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For a number of reasons, even the best query optimizers can 
very often produce sub-optimal query execution plans, lead- 
ing to a significant degradation of performance. This is es- 
pecially true in databases used for complex decision support 
queries and/or object-relational databases. In this paper, 
we describe an algorithm that detects sub-optimality of a 
query execution plan during query execution and attempts 
to correct the problem. The basic idea is to collect statis- 
tics at key points during the execution of a complex query. 
These statistics are then used to optimize the execution of 
the query, either by improving the resource allocation for 
that query, or by changing the execution plan for the re- 
mainder of the query. To ensure that this does not signifi- 
cantly slow down the normal execution of a query, the Query 
Optimizer carefully chooses what statistics to collect, when 
to collect them, and the circumstances under which to re- 
optimize the query. We describe an implementation of this 
algorithm in the Paradise Database System, and we report 
on performance studies, which indicate that this can result 
in significant improvements in the performance of complex 
queries. 

1 Introduction 

One of the key reasons for the success of relational database 
technology is the use of declarative languages and query op- 
timization. The user can just specify what data needs to 
be retrieved and the database takes over the task of finding 
the most efficient method of retrieving that data. It is the 
job of the query optimizer to evaluate alternative methods 
of executing a query, and selecting the cheapest alternative. 

Notwithstanding the tremendous success of this approach, 
query optimization still remains a problem for database sys- 
tems. Modern database systems are placing an increas- 
ingly heavy burden upon their query optimizers. Relational 
database systems are increasingly being used to execute 
complex decision support queries. In addition, commercial 
vendors are all scrambling to add object-relational features 
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to their database systems. Unfortunately optimizer tech- 
nology has not kept pace with these advances, and a num- 
ber of the inadequacies of traditional query optimizers have 
become obvious. Due to the inability of query optimizers 
to accurately estimate the cost of executing complex query 
evaluation plans, they often produce sub-optimal plans. 

There are a number of reasons why estimating the cost of 
query execution is difficult. Query optimizers use statistics 
stored in the system catalogs to estimate sizes and cardinal- 
ities of tables that participate in the query. This introduces 
an error in the estimates either due to the approximations 
involved, or because statistics are not kept up-to-date. As 
the number of joins in the query increases, these errors mul- 
tiply and grow exponentially [9]. Another source of errors 
is the lack of sufficient information about the run-time sys- 
tem at query optimization time. The amount of available 
resources (especially memory), the load on the system, and 
the values of host language variables are things that differ 
for every execution of the query, and, in some cases, change 
in the middle of query execution. 

The problem is further aggravated in the case of object- 
relational database systems that allow users to define data- 
types, methods, and operators. Collection and storage of 
statistics (for example, histograms) for user-defined data- 
types (for example, spatial data-types like polygon, point) 
is an area that has not yet been addressed by the database 
research community. There are some primitive methods that 
have been proposed to deal with the estimation of the cost 
of execution for user defined functions/methods written in 
an external language (like C++) [23], but these are far from 
adequate. Similarly, selectivity estimation for predicates in- 
volving user-defined methods/functions is another area that 
is poorly understood. All of this makes it really difficult 
to properly estimate the cost of executing object-relational 
queries. Although recent advances in estimation techniques 
(for example, the histograms of [19] and [ll]) and the param- 
eterized/dynamic query evaluation plans of [lo, 8, 71 address 
some of the issues, many problems still remain to be solved. 

In this paper, we describe Dynamic Re-Optimization, an al- 
gorithm that can detect the sub-optimality of a query execu- 
tion plan while executing the query in order to re-optimize 
it and improve its performance. During query optimiza- 
tion, the plan produced by the query optimizer is annotated 
with the various estimates and statistics used by the op- 
timizer. Actual statistics are collected at query execution 
time. These observed statistics are compared against the 
estimated statistics and the difference is taken as an indica- 
tor of whether the query-execution plan is sub-optimal. The 
new statistics (much more accurate than the initial optimizer 
estimates) can now be used to optimize the execution of the 
remainder of the query. 
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Collection of statistics at run-time can significantly slow 
down the execution of a query. Further, re-optimizating 
part of the query and modifying the query execution plan at 
run-time also incurs overheads. This can actually cause the 
performance of a query to deteriorate instead of improving. 
To prevent such problems, we use hints from the optimizer 
to determine the most strategic places in the query where 
statistics should be collected, and to determine the condi- 
tions under which to re-optimize a query. 

Our approach is quite different from the competition model 
proposed by Antoshenkov [2, 31, the dynamic query plans 
of [8] and [7], or the parametric query optimization algo- 
rithms proposed in [lo]. The differences between these algo- 
rithms and our approach are further described in Section 4 
when we discuss related work. 

