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Abstract

Using an open-source, Java toolkit of name-matching
methods, we experimentally compare string distance
metrics on the task of matching entity names. We inves-
tigate a number of different metrics proposed by differ-
ent communities, including edit-distance metrics, fast
heuristic string comparators, token-based distance met-
rics, and hybrid methods. Overall, the best-performing
method is a hybrid scheme combining a TFIDF weight-
ing scheme, which is widely used in information re-
trieval, with the Jaro-Winkler string-distance scheme,
which was developed in the probabilistic record linkage
community.

Introduction
The task of matching entity names has been explored by a
number of communities, including statistics, databases, and
artificial intelligence. Each community has formulated the
problem differently, and different techniques have been pro-
posed.

In statistics, a long line of research has been conducted
in probabilistic record linkage, largely based on the sem-
inal paper by Fellegi and Sunter (1969). This paper for-
mulates entity matching as a classification problem, where
the basic goal is to classify entity pairs as matching or
non-matching. Fellegi and Sunter propose using largely
unsupervised methods for this task, based on a feature-
based representation of pairs which is manually designed
and to some extent problem-specific. These proposals have
been, by and large, adopted by subsequent researchers, al-
though often with elaborations of the underlying statisti-
cal model (Jaro 1989; 1995; Winkler 1999; Larsen 1999;
Belin & Rubin 1997). These methods have been used to
match individuals and/or families between samples and cen-
suses, e.g., in evaluation of the coverage of the U.S. decen-
nial census; or between administrative records and survey
data bases, e.g., in the creation of an anonymized research
data base combining tax information from the Internal Rev-
enue Service and data from the Current Population Survey.

In the database community, some work on record match-
ing has been based on knowledge-intensive approaches
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(Hernandez & Stolfo 1995; Galhardaset al. 2000; Raman
& Hellerstein 2001). However, the use of string-edit dis-
tances as a general-purpose record matching scheme was
proposed by Monge and Elkan (Monge & Elkan 1997;
1996), and in previous work, we proposed use of the
TFIDF distance metric for the same purpose (Cohen 2000).
In the AI community, supervised learning has been used
for learning the parameters of string-edit distance metrics
(Ristad & Yianilos 1998; Bilenko & Mooney 2002) and
combining the results of different distance functions (Te-
jada, Knoblock, & Minton 2001; Cohen & Richman 2002;
Bilenko & Mooney 2002). More recently, probabilistic ob-
ject identification methods have been adapted to matching
tasks (Pasulaet al. 2002). In these communities there has
been more emphasis on developing autonomous matching
techniques which require little or or no configuration for
a new task, and less emphasis on developing “toolkits” of
methods that can be applied to new tasks by experts.

Recently, we have begun implementing an open-source,
Java toolkit of name-matching methods (Cohen & Raviku-
mar 2003) that includes a variety of different techniques. In
this paper we use this toolkit to conduct a comparison of
several string distances on the tasks of matching and clus-
tering lists of entity names. We also introduce and evaluate
a number of novel string-distance methods. One of these
novel distance metrics performs better, on average, than any
previous string-distance metric on our benchmark problems.
This new distance metric extends cosine similarity by using
the Jaro-Winkler method (Winkler 1999) to exploit nearly-
matching tokens.

This experimental use of string distance metrics, while
similar to previous experiments in the database and AI com-
munities, is a substantial departure from their usual use in
statistics. In statistics, databases tend to have more structure
and specification, by design. Thus the statistical literature on
probabilistic record linkage represents pairs of entities not
by pairs of strings, but by vectors of “match features” such
as names and categories for variables in survey databases.
By developing appropriate match features, and appropriate
statistical models of matching and non-matching pairs, this
approach can achieve better matching performance (at least
potentially).

The use of string distances considered here is most useful
for matching problems with little prior knowledge, or ill-



structured data. Better string distance metrics might also be
useful in the generation of “match features” in more struc-
tured database situations.

Methods
Edit-distance like functions
Distance functionsmap a pair of stringss and t to a real
numberr, where a smaller value ofr indicates greater sim-
ilarity betweens andt. Similarity functionsare analogous,
except that larger values indicate greater similarity; at some
risk of confusion to the reader, we will use this terms inter-
changably, depending on which interpretation is most natu-
ral.

