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1. Introduction

With the rapid and continued growth of the Internet and the emergence of standards for data representation
such as XML [1], exciting opportunities for querying data on the Internet arise. For example, one might
isae queries through web browsers rather than relying on semanticdly impoverished key word seaches.
An important and challenging reseach isaie isto archited query engines to perform this task. Some of the
main issues in designing such query engines are to effectively address(a) the low network bandwidth that
causes delays in accessng the widely distributed deta, (b) the temporary unavailability of sites and (c) long
running triggers/continual queries that monitor the World Wide Web. An elegant solution to these probems
isto provide partial results to users. Thus, users can seeincomplete results of queries as they are exeauted
over dow, unreliable sites or when the queries arelong running (or never terminate! [2]).

The main chalengein producing pertid results lies in dealing with blocking operators, such as average,
sum, nest and negation since these operators need to seeall of their inpu before they produce the @rred
output. Previous solutions to the problem of producing partial results present solutions for spedfic
aggregate operators [3][ 7] and thus do not extend to new blocking operators such as nest and negation that
are becoming increasingly important for network query engines. Further, the previous lutions do not
allow blocking gperatorsto appea deep in a user query. Thus, for example, a query that requests an XML
document where bodks are nested under author, and authors are nested under state, and states are further
nested under country, cannot be handed by previous techniques (nest is blocking and appeas dee in the
query tre. Neither can they handle aquery that constantly monitors the average price of BMW cars posted
in the Internet except those that appea on salvage lists (average ad except are blocking).

The Niagara Internet Query System [6] contains a general framework for producing pertial results for
gueries involving blocking operators. The framework all ows blocking and non-blocking operators to be
arbitrarily intermixed in the query tree i.e, non-blocking operators can operate on the results of blocking
operators and \viceversa. However, the framework imposes ceatain key requirements on the
implementations of both blocking and non-blocking cperators. In this paper, we identify alternative
algorithms and implementations satisfying the key requirements and evaluate their performance using the
Niagara system. This paper complements the achitedura overview in [6] and justifies the implementation
dedsion madetherein.

The rest of the paper is organized as follows. In Sedion 2, we formally define partial results and list
the properties operator implementations need to satisfy in order to produce partial results. In Sedion 3, we
identify alternative operator implementation techniques and discussthe issue of accuracy of partid results.
The performanceresults are mntained in Sedion 4 and Sedion 5 concludes the paper.

2. Desired Operator Propertiesfor Producing Partial Results

In the previous ction, weill ustrated the need for partial results involving arbitrary bl ocking operators. We
now identify some key properties of operator implementations, not supported by traditional query engine
architedures, which are crucial for producing partial results. We start by defining the term “partial result.”

Definition: Let Q be aquery with ninputs and let Q(l4, ..., I,,) represent the result of query Q on inputs
l1, ..., I,. A partial result of the query Q oninputsly,...,I, iSQ(Pl4, ..., Ply), wherefor 1<=j <=n, Pl;O 1,

Intuitively, a partial result of a query on a set of inpusisthe result of the query on a (posshly) different
set of inputs guch that each input in the new set isa sub-set of the mrrespondinginput in the old set.

We now turn to the notions of “non-blocking” and “blocking” operators. Intuitively, a “non-blocking”
operator is one that produces the same output for a given input, regardless of whether there ae further
inputs; i.e, it does not block waiting to seeall of itsinputs. Thus, seled, projed, join, intersed and dstinct
(dugicate dimination) are non-blocking operators. Operators that are not non-blocking are “blocking” i.e.,
the output for a given input depends on further inputs. Thus sort, nest, average and outer-join operators are



blocking. Some operators such as “except” are blocking on a sub-set of their inpus. Consider the example
A.a except B. The “except” operator will block until all of B isreceaved, at which point it becomes a non-
blocking gperator.

The properties listed below summarize the key requirements that blocking and non-blocking gperators
must satisfy to produce partial results. Traditional operator implementations are not suitable for partial
result production becuse they do not have all of these haracteristics. (See[6] for more details.)

1) Flexible Input Property: Operators $ould not stall waiting for input from a particular input stream if
thereis me inpu available on another input stream. This is necessary in order to be able to provide
partial results without stalling on a dlow input stream.