The remainder of this paper is organized as follows. In Sec- 
tion 2 we describe the details of our algorithm. In Section 3, 
we describe an implementation of the algorithm in the Par- 
adise database system, and report the results of a perfor- 
mance study that validates our algorithm. In Section 4, we 
contrast our approach with previous work described in the 
database literature. Section 5 presents our conclusions and 
directions of future research. 

2 Algorithm Overview 

The Dynamic Re-Optimization algorithm tries to detect sub- 
optimality of a query execution plan while the query is being 
executed. If a query execution plan is believed to be sub- 
optimal, it dynamically changes the execution plan of the 
remainder of the query (the part that hasn’t been executed 
yet) leading to an improvement in performance. 

These are the salient features of the algorithm: 

1. (Annotated) Query Execution Plans: We assume 
that a conventional query optimizer is used to produce a 
query execution plan for a given query. The only require- 
ment, on the plan generated by the query optimizer is that 
the plan produced by the optimizer should include informa- 
tion about the optimizer’s estimates of the sizes of all the in- 
termediate results in the query, and the execution cost/time 
for each operator in the query. We refer to such a plan as 
an annotated query execution plan in the remainder of this 
paper. 

2. Runtime Collection of Statistics: At specific inter- 
mediate points in the query, various statistics are collected 
during query execution. These statistics are used to obtain 
improved estimates of the sizes of intermediate results and 
execution costs. These improved estimates can be compared 
against the optimizer’s estimates to detect sub-optimality of 
the query execution plan. 

3. Dynamic Resource Re-allocation: The improved esti- 
mates are used to improve the allocation of shared resources 
(like memory) to the various operators of the query, leading 
t,o improved performance. 

4. Query Plan Modification: The improved estimates are 
also used to determine whether the remainder of the query 
execution plan would benefit from re-optimization. If so, 
then the remainder of the query is re-optimized. 

5. Keeping Overheads Low: Collection of statistics at 
query execution time can result in a significant overhead if 
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Figure 1: A query and its query execution plan 

used indiscriminately. To prevent this from happening, at 
query optimization time, the most effective points to col- 
lect statistics are determined, and statistic collection opera- 
tors are inserted into the query execution plan at only those 
points. 

In the remainder of this section, we describe each of the 
above items in detail. We end the section with an overview 
of the whole dynamic re-optimization process, and how it all 
fits together. 

2.1 Query Execution Plans 

The job of a query optimizer in a database system is to take 
as input a query (which is declarative) and produce an execu- 
tion plan for that query. Figure l(a) shows an example SQL 
query. We will use this query as a running example through- 
out this section for illustrative purposes. Figure l(b) shows 
a possible execution plan for this query that might be pro- 
duced by a query optimizer. An execution plan is essentially 
a tree in which each node represents some database operator 
(like hash-join, indez-scan) being applied to its inputs. 

During the course of optimization, the query optimizer es- 
timates the sizes of various intermediate results that might 
be produced, and the cost/time taken by each operator. As 
part of the Dynamic Re-Optimization algorithm, we modify 
the query optimizer so that these estimates are included in 
the query evaluation plan that it produces, and are sent to 
the database execution engine. In the remainder of this pa- 
per, we refer to such a plan as an annotated query ezxcution 
plan. The kind of estimates we expect the plan to be anno- 
tated with are sizes and cardinalities of intermediate results, 
selectivities of selection and join predicates, and estimates 
of the number of groups in case of aggregate operators. 

2.2 Run-time Collection of Statistics 

In this sub-section, we describe how statistics can be col- 
lected at specific points during the execution of a query 
plan. We describe the kinds of statistics that we can col- 
lect, and how this can be done without any I/O overhead. 
These statistics can then be used to get improved estimates 
for intermediate result sizes and operator execution costs. 
In this section, we deal only with the method of collecting 
the statistics. The question of determining what statistics 
to collect and at what points in the query execution plan is 
deferred to a later section, 
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Figure 2: Collection of Statistics at run-time 

We now describe how statistics can be collected for an inter- 
mediate result of a query without any I/O overhead. Con- 
sider Figure 2. There is a filter operation that applies se- 
lection predicates to the Rell relation. Just after the filter 
operation, a statistics collector operator is inserted into the 
query execution plan. As the tuples are being produced 
by the filter operator, they can be examined by a statistics 
collection routine, and the required statistics can be gath- 
ered without interrupting the normal execution of the query. 
Thus, for example, the cardinality of the result of the filter 
operation can be computed by keeping a running count of 
the number of tuples that stream past the statistics collec- 
tion routine, and the average tuple size can be computed by 
keeping a running average. 

