarantee that all the relevant string
pairs will be found, using multiple attributes may improve
accuracy. However, as will be shown in the experimental
section, since our strategy for single attributes is able to
identify matching string pairs at a very high accuracy (over
99%), traversals along multiple attribute are not necessary.
In contrast, since string lexicographic ordering may not pre-
serve domain-specific similarity as well, to get the same
degree of accuracy, the approach in [7] requires traversals
along multiple keys.

Disjunctive Clauses: The problem becomes more chal-
lenging in the case of multiple conjunctive clauses. Take
query%� in Section 2 as an example. We have at least the
following different approaches to answering this query.

1. Approach A: Find all record pairs that satisfy the first
conjunctive clause by doing a similarity search using
the conjunct��������� � ����. Find all record pairs
satisfying the second conjunctive clause by doing a
similarity search using the conjunct���� ��� � �.
Take the union of these two sets of results.

2. Approach B: Do a similarity search to find record pairs
that satisfy��������� � ���	 in the second conjunctive
clause. These pairs also include all the pairs satisfying
the first conjunctive clause, since��������� � ����
implies��������� � ���	. Among all these pairs, find
those satisfying the merging rule.

Approach A needs to do two similarity searches, while
approach B requires only one. However, both similarity
searches in approach A could be more selective than the
single similarity search in approach B. Which approach is
better depends on the data set.

The example shows that to answer a conjunctive clause,
we can choose at most one conjunct in it to do a similar-
ity join. In addition, once we choose a conjunct� ����� �
Æ��� � to do a similarity join, we do not need to do a similar-
ity join for any other conjunctive clause that has a conjunct
������ � Æ��� �, whereÆ��� � � Æ��� �. The reason
is that a superset of the results for the conjunct������ �
Æ��� � has been returned by the similarity search. As the
number of attributes and the number of conjunctive clauses
increase, there could be an exponential number of possible
ways to answer the query. In fact, assuming the time of do-
ing a similarity search for each conjunct is given, we can
show that the problem of finding an optimal solution (with
a minimal total time) to answer the query is NP-complete.
(The NP-hardness can be proven by reducing the problem
to the NP-complete set-cover problem.)

Since it could be too time-consuming to find an opti-
mal solution, we propose two heuristic-based algorithms for
finding a good one.

� Algorithm 1: Treat all the conjunctive clauses sep-
arately. For each of them, choose the most selec-
tive attribute to do the corresponding similarity join.
If we choose the same attribute�� in two conjunc-
tive clauses, and their corresponding thresholdsÆ ��� �

Æ��� , then we only choose the thresholdÆ��� to do the
similarity search for the second clause, saving one sim-
ilarity search for the first one. Take the union of results
of all conjunctive clauses.

� Algorithm 2: For each attribute, choose the largest
threshold among all its conjuncts. Among the largest
thresholds of different attributes, choose the most se-
lective one to do a similarity join. Among the results,
find the record pairs that satisfy the merging rule.

For instance, consider the query%� in Section 2. Sup-
pose Algorithm 1 chooses��������� � ���� as the most
selective condition for the first clause, and���� ��� � �
for the second one. Thus it will produce the approach A
above. For Algorithm 2, the largest thresholds of the three
attributestitle, name, andyear are���	, �, and�, respec-
tively. Suppose��������� � ���	 is the most selective one.
This algorithm will produce approach B as the solution. In
general, Algorithm 1 works better than Algorithm 2 if doing
multiple similarity searches with small thresholds is more
efficient than one with a large threshold.

6 Experiments

In this section we present our extensive experimental re-
sults to evaluate our solution. The following are three main
sources we used. (1)Source 1 consists of 54,000 movie star
names collected from The Internet Movie Database.2 The
length of each name varies from	 to ��, and their average
length is about��. (2) Source 2 is from the Die Vorfahren
Database of mostly Pomeranian surnames and geographic
locations.3 It contains 133,101 full names, whose lengths
are less than 40, and mean length is around 15. (3)Source
3 is from the publications in DBLP.4 We randomly selected
20,000 papers in proceedings. We use this data source to
show how to do data linkage in multiple-attribute cases.

All the experiments were run on a PC, with a 1.5GHz
Athlon CPU and 512MB memory. The operating system
is Windows 2000, and the complier is gnu C++ running
in cygwin. This setting shows that our approach does not
have specific hardware and software requirements. We used
� ��� as the page size to build R-trees. Most of our exper-
imental results are similar for three sources. Due to space
limitation, we mainly report the results on data source 1. In
addition, since the results for the edit-distance metric and
the q-gram distance metric are similar, we will mainly re-
port the results of the edit-distance metric.