2) Maximal Output Property: Operators should produce results as soon as possble. That is, the
operator should output as much of the result asit can without potentialy giving a wrong answer. Note
that this property is desirable esen for blocking gperators. For example, the outer-join operator cen
produce (the joining) results before the end o itsinputs.

3) Non-Monotonic I nput-Output Property: Each operator hasto ded with input streams (and produce
output streams) that are not monotonicdly increasing. This is a dired result of requiring bocking
operators such asnest, except and average, to produce partia results.

4) Anytime Property: At any time, blocking operators would be able to autput the “current” result,
based on the data seen so far on itsinput strean(s). This enables the system to provide apartial result
whenever the user requests one. Note that the Maximal Output property implies the Anytime property
for non-blocking operators.

The design of operator implementations satisfying the properties above is crucial in designing a flexible
system capable of producing partial results. We turn to thisisaie next.

3. Operator Implementation Alternatives

We now explore two alternatives (Re-evaluation and Differential) for modifying existing gperator
implementations 9 that they satisfy the desired properties for producing pertial results. The Re-evaluation
approach retains the structure of existing gperator implementations but requires there-exeaution of all parts
of the query above the blocking gperators. The Differential alternative processes changes as part of the
operator implementation, smilar to the technique used in the CQ projed [5], and avoids re-exeaution.
Thereisatrade off between the cmomplexity of the operators andtheir efficiency: Re-evaluation
implementations are easier to add to existing query engines while Differential implementations are more
complex and require tuple structure changes, but are likely to be more dficient.

The Re-evaluation and Differentia approaches are smilar in that they both use non-blocking, flexible
input, maxima output implementations for operators wherever possble. For example, joins are
implemented using symmetric hash join [9] and symmetric nested loops join algorithms (or their variants
[4][8]). The dgorithms in this ®dion extend such flexible input, maximal output, non-blocking operator
implementations to satisfy the non-monotonic input/output property and further, identify blocking operator
implementations stisfying all four desirable properties.

3.1 Re-evaluation Algorithm

As mentioned before, we must determine what form partial results produced by blocking operators take and
how updates to those results are communicaed. The Re-evaluation Algorithm handles this in a
straightforward manner by having bdocking operators smply tranamit their current result set when a partial
result request is recaved. If there ae multiple partial result requests, the same results will be tranamitted
multiple times. Note that all operators above the blocking operator must re-evaluate the query each time a
partial result request isisaued; hencethe name Re-evaluation Algorithm.

Consider the operator treein Figure 1 which shows a nest operator reading (author, book) pairs from an
XML file on disk (or any non-blocking gperator), nesting the pairs on author and sending its output to a
join operator. The nest is blocking; the join is non-blocking. Upon recept of a partial result request, the
nest operator transmitsall (author, <set of books>) groups it has created so far to the join. At this point, the
join must ignore all input it has previoudy receved from nest, and processthe new partial result asif it had
never recaved any input from nest before. Below we describe the re-evaluation implementations of join
and nest. Descriptions of other operator implementations are omitted in the interest of space

Re-evaluation Join: Re-evaluation Join functions identically to a symmetric hash join except that when
Re-evaluation Join isnotified that a new partia result set isbeginning on a particular input stream, it cleas



the hash table associated with that input. In addition, spedal tedhniques are used to ded with the case when
an input contains a mixture of tuples that are “final” — produced by a non-blocking gperator and wil | never
be repeated and tuples that are “partial” — produced by a blocking operator (as part of a partial result set)
and will be retransmitted at the gtart of the next partial result. This can occur if the inpu comes from a
union operator, which unions the output of a blocking and non-blocking gperator.

Re-evaluation Nest: Similar to a traditional hash-based nest, Re-evaluation Nest credes a hash table
entry for each distinct value of the grouping attribute (author in our example). When a start partial result
notification is receved, Re-evaluation Nest acts lazily and does not delete the hash table. Instead, Re-
evaluation Nest Smply increments a partial result counter. Upon insert into the hash table, each bod tuple
is labeled with the airrent counter value. When an entry is retrieved during nest processng, all books
having counter value lessthan the munter value of the operator are ignored and deleted. We utilize this
lazy implementation because when the input consists of a mixture of partial and final tuples, they will be
combined in the <set of book> entries in the hash table. Deleting al obsolete book tuples in an eager
fashion would require retrieving and updating most of the hash table entries which is too expensive.