One important class of distance functions areedit dis-
tances, in which distance is the cost of best sequence ofedit
operationsthat converts to t. Typical edit operations are
character insertion, deletion, and substitution, and each op-
eration much be assigned a cost.

We will consider two edit-distance functions. The sim-
ple Levenstein distanceassigns a unit cost to all edit opera-
tions. As an example of a more complex well-tuned distance
function, we also consider theMonger-Elkandistance func-
tion (Monge & Elkan 1996), which is an affine1 variant of
the Smith-Waterman distance function (Durbanet al. 1998)
with particular cost parameters, and scaled to the interval
[0,1].

A broadly similar metric, which isnot based on an edit-
distance model, is theJarometric (Jaro 1995; 1989; Winkler
1999). In the record-linkage literature, good results have
been obtained using variants of this method, which is based
on the number and order of the common characters between
two strings. Given stringss = a1 . . . aK andt = b1 . . . bL,
define a characterai in s to be common witht there is a
bj = ai in t such thati − H ≤ j ≤ i + H, whereH =
min(|s|,|t|)

2 . Let s′ = a′1 . . . a
′
K′ be the characters ins which

are common witht (in the same order they appear ins) and
let t′ = b′1 . . . b

′
L′ be analogous; now define atransposition

for s′, t′ to be a positioni such thata′i 6= b′i. Let Ts′,t′
be half the number of transpositions fors′ andt′. The Jaro
similarity metric fors andt is

Jaro(s, t) =
1
3
·
( |s′|
|s| +

|t′|
|t| +

|s′| − Ts′,t′
|s′|

)

A variant of this due to Winkler (1999) also uses the length
P of the longest common prefix ofs andt. LettingP ′ =
max(P, 4) we define

Jaro-Winkler(s, t) = Jaro(s, t) +
P ′

10
· (1− Jaro(s, t))

The Jaro and Jaro-Winkler metrics seem to be intended pri-
marily for short strings (e.g., personal last names.)

Token-based distance functions
Two stringss andt can also be considered as multisets (or
bags) of words (or tokens). We also considered several

1Affineedit-distance functions assign a relatively lower cost to
a sequence of insertions or deletions.

token-based distance metrics. TheJaccard similaritybe-
tween the word setsS andT is simply |S∩T ||S∪T | . TFIDF or
cosine similarity, which is widely used in the information
retrieval community can be defined as

TFIDF(S, T ) =
∑

w∈S∩T
V (w, S) ·V (w, T )

whereTFw,S is the frequency of wordw in S,N is the size
of the “corpus”,IDFw is the inverse of the fraction of names
in the corpus that containw,

V ′(w, S) = log(TFw,S + 1) · log(IDFw)

andV (w,S) = V ′(w, S)/
√∑

w′ V ′(w, S)2. Our imple-
mentation measures all document frequency statistics from
the complete corpus of names to be matched.

Following Daganet al(1999), a token setS can be viewed
as samples from an unknown distributionPS of tokens, and
a distance betweenS and T can be computed based on
these distributions. Inspired by Daganet al we considered
the Jensen-Shannondistance betweenPS andPT . Letting
KL(P ||Q) be the Kullback-Lieber divergence and letting
Q(w) = 1

2 (PS(w) + PT (w)), this is simply

Jensen-Shannon(S, T ) =
1
2

(KL(PS ||Q) +KL(PT ||Q))

DistributionsPS were estimated using maximum likelihood,
a Dirichlet prior, and a Jelenik-Mercer mixture model (Laf-
ferty & Zhai 2001). The latter two cases require parameters;
for Dirichlet, we usedα = 1, and for Jelenik-Mercer, we
used the mixture coefficientλ = 0.5.

From the record-linkage literature, a method proposed by
Fellegi and Sunter (1969) can be easily extended to a token
distance. As notation, letA andB be two sets of records
to match, letC = A ∩ B, let D = A ∪ B, and forX =
A,B,C,D letPX(w) be the empirical probability of a name
containing the wordw in the setX. Also let eX be the
empirical probability of an error in a name in setX; eX,0
be the probability of a missing name in setX; eT be the
probability of two correct but differing names inA andB;
and lete = eA + eB + eT + eA,0 + eB,0.