2http://www.imdb.com/
3http://feefhs.org/dpl/dv/indexdv.html
4http://www.informatik.uni-trier.de/�ley/db/

6.1 Choosing Dimensionality �

As discussed in Section 3.2, we need to choose a good
dimensionality� for the StringMap algorithm. To select a
� value, we randomly selected 2K strings from Source 1 to
form two data sets with the same size, and ran StringMap
using different dimensionalities. For edit distance, we con-
sidered the case whereÆ � �, �, and�. For the q-gram
metric, we consideredÆ � ��� and���	.

0

500

1000

1500

2000

2500

3000

3500

10 15 20 25 30

C
os

t

Dimensionality d

Effect of different dimensionalities

δ = 1
δ = 2
δ = 3

(a) Edit Distance

0

50

100

150

200

250

300

350

400

10 15 20 25 30

C
os

t

Dimensionality d

Effect of different dimensionalities

δ = 0.1
δ = 0.15

(b) Q-gram Distance

Figure 3. Costs of different dimensionalities.

Figures 3 (a) and (b) show costs for different dimension-
alities for edit distance and q-gram distance, respectively.
(See Section 3.2 for the definition of “cost.”) It is shown that
the cost decreased with the increase of dimensionality. That
is, the larger the dimensionality, the fewer extra object pairs
we need to retrieve in step 2 for each similar-string pair,
while the original strings of these objects have a distance
greater thanÆ. On the other hand, due to the computational
complexity of StringMap and the curse of dimensionality,
� cannot be high either. The results show that� � �� is a
good dimensionality for both metrics.

Figures 4 (a) and (b) show the distributions of the object-
pair distances after StringMap, for the edit-distance met-
ric. We randomly sampled 2K from Source 1 to form two
data sets with the same size. We choseÆ � � for similar-
string pairs, and set� � ��. The figures show that after
StringMap, there is a new threshold to differentiate simi-
lar pairs frommost dissimilar pairs. In particular, all the
sampled similar-string pairs had new object-pair distances
within 	�	, while most of dissimilar-string pairs had their

1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

1

2

3

4

5

6

7

8

Euclidean Distance

N
um

be
r o

f P
ai

rs
Histogram for Similar Pairs

d=20

(a) Similar pairs

(b) Dissimilar pairs

Figure 4. Histograms of new Euclidean dis-
tances: edit distance, Æ � �, � � ��.

object-pair distances larger than	�	.

6.2 Choosing Threshold Æ �

As discussed in Section 4.1, we selected new threshold
Æ� for the second step as follows. For each source, we ran-
domly selected 2K strings, and partitioned the strings into
two data sets equally. We used the nested-loop approach to
find all the similar-string pairs in the selected strings. We
ran StringMap with� � ��, and traced the new Euclidean
distances of these sample similar-string pairs. We did this
sampling�� times, and choseÆ � as the largest new object-
pair distance of the sampled similar-string pairs.

�� � � �� � � �� � � �� � ���

Source 1 ��� ��� 	�	�� ���
Source 2 ���
 	�� �� ���

Table 1. Threshold Æ� used in step 2 (� � ��).

Table 1 shows theÆ� values used in step 2 for two differ-
ent metrics. Notice that when using the edit-distance met-

ric, since the two sources have different strings with dif-
ferent length distributions, it is not surprising that we need
to choose differentÆ � values by sampling. For the q-gram
metric, we setÆ� � ��� for both data sources 1 and 2.

6.3 Running Time

In order to measure the performance of our approach,
we ran our algorithm on different data sizes. In each case,
we chose the same number of strings in both data sets. We
chose dimensionality� � ��, and let the total size of strings
vary from 2K, 4K, 8K, 16K, to 54K from Source 1. We
measured the corresponding running time.

Figure 5 shows the time of the complete algorithm (in-
cluding two steps), and the time of the StringMap step, as-
suming we use the edit-distance metric. Their gap is the
time of the second step that did the R-tree similarity join.
The figure shows that as the data sizes increased, both the
StringMap time and the total time grew. Our approach is
shown to be very efficient and scalable. For instance, when
the total number of strings is	��, it took the approach only
�� minutes to find the similar-string pairs. (It look almost
one week for the nested-loop approach to finish.) The fig-
ures also indicate that other similarity-join techniques may
be used in the second step to improve its performance.

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60

tim
e

(s
ec

)

total # of strings in 2 data sets (K)

Running time for different sizes of datasets (k=2)

Total Time
Time for StringMap

Figure 5. Running time (Æ � �� � � ��), edit
distance.