JOIN
on author

(author, address)

(author, book)

Figure 1: Operator TreeExample

3.2 Differential Algorithm

The Re-evaluation agorithm is relatively easy to implement, but may have high overhead as it causes
upstream operators to reprocess results many times. The Differential approach addresses this problem by
having operators processthe changes between the sets of partial results, instead of reprocessng all results.
Differentia versions of traditiona seled, projed and join areillustrated and formalized in [5] in the mntext
of continual queries. Our system, however, handles changes as the query is being exeaited as opposed to
[5], which proposes a model for periodic re-exeaution of queries. This gives rise to new tedcniques for
handling changes as the operator isin progress

In Figure 1, in order for the join to processdifferences between sets of partial results, the nest operator
must produce the “difference’ and the join must be able to processthat “difference” We accomplish this
by having all operators produce and consume tuples that consist of the old tuple value and the new tuple
value, as in [5]. Since the partiad results produced by blocking gperators consist of differences from
previously propagated results, each tuple produced by a blocking gperator is an insert, delete or update. In
the interest of space, we describe only the differential join and nest algorithms below.

Differential Join: Differential Join is based on symmetric hash join. A Differential Join with inputs A
and B works as foll ows. Upon recept of an insert of a tuple T into relation B, T isjoined with all tuplesin
A’s hash table and the joined tuples are propagated as inserts to the next operator in the tree Finally T is
inserted into B’s hash table for joining with all tuples of A receved in the future. Upon recept of a delete
of atuple T fromrelation B, Tisjoined with al tuplesin A’shash table and the joined tuples are propagated
as deletes to the next operator in thetree Updates are processed as deletes foll owed by inserts.

Differential Nest: Differential Nest is $Smilar to hash-based nest. Inserts are treded just as tuples are in
atraditional nest operator. For deletes, Differential Nest probes the hash table to find the affected entry and
removes the deleted tuple from that entry. For updates, if the grouping value is unchanged, the appropriate
entry is pulled from the hash table and updated, otherwise, the update is processed as a delete and insert.
Changes are propagated upon recept of a partial result request. Only the groups that have danged
sincethelast partial request are propagated on recept of anew partial request.

3.3  Accuracy of Partial Results

In the above sections, we have mncentrated on operator implementations that produce partial results. An
important concern is the acauracy of these results. We believe that our framework is general enough to



accommodate various techniques for computing the accuracy of partial results, such as those proposed for
certain numerica aggregate operators [3][7]. These techniques can be incorporated into aur framework if
the desired statistics are passed along with each tuple produced by an operator. In addition, unlike [3][7],
our framework all ows blocking operators (such as aggregates) to appea anywhere in the query tree It is
also important to address accuracy of partial results for non-numeric blocking gperators such as nest and
except. This is more difficult because notions such as “average” and “confidence intervals’ are not well
defined in these domains. It is, however, posshble to provide the user with statistics such as the percentage
of XML files (recaeved and) processed and/or the geographical locations of the processed files. The user
may well be able to use thisinformation to understand the partial result.

4. Performance Evaluation

In the previous ction, we outlined the Re-evaluation and Differential implementation alternatives for
operators. In this sdion, we quantitatively compare the performance of the two approaches. We begin by
describing the experimental set up in Sedion 4.1. Sedion 4.2 describes the performanceresults.

41  Experimental Setup

Our system is written in Java and experiments were run using JDK 1.2 with 225MB of memory on a Sun
Sparc with 256MB of memory. Our system asaumes that the XML data being processed is resident in main
memory. Though we exped this to be acceptable for many cases given current large main memory sizes,
we also plan to explore more flexible implementations that hand e spill overs to disk as part of future work.

To evaluate the performance of the Re-evaluation and Differentia approaches, we used two queries that
allowed us to study the overhead of partial result production and identify the strengths and weaknesses of
each approach. The first query (Q1) contains a join over two Hocking gperators. The inpu is two XML
documents, one @ntaining flat (author, book) pairs and the other containing flat (author, article) pairs. It
produces, for each author, alist of articles and a list of books written by that author. Q1 is exeauted by
nesting the (author, book) and (author, article) streans on author and (outer) joining these streams on
author to producetheresult. Finally, a construct operator isused to add tags. Data was generated so that the
number of books (articles) of an author foll ows a Zipfian d<tribution.