Fellegi and Sunter propose ranking pairss, t by the
odds ratiolog(Pr(M |s,t)

Pr(U |s,t) ) whereM is the class of matched
pairs andU is the class of unmatched pairs. Letting
AGREE(s, t, w) denote the event “s and t both agree in
containing wordw”, Fellegi and Sunter note that under cer-
tain assumptions

Pr(M |AGREE(s, t, w)) ≈ PC(w)(1− e)
Pr(U |AGREE(s, t, w)) ≈ PA(w) · PB(w)(1− e)

If we make two addition assumptions suggested by Fellegi
and Sunter, and assume that (a) matches on a wordw are
independent, and (b) thatPA(w) ≈ PB(w) ≈ PC(w) ≈
PD(w), we find that the incremental score for the odds ratio
associated withAGREE(s, t, w) is simply− logPD(w). In
information retrieval terms, this is a simple un-normalized
IDF weight.



Unfortunately, updating the log-odds score of a pair
on discovering a disagreeing tokenw is not as sim-
ple. Estimates are provided by Fellegi and Sunter for
P (M |¬AGREE(s, t, w)) and P (U |¬AGREE(s, t, w)),
but the error parameterseA, eB , . . . do not cancel out–
instead one is left with a constant penalty term, independent
of w. Departing slightly from this (and following the intu-
ition that disagreement on frequent terms is less important)
we introduce avariablepenalty term ofk logPD(w), where
k is a parameter to be set by the user.

In the experiments we usedk = 0.5, and call this method
SFS distance(for Simplified Fellegi-Sunter).

Hybrid distance functions
Monge and Elkan propose the followingrecursive matching
schemefor comparing two long stringss andt. First,s and
t are broken into substringss = a1 . . . aK andt = b . . . bL.
Then, similarity is defined as

sim(s, t) =
1
K

K∑

i=1

L
max
j=1

sim ′(Ai, Bj)

wheresim ′ is some secondary distance function. We con-
sidered an implementation of this scheme in which the sub-
strings are tokens; following Monge and Elkan, we call this
a level two distance function. We experimented with level
two similarity functions which used Monge-Elkan, Jaro, and
Jaro-Winkler as their base functionsim ′.

We also considered a “soft” version of TFIDF, in which
similar tokens are considered as well as tokens inS ∩ T .
Again let sim ′ be a secondary similarity function. Let
CLOSE (θ,S ,T ) be the set of wordsw ∈ S such that
there is somev ∈ T such thatdist ′(w, v) > θ, and for
w ∈ CLOSE (θ, S, T ), letD(w, T ) = maxv∈T dist(w, v).
We define

SoftTFIDF(S, T ) =∑

w∈CLOSE(θ,S,T )

V (w, S) ·V (w, T ) ·D(w, T )

In the experiments, we used Jaro-Winkler as a secondary
distance andθ = 0.9.

“Blocking” or pruning methods
In matching or clustering large lists of names, it is not com-
putationally practical to measure distances between all pairs
of strings. In statistical record linkage, it is common to
group records by some variable which is knowna priori to
be usually the same for matching pairs. In census work, this
grouping variable often names a small geographic region,
and perhaps for this reason the technique is usually called
“blocking”.

Since this paper focuses on the behavior of string match-
ing tools when little prior knowledge is available, we will
use here knowledge-free approaches to reducing the set of
string pairs to compare. In amatching task, there are two
setsA andB. We consider as candidates all pairs of strings
(s, t) ∈ A × B such thats and t share some substringv

Name Src M/C #Strings #Tokens
animal 1 M 5709 30,006
bird1 1 M 377 1,977
bird2 1 M 982 4,905
bird3 1 M 38 188
bird4 1 M 719 4,618
business 1 M 2139 10,526
game 1 M 911 5,060
park 1 M 654 3,425
fodorZagrat 2 M 863 10,846
ucdFolks 3 M 90 454
census 4 M 841 5,765
UVA 3 C 116 6,845
coraATDV 5 C 1916 47,512