In the case where the edit-distance metric is used, the ap-
proach in [6] can be used to find all the string pairs whose
edit distance is within a given threshold. We implemented
this approach using Oracle 8.1.7 on the same PC, and let
the database use indexes to run the query. We selected sub-
sets of strings from Source 1, and let both sets have the
same number of strings. In our approach we chose threshold
Æ � �, dimensionality� � ��, and new thresholdÆ � � 	��.
Figure 6 shows the performance difference between these
two approaches. The figure shows that our approach can
substantially reduce the time of finding similar-string pairs.
Notice that even though our approach cannot guarantee to
find all such pairs, as we will see shortly, it can still achieve
a very high accuracy. In the context of record linkage, an
efficient approximate-search algorithm with a very high ac-
curacy might be more desirable.

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20 25 30 35 40

tim
e

(s
ec

)

total # of strings in two data sets (K)

QGram Approach
Our Approach

Figure 6. Our approach (approximate search)
versus the qgram exact approach in [6].

6.4 Accuracy

We want to know how well our approach can find all the
similar-string pairs. (Ideally we want to find all of them!)
In particular, we are interested in the accuracy, i.e., ratio
of similar-string pairs found among all similar-string pairs.
Figure 7 shows the accuracy of data source 1, with differ-
ent thresholdÆ� values in the second step, using the edit-
distance metric. As theÆ� value increased, the accuracy
also increased, and it quickly got very close to����. For
instance, in the case whereÆ � �, the accuracy reached
��� whenÆ� � 	�
. When we further increased the thresh-
old, the accuracy continued to grow close to����. We also
implemented the sliding-window approach in [7]. Without
loss of generality, we used attributes as keys, and the condi-
tion is���� ��� � � for data source 1. We chose different
window sizes, and for each of them, the time and accuracy
were measured.

80

85

90

95

100

105

110

3 4 5 6 7

A
cc

ur
ac

y
(%

)

Threshold δ’ in step 2

Accuracy for Source1

δ=1
δ=2
δ=3

Figure 7. Accuracy versus threshold Æ� (d=20),
edit distance.

Figure 8 shows the accuracy and time for these two
approaches. It shows that our approach can achieve a
very high accuracy given a time limit. The primary rea-
son is that our mapping function provides very good dis-
tance/similarity preservation. Since lexicographic ordering
does not preserve edit distances as well, the approach dis-
cussed in [7] needs to consider a very large window size
(and hence cost) to obtain competitive degree of accuracy.

80

85

90

95

100

105

110

2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

A
cc

ur
ac

y
(%

)

Running Time (sec)

Time vs. Accuracy Comparison of two approaches for Source 1

Time-Accuracy for our approach
Time-Accuracy for sliding-window approach

Figure 8. Our approach versus the sliding-
window approach in [7].

6.5 Results on Multiple Attributes

Now we report our experimental results for the multiple-
attribute case on data source 3.

Single Conjunctive Clause: We evaluated the single
conjunctive query%� in Section 5. For the three attributes
to perform a similarity join:title, name, andyear, experi-
mental results showed that the attributeyear is not a good
one to do a similarity join, since too many candidate pairs
were generated. Thus we answered the query by conducting
a similarity join using attributestitle andname, respectively.

Similarity-join Attribute Time (sec) Final Result Size
name ���� 	��
title ���� 	��

Table 2. Results of similarity join using differ-
ent attributes.

As shown in Table 2, for the thresholds in the query, do-
ing a similarity join onname is more efficient than ontitle.
Notice that the result size is different for these two similar-
ity searches, since both of them are approximate. The small
difference (only two pairs) between them again shows that
our approach has a very high accuracy.

Disjunctive Clause: We used the query%� in Section 2
as an example of disjunctive clauses. We implemented the
two approaches in Section 5. For algorithm 1 that produces
approach A, we chose the conjunct��������� � ���� to
do the similarity search for the first clause, and conjunct
���� ��� � � for the second one. After getting the result
pairs for each clause, we took a union of the two sets and
produced the final result. Table 3 shows the results. The
total time for approach A was�� �� seconds, and the size
of the final result set was
��. Notice that the results of the
two clauses had overlapped record pairs. The accuracy of
taking this approach is more than 99%.

For algorithm 2 that produces approach B, we found that
��������� � ���	 was the most selective conjunct, using
which we performed the similarity join. Table 4 shows the

Selected Condition Time (sec) # of Record Pairs
Clause 1,��������� � ��� ��
� ��

Clause 2,�������� � � 	
� ��

Total ���
�� (pairs overlap)

Table 3. Approach A for disjunctive clause.

results. In particular, the total time for approach B was
�� ��� seconds, and the size of the final result was also
��.

Selected Condition Time # of Record Pairs
Clause 2,��������� � ���� �	�� secs
��

Table 4. Approach B for disjunctive clause.