The second query (Q2) is smilar to Q1 except that the inputs are (author, book-price) and (author,
article-price) pairs and the blocking (aggregate) operators are average, in contrast to nest in Q1. Q2
produces the average prices of books and articles written by an author. A significant difference between Q1
and Q2 isthat the aggregate in Q2 (average) returnsa small, congtant size result compared to the potentially
large variable size result of the aggregate (nest) in Q1. The number of book (article) prices per author
follows a Zipfian distribution.

The parameters varied in the experiments along with their defaults are shown below. Note that
“Number of Tuples’ refers to the number of ((author, bodk) or (author, article) pairs) for Q1, ((author,
bodk-price) or (author, article-price) pairs) for Q2, in the base XML data fil es. In addition, we eplore the
case where the input is ordered on the author attribute because it corresponds to some red world scenarios
where, for example, each XML file @ntains information about an author and also because it ill ustrates the
working d the differential algorithm.

Default Parameters
Skew of Zipfian Distribution: 1
Mean of Zipfian Distribution: 10
Number of partia result requests: 10
Number of Tuples: 10000

4.2 Performance Results

Figure 2 shows a bre&kdown of the exeaution time for Q1 using the default parameters. For reference, the
graph shows a point for the query evaluation time in the absence of any partial result cdculation (No
Partial). There were 10 partial result requests, each returning about 9% of the data, and afinal request to get
the last 9% of the data. The data points iow the awmulative time after the mmpletion of each partid result.
The overhead o parsing, optimization, etc. is contained in the time for the first partial result.

For the first 45% of the input, the Differential and Re-evaluation algorithms perform samilarly. After
that point, the differential algorithm is better. In fact, for the cmplete query, the Differentia algorithm
reduces the overhead o partial result cdculation by over 50%. An interesting olservation, from the above
graph and from results obtained by varying the total number of partial results (not shown), isthat if a user



isaies only a limited number of partial result requests, the Re-evaluation agorithm may be adequate. This
is becuse the extra overhead of the differential algorithm more than offsets the reduction in retransmisson.

—o— No Partial (unordered)  —— No Partial (ordered) —®— Reevaluation (unordered)
Reevaluation (ordered) —>¢— Differential (unordered) —— Differential (ordered)

35 40
., 30 y 32 ——
° d T 30 —e o
3 20 ;/'!._ S 25 —
g 20 8 20 T
) 15 O 15 -
£ 104 £
(o= = 10
51 5
0 0
Qo Q\® Q\© Q\® o0 o
$° 4 KON ) \/QQ 0 0.5 1 15 2
Percentage of Input Seen Skew
Figure 2: Bre&kdown of Exeaution Time for Q1 Figure 3: Effeds of Skew on Q1

The difference between Differential (ordered) and No Partia is exactly the overhead o the Differential
tuple processng. The 25% difference in total exeaution time between the ordered and unordered versions
of Differentia is the overhead caused by tuple retransmisson and reprocessng (Differential reduces
retransmisgon, it does not eiminate it). Finally, though the behavior of Re-evaluation and No Partid is
insensitive to arder we noticeimprovement on ordered input. This may be due to processor cache dfects.

Figure 3 shows the dfect of skew on the different algorithms for Q1. Skew has the effect of changing
the size of the groups. The interesting case is the unsorted Differentia graph where we seea deaease in
exeadtion time followed by an increase. The @st of the Differential agorithm is diredly related to the
number of tuples that have to be retranamitted. At a skew of O, there ae 1000 goups each with
approximately 10 dements. If a group has changed since the last partial result request, the whole group
must be retransmitted and reprocessed by the join operator. With a group size of 10 and 10 partial result
requests, most groups will change between partial result sets limiting the ahility of Differential to reduce
retransmisson. As kew increases, we seethe presence of many very small (2-5 element) groups and a few
medium size groups. Very small groups are goad for the performance of the Differential algorithm because
a group can not be transmitted more times than it has elements. As the skew increases further, the presence
of a few very large groups begins to hurt performance When the skew is 2, there is one group of size
approximately 600Q This group changes with amost every partia result request and therefore many
elementsin this group must be retransmitted many times.
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In contrast to Q1, increasing skew for query Q2 (Figure 4) does not adversely affed the performance of
the Differential algorithm. Thisis becuse at high skews, the partial result for each group is gill small for
Q2, unlike the large nested values for Q1, and hence has a very low retransmisson overhead. This suggests
that finer granularity implementations for large partia results, whereby changesto groups rather than entire
groups are retransmitted, can make the Differentia algorithm more dfedive.