Table 1: Datasets used in experiments. Column 2 indicates
the source of the data, and column 3 indicates if it is a
matching (M) or clustering (C) problem. Original sources
are 1. (Cohen 2000) 2. (Tejada, Knoblock, & Minton 2001)
3. (Monge & Elkan 1996) 4. William Winkler (personal
communication) 5. (McCallum, Nigam, & Ungar 2000)

which appears in at most a fractionf of all names. In aclus-
tering task, there is one setC, and we consider all candi-
dates(s, t) ∈ C×C such thats 6= t, and agains andt share
some not-too-frequent substringv. For purely token-based
methods, the substringv must be a token, and otherwise, it
must be a character 4-gram. Using inverted indices this set
of pairs can be enumerated quickly.

For the moderate-size test sets considered here, we used
f = 1. On the matching datasets above, the token blocker
finds between 93.3% and 100.0% of the correct pairs, with
an average of 98.9%. The 4-gram blocker also finds between
93.3% and 100.0% of the correct pairs, with an average of
99.0%.

Experiments
Data and methodology

The data used to evaluate these methods is shown in Ta-
ble 1. Most been described elsewhere in the literature. The
“coraATDV” dataset includes the fields author, title, date,
and venue in a single string. The “census” dataset is a syn-
thetic, census-like dataset, from which only textual fields
were used (last name, first name, middle initial, house num-
ber, and street).

To evaluate a method on a dataset, we ranked by distance
all candidate pairs from the appropriate grouping algorithm.
We computed the non-interpolated average precision of this
ranking, the maximum F1 score of the ranking, and also in-
terpolated precision at the eleven recall levels 0.0, 0.1, . . . ,
0.9, 1.0. Thenon-interpolated average precisionof a rank-
ing containingN pairs for a task withm correct matches is
1
m

∑N
r=1

c(i)δ(i)
i , wherec(i) is the number of correct pairs

ranked before positioni, andδ(i) = 1 if the pair at ranki is
correct and0 otherwise.Interpolated precisionat recallr is
themaxi

c(i)
i , where the max is taken over all ranksi such
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Figure 1:Relative performance of token-based measures. Left, max F1 of methods on matching problems, with points above the liney = x
indicating better performance of TFIDF. Middle, same for non-interpolated average precision. Right, precision-recall curves averaged over
all matching problems. Smoothed versions of Jensen-Shannon (not shown) are comparable in performance to the unsmoother version.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

m
ax

 F
1 

of
 M

on
ge

-E
lk

an

max F1 of other distance metric

vs Levenstein
vs SmithWaterman

vs Jaro
vs Jaro-Winkler

y=x

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

av
gP

re
c 

of
 M

on
ge

-E
lk

an

avgPrec of other distance metric

vs Levenstein
vs SmithWaterman

vs Jaro
vs Jaro-Winkler

y=x

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

P
re

ci
si

on

Recall

Monge-Elkan
Levenstein

Smith-Waterman
Jaro

Jaro-Winkler

Figure 2:Relative performance of edit-distance measures. Left and middle, points above (below) the liney = x indicating better (worse)
performance for Monge-Elkan, the system performing best on average.

that c(i)m ≥ r. Maximum F1is maxi>0 F1(i), whereF1(i)
is the harmonic mean of recall at ranki (i.e., c(i)/m) and
precision at ranki (i.e.,c(i)/i).

Results for matching
We will first consider the matching datasets. As shown in
Figure 1, TFIDF seems generally the best among the token-
based distance metrics. It does slightly better on average
than the others, and is seldom much worse than any other
method with respect to interpolated average precision or
maximum F1.

As shown in Figure 2, the situation is less clear for the
edit-distance based methods. The Monge-Elkan method
does best on average, but the Jaro and Jaro-Winkler methods
are close in average performance, and do noticably better
than Monge-Elkan on several problems. The Jaro variants
are also substantially more efficient (at least in our imple-
mentation), taking about 1/10 the time of the Monge-Elkan
method. (The token-based methods are faster still, averaging
less than 1/10 the time of the Jaro variants.)

As shown in Figure 3, SoftTFIDF is generally the best
among the hybrid methods we considered. In general, the
time for the hybrid methods is comparable to using the un-
derlying string edit distance. (For instance, the average
matching time for SoftTFIDF is about 13 seconds on these
problems, versus about 20 seconds for the Jaro-Winkler
method, and 1.2 seconds for pure token-based TFIDF.)