There are two limitations of this approach. First, this ap- 
proach cannot be used to collect any statistics that cannot 
be gathered in just one pass of the input. This is not a severe 
limitation because, the statistics that we need to gather for 
Dynamic Re-Optimization can be computed with reasonable 
accuracy using this approach. To compute cardinality and 
average tuple-size of a relation, a single pass is obviously 
enough. Using reservoir sampling [24], histograms can also 
be computed with reasonable accuracy [19]. The number 
of unique values of a particular attribute (or a set of at- 
tributes) can be computed using the bitmap approach of [6] 
or reservoir sampling ([24] as described in [ZO]). 

The second limitation of this approach has to do with the 
pipelining of operators in a query execution. If statistics 
collection is being done in the middle of a pipelined execu- 
tion of a row of operators, then none of the operators in the 
pipeline can benefit from those statistics. This is because 
all the operators in the pipeline are executing concurrently 
with the statistics collection routine. Hence, the statistics 
will not be ready until all the operators in the pipeline have 
completed a significant portion of their execution’. This 
problem is inherent in our approach, but we will see that, in 
spite of this limitation, Dynamic Re-Optimization performs 
well in practice. 

An alternative to this would be to actually break the 
pipeline, and force materialization of intermediate results 

‘It should be noted that a blocking operator, like hash-loin, acts 
as a natural break in a pipeline, because it consumes all of its first 
input before producing any tuples of output. 

at points where statistics need to be collected. This, how- 
ever, can significantly slow down the execution of a query, 
and we consider this to be too high a price to pay. 

It should be noted that there is a significant difference be- 
tween conventional statistics that are computed and stored 
in system catalogs, and the statistics gathered for the Dy- 
namic Re-Optimization algorithm. Conventional statistics 
need to be rather general in the sense that they are com- 
puted once and then used for estimations in various differ- 
ent types of queries. Consider a histogram built on an at- 
tribute a of relation R. This same histogram might be used 
to estimate the selectivity of an equality predicate of the 
form ‘R.a = lo’, a range predicate of the form ‘R.a between 
10 and loo’, a join operation such as ‘R.a = S.b’ and to 
estimate the number of unique values of R.a (for aggrega- 
tion). By contrast, histograms constructed for the Dynamic 
Re-Optimization algorithm can be very specific because the 
exact purpose for which the statistics are being computed 
is known. This can be exploited to increase the accuracy of 
the estimates. [19] indicates that different histograms are 
suited for different purposes. Hence, the type of histogram 
and method of computation can be adapted to the problem 
at hand. 

After statistics are gathered in this fashion during query 
execution, they can be used to obtain new estimates for in- 
termediate result sizes and operator execution costs for the 
remainder of the query. We note that the statistics collected 
at run-time are actually observed statistics, as opposed to 
estimates (which the optimizer uses). Further, as described 
in the previous paragraph, these statistics can be “specific” 
to the query being executed. Due to this, the new estimates 
can be a significant improvement over the optimizer’s esti- 
mates that are included in the annotated query execution 
plan. We refer to these estimates as the improved estimates 
in the remainder of this paper. In the next two sub-sections, 
we describe exactly how these improved estimates can be 
used to improve the execution of the query. 

2.3 Dynamic Resource Re-allocation 

In this sub-section, we describe how improved estimates can 
be used to improve the allocation of shared resources to a 
query, leading to an improvement in performance. We first 
briefly comment upon resource allocation algorithms, and 
then discuss how they can benefit from improved estimates. 

Most of the state-of-the-art algorithms for basic relational 
operators like sort, join and aggregate require a large amount 
of main memory to perform well with large datasets. The 
performance of these algorithms depends critically upon the 
actual amount of memory allocated. Assuming a work- 
load of complex queries consisting of a number of memory- 
consuming operations, it is unrealistic to expect that the 
memory requirements of all the queries can be satisfied. This 
gives rise to the problem of deciding how to divide available 
memory among different queries in the system, and different 
operators in the query. 

Memory allocation strategies for complex queries can be 
classified into two categories. The memory allocation is 
either decided at query optimization time by the opti- 
mizer [22, 41, or it is determined at execution time based 
upon estimated memory characteristics of the query [14, 261 
(or individual operators of the query [15]). In either case, 
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Figure 3: Use of improved statistics to improve 
memory allocation 

these algorithms estimate the memory requirements using 
statistics, and decide upon an allocation of memory based 
on the trade-offs involved. Allocating too little memory to 
a particular query or operation implies that it has to do 
more I/O to make up for the lack of memory, and its per- 
formance suffers. On the other hand, allocating too much 
memory results in under-utilization of memory (which could 
have been better used by another operator), again leading 
to sub-optimal performance. The discussion of actual algo- 
rithms for memory management and allocation is beyond 
the scope of this paper, but we note that any memory man- 
agement algorithm that intelligently allocates memory based 
on estimated memory requirements runs into the same prob- 
lems that face a conventional query optimizer: i.e. inaccu- 
rate estimates. 