For this example, approach B was better than approach
A. In general, algorithm 1 produces a solution that tries to
minimize the time of each individual similarity join, which
tends to produce a small candidate set. Algorithm 2 pro-
duces a solution that needs to perform a similarity join only
once for all the clauses. It may need more time for the sin-
gle similarity join, since the threshold could be large. To fix
this problem of Algorithm 2, we can set an upper bound on
the threshold of each attribute, and we will never consider
those conjuncts on this attribute whose threshold is above
this bound. One observation is that if the thresholds for the
attributes vary a lot, it could be better to take Algorithm 1.
Otherwise, Algorithm 2 could be preferable.

7 Conclusion

In this paper we developed a novel approach to the
record-linkage problem: given two lists of records, we
want to find similar record pairs, where the overall sim-
ilarity between two records is defined based on domain-
specific similarities over individual attributes. For each at-
tribute of records, we first map records to a multidimen-
sional Euclidean space that preserves domain-specific simi-
larity. Given the merging rule that defines when two records
are similar, a set of attributes are chosen along which the
merge will proceed. A multidimensional similarity join
over the chosen attributes is used to determine similar pairs
of records. Our extensive experiments using real data sets
showed that our solution has very good efficiency and ac-
curacy. In addition, our approach is very extendable, since
many existing techniques can be used. It can also be gener-
alized to other similarity functions between strings.

Acknowledgments: We thank Michael Ortega-
Binderberger for providing his implementation of the
algorithm in [8]. We thank the authors of [6] for providing
the details of their implementation. We thank Heikki
Mannila for letting us know the work in [14].

References

[1] J. Bourgain. On Lipschitz embedding of finite metric spaces
in hilbert space.Israel Journal of Mathematics, 52(1-2):46–
52, 1985.

[2] W. W. Cohen, H. A. Kautz, and D. A. McAllester. Hardening
soft information sources. InKnowledge Discovery and Data
Mining, pages 255–259, 2000.

[3] M. G. Elfeky, V. S. Verykios, and A. K. Elmagarmid. Tailor:
A record linkage toolbox. InICDE, 2002.

[4] C. Faloutsos and K.-I. Lin. Fastmap: A fast algorithm for
indexing, data-mining and visualization of traditional and
multimedia datasets. In M. J. Carey and D. A. Schneider,
editors,SIGMOD, pages 163–174, 1995.

[5] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-
A. Saita. Declarative data cleaning: Language, model, and
algorithms. InVLDB, pages 371–380, 2001.

[6] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string
joins in a database (almost) for free. InVLDB, pages 491–
500, 2001.

[7] M. A. Hernández and S. J. Stolfo. The merge/purge problem
for large databases. In M. J. Carey and D. A. Schneider,
editors,SIGMOD, pages 127–138, 1995.

[8] G. R. Hjaltason and H. Samet. Incremental distance join al-
gorithms for spatial databases. In L. M. Haas and A. Tiwary,
editors,SIGMOD, pages 237–248, 1998.

[9] G. R. Hjaltason and H. Samet. Contractive embedding meth-
ods for similarity searching in metric spaces. Technical re-
port, University of Maryland Computer Science, 2000.

[10] G. Hristescu and M. Farach-Colton. Cluster-preserving em-
bedding of proteins. Technical Report 99-50, Rutgers Univ.,
8 1999.

[11] Y.-W. Huang, N. Jing, and E. A. Rundensteiner. A cost
model for estimating the performance of spatial joins using
R-trees. InStatistical and Scientific Database Management,
pages 30–38, 1997.

[12] J. B. Kruskal and M. Wish.Multidimensional Scaling. Sage
Piblications, Beverly Hills, CA, 1978.

[13] V. I. Levenshtein. Binary codes capable of correcting dele-
tions, insertions and reversals.Soviet Physics Doklady,
10:707–710, 1966.

[14] H. Mannila and J. K. Seppnen. Recognizing similar situa-
tions from event sequences. InFirst SIAM Conference on
Data Mining, 2001.

[15] V. Raman and J. M. Hellerstein. Potter’s wheel: An inter-
active data cleaning system. InThe VLDB Journal, pages
381–390, 2001.

[16] J. T.-L. Wang et al. Evaluating a class of distance-mapping
algorithms for data mining and clustering. InKnowledge
Discovery and Data Mining, pages 307–311, 1999.

[17] W. Winkler. Advanced methods for record linkage, 1994.
[18] P. N. Yianilos and K. G. Kanzelberger. TheLIKEIT intelli-

gent string comparison facility. Technical report, NEC Re-
search Institute, 1997.

[19] F. W. Young and R. M. Hamer.Multidimensional Scal-
ing: History. Theory and Applications Erlbaum, New York,
1987.