Finally, Figure 4 compares the three best performing edit-
distance like methods, the two best token-based methods,
and the two best hybrid methods, using a similar method-
ology. Generally speaking, SoftTFIDF is the best overall
distance measure for these datasets.

Results for clustering
It should be noted that the test suite of matching problems
is dominated by problems from one source—eight of the
eleven test cases are associated with the WHIRL project—
and a different distribution of problems might well lead to
quite different results. For instance, while the token-based
methods perform well on average, they perform poorly on
the census-like dataset, which contains many misspellings.

As an additional experiment, we evaluated the four best-
performing distance metrics (SoftTFIDF, TFIDF, SFS, and
Level 2 Jaro-Winkler) on the two clustering problems, which
are taken from sources other than the WHIRL project. Ta-
ble 2 shows MaxF1 and non-interpolated average precision
for each method on each problem. SoftTFIDF again slightly
outperforms the other methods on both of these tasks.

Learning to combine distance metrics
Another type of hybrid distance function can be obtained
by combining other distance metrics. Following previous
researchers (Tejada, Knoblock, & Minton 2001; Cohen &
Richman 2002; Bilenko & Mooney 2002) we used a learning
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Figure 3:Relative performance of hybrid distance measures on matching problems, relative to the SoftTFIDF metric, which performs best
on average.
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Figure 4:Relative performance of best distance measures of each type on matching problems, relative to the SoftTFIDF metric.

UVA CoraATDV
Method MaxF1 AvgPrec MaxF1 AvgPrec
SoftTFIDF 0.89 0.91 0.85 0.914
TFIDF 0.79 0.84 0.84 0.907
SFS 0.71 0.75 0.82 0.864
Level2 J-W 0.73 0.69 0.76 0.804

Table 2: Results for selected distance metrics on two clustering
problems.

scheme to combine several of the distance functions above.
Specifically, we represented pairs as feature vectors, using as
features the numeric scores of Monge-Elkan, Jaro-Winkler,
TFIDF, SFS, and SoftTFIDF. We then trained a binary SVM
classifier (using SVM Light (Joachims 2002)) using these
features, and used its confidence in the “match” class as a
score.

Figure 5 shows the results of a three-fold cross-validation
on nine of the matching problems. The learned combina-
tion generally slightly outperforms the individual metrics,
including SoftTFIDF, particularly at extreme recall levels.
Note, however, that the learned metric uses much more in-
formation: in particular, in most cases it has been trained
on several thousand labeled candidate pairs, while the other
metrics considered here require no training data.

Concluding remarks
Recently, we have begun implementing an open-source, Java
toolkit of name-matching methods. This toolkit includes a
variety of different techniques, as well as the infrastructure
to combine techniques readily, and evaluate them systemat-
ically on test data. Using this toolkit, we conducted a com-
parison of several string distances on the tasks of matching
and clustering lists of entity names. Many of these were
techniques previously proposed in the literature, and some
are novel hybrids of previous methods.

We compared these accuracy of these methods for use in
an automatic matching scheme, in which pairs of names are
proposed by a simple grouping method, and then ranked ac-
cording to distance. Used in this way, we saw that the TFIDF
ranking performed best among several token-based distance
metrics, and that a tuned affine-gap edit-distance metric pro-
posed by Monge and Elkan performed best among several
string edit-distance metrics. A surprisingly good distance
metric is a fast heuristic scheme, proposed by Jaro (Jaro
1995; 1989) and later extended by Winkler (Winkler 1999).
This works almost as well as the Monge-Elkan scheme, but
is an order of magnitude faster.

One simple way of combining the TFIDF method and the
Jaro-Winkler is to replace the exact token matches used in
TFIDF with approximate token matches based on the Jaro-
Winkler scheme. This combination performs slightly bet-
ter than either Jaro-Winkler or TFIDF on average, and oc-
casionally performs much better. It is also close in perfor-
mance to a learned combination of several of the best metrics
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Figure 5:Relative performance of best distance measures of each type on matching problems, relative to a learned combination of the same
measures.

considered in this paper.
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