As discussed in the previous sub-section, during the course of 
query execution, statistics about intermediate query results 
can be gathered and used to improve upon the estimates 
of the query optimizer. These improved estimates can be 
used to improve the allocation of memory to the various op- 
erators of the query. Specifically, when improved estimates 
are available, the memory management module can be re- 
invoked and supplied with the new estimates. The memory 
management module uses these new estimates to produce 
a new memory allocation for the remainder of the query. 
Overall performance is expected to improve since the new 
memory allocation is based on improved estimates. 

Consider for example the query execution plan in Figure 3. 
We now describe how this actually works in a specific 
database system (such as Paradise [17]). In this plan the 
filter operator produces 15000 tuples that require 3MB of 
memory. Based on this estimate, the maximum memory 
requirement for each join is estimated at 4.2 MB (size of 
left input plus overhead), and the minimum requirement is 
250KB. Let us assume that at run-time only 8MB of memory 
is available for this query. In this case the Memory Man- 
ager believes that the maximum memory requirement for 
both joins cannot be satisfied. Hence, it allocates 4.2 MB 
to the first hash-join (its maximum memory requirement), 
allocates only 250KB to the second hash-join (its minimum 
memory requirement), and allocates the left over memory to 
the aggregate operator. This causes the second hash-join to 
execute in two passes. 

If a statistics collector operator is now inserted into the 
query execution plan just after the filter operator, (as shown 
in Figure 2), the exact number of tuples resulting from the 

, 
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Figure 4: A potentially sub-optimal query plan 

filter operation can be observed. Let us assume that the 
actual number of tuples satisfying the selection predicate is 
7500, and not 15000. Now, the maximum memory require- 
ment for the second hash-join is re-computed and is found to 
be 2.05MB. The Memory Manager can satisfy this require- 
ment. Using the new memory allocation, the hash- join of 
Rel3 can be completed in one pass, resulting in a significant 
improvement of performance. 

In this paper, we assume that once an operator starts exe- 
cuting, its memory allocation cannot be changed. In other 
words, improved statistics can only be used to improve the 
memory allocation for operators that have not begun exe- 
cuting. If, however, the operators in the database system 
have been implemented in such a manner that they can re- 
spond to changes in memory allocation in mid-execution, 
our algorithm can be extended to take advantage of this. 

Throughout this paper, we have concentrated only on dy- 
namically improving the memory allocation for a query. 
However, similar techniques can be applied to handle the 
allocation of any shared resources (e.g. processors in an 
SMP). 

2.4 Query Plan Modification 

In the previous sub-section, we described a relatively simple 
change to improve the execution of a query. The allocation 
of memory to the various operators in the query was mod- 
ified without actually modifying the query execution plan. 
While that can result in significant savings in some cases, 
a much more serious problem with query execution is that 
the query execution plan itself might be sub-optimal. For 
example, the join order might be sub-optimal, or the choice 
of algorithms (e.g. hash-join VS. indexed nested-loops join) 
could be improved. In this case, tremendous savings can be 
achieved by modifying the query execution plan. 

Consider the query execution plan shown in Figure 4. Let us 
assume that the query optimizer’s estimate for the number 
of tu 

P 
les resulting from the filter operation has a significant 

error . Since the remainder of the query plan is based on 

‘There are a number of reasons why this can happen even if there 
are state-of-the-art histograms on the base relation. The histograms 
might be out-of-date. The filter might involve two different correlated 
attributes of the relation (e.g. ‘R1.a = 10 and R1.b = 20’) and the 
histograms do not capture the correlation. Or, the selection predicate 
might have a user-defined function in a external language, in which 
case there is no way for the database system to estimate the selectivity 
of the filter. 
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Figure 5: Re-optimization of a plan without discard- 
ing any work 

this estimate, it is quite possible that the plan might be 
sub-optimal. At this point it is possible to use the new 
statistics to re-invoke the query optimizer and generate a 
better execution plan for the query. 

We note that at the time the new statistics for the result of 
the filter become available, the filter operation has already 
completed execution, and the build phase of the hash-join 
algorithm is also complete. However, the probe phase of the 
hash-join has not yet started, and the none of the other oper- 
ators have even started execution. Under the circumstances, 
there are three options that the re-optimization algorithm 
might consider. 