Figure 5 shows the affect of changing the mean number of tuples per group (mean of the Zipfian
distribution) for Q1. As the mean number of tuples increases, the number of groups deaeases snce the
number of tuplesis fixed. The deaease in the number of groups helps the Re-evaluation algorithm because
it reduces the size of the join. The Differentia algorithm a so sees this advantageous affed, but as the mean
group Sze increases, the Differential algorithm suffers because it does more retransmisson as discussed
before. Note that when there is only one group, Differentia is identicd to Re-evaluation and when all
groups have size 1, Differential isidenticd to the ase when no partial result requests are isaued.

The results on varying the number of tuples were not very surprising — the performance of both
algorithms <des linearly with the number of tuples. We dso ran experiments with simulated network
delays. In these experiments, we inserted an exponential delay after every 100 input tuples during query
exeadtion. The results of these experiments (not shown) showed that with increasing delay, the overhead o
partial results production reduces. Thisis because the partial result computation time is overlapped with the
time spent waiting for data over the dow network.

5. Conclusion and Future Work

Querying the web is creating new challenges in the design and implementation of query engines. A core
requirement is the ability to produce partial results that all ows users to seeresults as quickly as possble in
spite of low bandwidth, unreliable communication mediums and long running queries. In this paper, we
have identified extensions to the traditional query engine achitedure to make this possble and explored
the dfectivenessof alternative implementation strategies (Re-evaluation and Differential). Our quantitative
evaluation shows that the Differential algorithm is successful in reducing pertial result production overhead
for a wide variety of cases, but also indicates that there are important cases where the Re-evaluation
approach works better. In particular, for the ases where the user kill s the query after just two o three edy
partial results, the overheal of the differentia approach more than offsets the gain in performance Another
interesting conclusion from the experiments is that the size of the results of blocking gperators has a
significant bearing on the performance of the Differential Algorithm — Differential performs better for
“small” aggregate results because the st of retransmisgon isless

There ae many posshle diredions for future research. The good performance of the Differentia
approach suggests that handling changes at granularities finer than tuples is likely to lead to further
improvements. Studying this in the mntext of heavily nested XML structures would be very useful for
efficiently monitoring data over the Internet. Another interesting challenge lies in providing accuracy
bounds for general blocking qperators.

6. References

[1] T. Bray, J Paoli, C. M. Sperberg-McQueen, “Extensible Markup Language (XML) 1.07,
http://mww.w3.0rg/ TR/REC-xml.

[2] J Chen, et. al., “NIAGARACQ: Continuous Queries,” Procealings of the 2000 ACM SIGMOD
Conference, Dallas, TX, May 2000(to appea).

[3] J M. Helerstein, P. J. Haas, H. Wang, “Online Aggregation”, Procealings of the 1997 ACM
SIGMOD Conference, Tuscon, AZ, May 1997

[4] Z.G.lves, D. Horescu, M. Friedman, A. Levy, D. S. Weld, “An Adaptive Query Exeaution System for
Data Integration”, Proceelings of the 1999 ACM-SIGMOD Conference, Philadelphia, PA, June 199.

[5] L.Liu, C. Py, R. Barga, T. Zhou, “Differentia Evaluation of Continual Queries’, Proceedings of the
International Conference on Distributed Computing Systems, 19%.

[6] J. Naughton, et. a., “ The Niagara Internet Query System”, submitted for publi cation.

[7] K. Tan, C. H. Goh, B. C. Oai, “Online Feedback for Nested Aggregate Queries with Multi-Threaling”,
Procealings of the 199 VLDB Conference, Edinburgh, Scotland, September 1999.

[8] T. Urhan, M. J. Franklin, “XJoin: Getting Fast Answers from Slow and Bursty Networks’, University
of Maryland Technical Report, UMIACS-TR-99-13, 199.

[9] A. N. Wilschut, P. M. G. Apers, “Data How Query Exeadtion in a Paralld Main Memory
Environment”, International Conferenceon Paralld and Distributed Information Systems, 1991