The simplest course of action is to completely discard the 
current execution, generate a completely fresh new execu- 
tion plan for the query, and execute it from the beginning. 
This approach has the major disadvantage that it completely 
discards a significant amount of work that has been already 
performed and starts out afresh. For this approach to suc- 
ceed, the combined amount of work done by the new query 
execution plan and the work that was discarded should be 
less than the work that would have been done by the pre- 
vious plan. It is conceivable that this could be the case for 
some query plans, especially if the sub-optimality is detected 
early. However, we believe that this approach is too risky, 
and we do not consider it further in the remainder of this 
paper. 

The second option is to suspend execution of the query, 
and only re-optimize those parts of the query that have not 
started executing. In the example above, the filter opera- 
tion is already complete and hash-join is also partially done. 
However, the indexed nested-loops join and aggregate have 
not yet begun execution. Hence, a plan involving these two 
operators can be modified without having to discard any 
work. Specifically, the query optimizer is re-invoked with 
new statistics. It is also given the information that the fil- 
ter and the build phase of the hash-join is done. The query 
optimizer then produces a new plan in which the filter and 
the hash-join are left as they are, but the remainder of the 
plan is re-optimized. This situation is pictured in Figure 5. 

While we believe that this approach is the best under the 
circumstances, it does require significant modifications to 
the query scheduler of the database system to make it work. 
Specifically it requires the ability to suspend a query in mid- 
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Figure 6: Re-optimization of a plan by materializing 
intermediate results 

execution, and to modify the query execution plan of the 
remainder of the query (without the knowledge of the oper- 
ators that are already halfway through their execution) and 
to resume execution using the new plan. While this concept 
is easy to grasp, actually implementing it in a real system 
can be a problem, especially if the scheduler was not initially 
designed to handle situations like this. 

To tackle this problem, we modified the algorithm slightly 
to get a new algorithm that is less efficient, but is much eas- 
ier to implement. Figure 6 shows how this works. In this 
approach, we do not suspend the execution of the query, but 
let the currently executing operators (i.e. the hash-join in- 
volving Rel2) run to completion. However, instead of piping 
output to the next operator in the query execution plan, it 
is re-directed to a temporary file on disk. Now, SQL cor- 
responding to the remainder of the query is generated in 
terms of this temporary file. This modified query is then 
re-submitted to the parser/optimizer like a regular query3. 

When to re-optimize: Re-optimizing a query has a signif- 
icant overhead associated with it. First, there is a non-trivial 
cost associated with re-parsing and re-optimizing a query. 
Second, if the re-optimization forces an extra materializa- 
tion of an intermediate result, the cost of writing and read- 
ing that result is incurred. For this reason, re-optimization 
of a query is not triggered every time the statistics of an 
intermediate result are observed to be different from the 
optimizer’s estimates. Instead, this decision is made using 
some heuristics based on the (estimated) costs involved. 

Let Tcup- plon,optmtrer be the optimizer estimate for the 
time required to execute the current plan. Let 
TCW- p~an,tmp,.oue~ be the improved estimate for the same. Let 
T mntenalile,estirnated be the estimated overhead for materializ- 
ing (writing and reading) the intermediate relation. Let us 
assume that the optimizer is actually re-invoked and it pro- 
duces a new plan for the remainder of the query. In this 
case, let Topt,actua~ be the time that would be required to 
re-parse and re-optimize (the remainder of) the query. Let 
I”,,,- plan,total be the total estimated time for executing the 
new plan (including the time for work already completed, 
the time for optimization, the time for materialization, and 
the time to execute the remainder of the query using the 

30f course, care has to be taken to ensure that the new query 
executes in the same transaction context as the previous one. 
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new plan). 

Obviously, re-optimization should be considered only if 
TCW- ,hn,mproved > Tmw-pian,total. Unfortunately, is not 
known until the optimizer is actually re-invoked. Let US, 
for the moment, assume that Topt,actual is always negligi- 
bly small. In that case, the solution is easy. When observed 
statistics are found to be different from the estimated statis- 
tics, the optimizer is invoked to produce a new plan (since 
this step is considered negligibly cheap) and an estimated 
TIWL- plan,total’ Now, if Tnew--p~an,tota~ < Tc..-ph,lmproved, 
the new plan is accepted and we take the steps required for 
dynamic modification of the plan (i.e. materializing the in- 
termediate result, and then executing the new plan using the 
materialized result). If, however, this is not the case, then 
we reject the new plan, and continue execution as before. In 
this case, no materialization of the intermediate result needs 
to be done, and the only overhead incurred is the Topt,actual 
required to getting an estimate for Tnew--plan,total. 

Unfortunately, Topt,actua[ is not always negligibly small and 
overhead can be significant. We note that it is not too dif- 
ficult to get a conservative estimate for Topt,actual. Let us 
call this estimate Topt,estzmated. The time taken to optimize 
a query does not depend upon the sizes of the datasets in- 
volved. Rather, it depends upon the number of operators 
in the query. Mainly, the cost is dominated by the cost of 
enumerating the various join orders for the query. Assuming 
the worst case, a query containing n joins requires the most 
time for optimization if it is a star-join query [16]. The time 
taken to optimize a star-join query containing n joins is usu- 
ally rather stable for a given optimizer and database system. 
Hence, an optimizer for a particular database system can be 
calibrated to obtain these estimates. 

Now, we use a couple of heuristics to determine whether it is 
worth spending Topt,esttmatrd time to re-invoke the optimizer. 
First, we note that re-optimizing is probably not worth the 
trouble unless the query execution time is much higher than 
the optimization time. Specifically, we use the heuristic, 

T opt,estrmated 

TCW- 
> 01 (1) 

plan,zmproved 

In this equation 8, is a parameter for the Dynamic Re- 
Optimization algorithm, and should be a small quantity like 
0.05. The optimizer is not re-invoked if equation 1 holds. 

Another point to be noted is that re-optimization is probably 
not worthwhile unless there is reason to believe that the cur- 
rent plan might be sub-optimal. To model this, we use the 
difference between Tcur--plan,opt2m,zer and Tcur--plan,,mproved as 
an indicator of whether the current plan is likely to be sub- 
optimal. Specifically we re-optimize only if 

Tcw- pinn,mproved - Tcw- pion,optzmtrer 
TCUV 

> o2 
(2) 

plon,optim,zer 

In this equation Oz is another parameter for the algorithm, 
and is set at approximately 0.2. 

2.5 Keeping overheads low 

So far in this section, we have described the Dynamic 
Re-Optimization algorithm, based on the assumption that 
“statistics” are collected at “key” points during the execu- 
tion of a query. In this sub-section, we describe exactly what 
“statistics” are collected, and what are the “key” points in 
the query. 

Obviously, the decision about what statistics to collect needs 
to be made at query optimization time. After a conventional 
optimizer has produced a query execution plan, we process 
this plan and insert statistics-collection operators at various 
points in the query execution plan. We will refer to this al- 
gorithm as the statistics-collectors insertion algorithm. This 
algorithm determines what are the “most effective” statistics 
to collect, and produces a plan containing the appropriate 
statistics collection operators. A simple solution would be to 
measure cardinalities, sizes, and histograms at all intermedi- 
ate points during the execution of the query. As described in 
Section 2.2, collection of statistics at query execution time 
is relatively cheap since there is no I/O overhead. Neverthe- 
less, the CPU overhead itself can be significant in some cases. 
For the queries that benefit from Dynamic Re- Optimiaatiorb, 
the savings achieved by re-optimization out-weigh the over- 
heads associated with statistics collection, but for queries 
that do not get re-optimized, the overhead actually results 
in an increase in the query execution time. 

The Dynamic Re-Optemizate’on algorithm is useful for de- 
tecting certain kinds of sub-optimalities in complex queries. 
However, there are a number of queries for which Dynamic 
Re-Optimization does not help. Obviously, if the plan pro- 
duced for a particular query is already optimal, or close to 
optimal, re-optimization does not help. Another possibility 
is that the query might be too simple (for example, con- 
sisting of just one join). In this case, even if the query 
plan produced by the optimizer is sub-optimal, Dynamic 
Re-Optimization is not useful, because by the time collec- 
tion of statistics is complete, most of the query is also done 
executing. Thus, even though the new statistics may indi- 
cate that the query plan was sub-optimal, it is too late to 
do anything about it. 

The Dynamic Re-Optimization algorithm is not targeted to- 
wards these queries. However, it is important that their 
performance does not suffer if the Dynamic Re-Optimization 
algorithm is used. If possible, statistics collection should be 
entirely avoided for such queries. If not, steps should be 
taken to ensure that the overhead introduced is kept accept- 
ably low. 

Due to these considerations, it becomes important to care- 
fully choose what statistics are collected at query execution 
time. There is an important trade-off to be considered here. 
Collecting statistics at too many points in the query can 
lead to an unacceptably high overhead. On the other hand, 
if statistics are collected at too few points in the query, some 
of the sub-optimalities in the query execution plan might not 
get detected, leading to the loss of some optimization oppor- 
tunities. 

We now describe the statistics-collectors insertion algorithm 
that is used to determine what statistics to collect during 
query execution. For the remainder of this paper, we assume 
that the time required for measurement of cardinality and 
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size (in pages) of a table, and the minimum and maximum 
values for its attributes, is negligible. Hence, we assume that 
these statistics are measured for all intermediate results in 
a query. The statistics-collectors insertion algorithm will be 
restricted only to computations of histograms and estima- 
tions of number of unique values of a particular attribute (or 
set of attributes). If, however, in a particular database sys- 
tem, measuring cardinality/size has a significant overhead 
associated with it, the same techniques can be applied to 
them as well. 

The statistics-collectors insertaon algorithm starts by mak- 
ing a list of all the potentially useful statistics that can be 
computed. For a given intermediate table, a histogram on 
a particular attribute is potentially useful if that attribute 
is part of a join predicate or a selection predicate later on 
in the query execution plan. Similarly, computing the num- 
ber of unique values of an attribute (or set of attributes) 
is potentially useful if that attribute (or set) is part of a 
group-by clause of an aggregate operation later in the query 
execution plan. Given this list of potentially useful statis- 
tics, we need to determine which ones should be discarded, 
and which ones computed. 

The maximum acceptable overhead, p (specified as a fraction 
of the total execution time of the query), is an external pa- 
rameter supplied to the algorithm. Thus, if Tcur-p~an,op~lmrler 
is the optimizer’s estimate of the query execution time, then 
CL x Tcur-.pian,optrmrrer is the maximum time that can be al- 
located to the collection of statistics. Now, we need to 
determine a subset of the potentially useful statistics that 
take less than ,U x Tc,,r--p~an,optrmlzer time to compute, and 
which are “most effective” in detecting the sub-optimality 
of a plan. To be able to do this, we need to estimate two 
things. First, we need to estimate the cost of computing each 
of the statistics. This can be easily estimated using the opti- 
mizer’s estimates of the sizes of intermediate results. Second, 
we need some measure of the LLeffectiveness” of a particular 
statistic in detecting sub-optimality of a plan. 

Two key factors are considered while deciding the effective- 
ness of statistics in detecting sub-optimality of a query ex- 
ecution plan. The first factor is the probability that the 
corresponding optimizer estimates are inaccurate. If there 
is a high probability that the optimizer’s estimates are accu- 
rate, then there is not much reason to actually observe the 
statistics at run-time. The second factor is the fraction of 
the query execution plan that is affected by that particular 
statistic. The larger the fraction of the query that might be 
affected by a statistic, the more effective is the statistic at 
detecting sub-optimality of a plan. 

The first question that we ask is what are the chances that 
the optimizer’s estimates corresponding to that attribute are 
inaccurate? For example, if there is an equality selection on 
a particular attribute of a base table, and there exists a serial 
histogram on that attribute, then chances are very high that 
the optimizer’s estimates for the result of the selection op- 
erator are very accurate [19]. On the other hand, if there is 
neither a histogram nor an index on that attribute, chances 
are very high that the optimizer’s estimates are rather inac- 
curate. In that case, computing a histogram on the result 
at run-time is likely to be very useful. 

The statistics-collectors insertion algorithm assigns an inac- 
curucy potential level of low, medium or high to the various 

optimizer estimates in a query execution plan using the fol- 
lowing rules. An inaccuracy potential of high for a particu- 
lar statistic indicates that there is a high possibility of the 
corresponding optimizer estimate being inaccurate. We first 
assign inaccuracy potential levels to the statistics on base ta- 
bles found in catalogs. Then the inaccuracy potential levels 
are propagated upwards in the query execution plan. The 
following are a set of rules for determining the inaccuracy 
potentials: 

l The inaccuracy potential for a histogram on an attribute 
of a base table is low if it has a serial histogram, medium for 
equi-width and equi-depth histograms, and high if there is 
no histogram. 

l If the system catalogs contain estimates for the number of 
unique values of a particular attribute of a base table, the 
inaccuracy potential for this estimate is low. The inaccuracy 
potential for the number of unique values of an attribute (or 
set) at any intermediate point in a query execution plan is 
always high. (In other words, the inaccuracy potential for 
number of unique values is low only for attributes in a base 
table, and is high in all other cases.) 

l Some database systems have information available about 
the update activity on a table since the last time statistics 
were updated. In this case, the inaccuracy potential level for 
all statistics is increased one level if there has been significant 
update activity since the last time statistics were collected. 

l The inaccuracy potential for the output of a selection op- 
erator involving a simple predicate is the same as the in- 
accuracy potential of its input. In other words, inaccuracy 
potential is low if there exists a serial histogram on the in- 
put, medium for equi-width and equi-depth histograms and 
high when there are no histograms. 

l If a selection predicate involves two or more attributes 
of the relation, then inaccuracy potential of the output is 
one level higher than the inaccuracy potential of the input. 
In other words, if the inaccuracy potential for input is low, 
then inaccuracy potential for output is medium, and if the 
input is medium or high, inaccuracy potential is high. This 
increase in inaccuracy potential is due to the possibility of 
correlations that are not captured by the histograms. 

l If a selection predicate involves user-defined methods, the 
inaccuracy potential of output is always high. 

l Consider an equi-join where the join attributes are keys 
for the corresponding tables. In this case, the output can be 
estimated rather accurately if the input is known. Due to 
this, the inaccuracy potential for the output of an equi-join 
on key attributes is the same as the maximum inaccuracy 
potential of its inputs. If the equi-join is on a non-key at- 
tribute, then the inaccuracy potential is one level higher than 
the inaccuracy potential of its inputs. 

l The inaccuracy potential for non-equi-joins is always high. 

l The inaccuracy potential for the output of an aggregate 
operator is the same as the inaccuracy potential with which 
the number of unique values for the grouping columns is 
known in the input. 

The other factor in determining effectiveness of computing a 
particular statistic is the fraction of a query execution plan 
that is affected by that statistic and has not yet executed. 
Consider Figure 7. This figure shows two statistics being 
collected at query execution time. One is a histogram on 
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Figure 7: Fraction of a query affected by statistics 

the attribute Rell.joznattrd in the output of the filter oper- 
ation, and the other is the number of unique values of of the 
Rell.groupattr attribute. Now the joinattr3 attribute is part 
of the join predicate in the zndexed nested-loops join pic- 
tured in the figure, and hence the corresponding histogram 
is useful in estimating the cost of that join and the size of 
its output. Hence, the portion of the query execution plan 
affected by the histogram on the joinattr3 attribute consists 
of all t,he operators after that join. On the other hand, the 
number of unique values for the groupattr attribute is only 
useful for the aggregate operation. Hence the portion of the 
query execution plan affected by this statistic consists only 
of the aggregate operation. 

Now the relative effectiveness of two different statistics is 
compared as follows. If one statistic has a higher inaccuracy 
potential, then that statistic is considered to be more effec- 
tive in detecting sub-optimality of a plan. If the inaccuracy 
potentials for two statistics are the same, then the statistic 
that affects a larger portion of the query execution plan is 
considered more effective. Using these rules, the list of all 
potentially useful statistics is ordered according to increas- 
ing effectiveness. Now, we begin deleting the least effective 
statistics from this list one by one until the total estimated 
time for computing all the statistics drops below the maxi- 
mum acceptable overhead (Tcur-plan,optlnlre~). 

2.6 Summary 

To summarize, this is how the entire Dynamic Re- 
Optimization algorithm works. First a conventional opti- 
mizer is used to generate a conventional query execution 
plan for a query. Then the statistics-collectors insertion al- 
gorithm is invoked to insert statistics-collection operators 
into the query execution plan. The statistics-collectors in- 
sertion algorithm ensures that the statistics-collection opera- 
tors inserted into the query plan do not slow down the query 
by more than a fraction CL. The output of the statistics- 
collectors insertion algorithm is the final static plan for the 
query that can be stored in the database system. We note 
that this plan contains all the optimizer’s estimates for the 
sizes of various intermediate results and the execution times 
for the operators in the query. 

At query execution time, the statistics-collector operators 
that have been inserted into the query gather statistics on 
the intermediate results of the query execution. These statis- 
tics are then used to obtain improved estimates for the exe- 

Figure 8: Query Execution in Paradise 

cution times for the remaining operators of the query. These 
estimates are compared with the optimizer estimates that 
are stored as a part of the query plan. If the estimates are 
significantly different, and the query is expensive enough 
to warrant re-optimization, then the query optimizer is re- 
invoked to obtain a new plan for the remainder of the query. 
If the estimated total execution time for the new plan (in- 
cluding overhead of re-optimization and materialization of 
intermediate results) is less than the estimated execution 
time of the old plan, then the execution plan for the remain- 
der of the query is replaced with the new plan. 

3 Implementation and Performance 

As an experimental validation of the Dynamic Re- 
Optimization algorithm we implemented it in the Paradise 
database system [17]. In this section, we report some of the 
results of our experiments. First we describe the details of 
the actual implementation of the Dynamic Re-Optimization 
algorithm in the context of Paradise, and its interactions 
with the memory management module of Paradise. Then 
we study the performance of the Dynamic Re-Optimization 
algorithm using datasets and queries based upon the TPCD 
benchmark specification [21]. We also performed some ex- 
periments using skewed datasets to measure the effect of 
skew on performance. 

3.1 Implementation in Paradise 

Paradise is a database system designed to handle rich data- 
types through the use of Abstract Data Types (ADTs) and 
provides scalability through the use of parallelism. In our 
experiments, we concentrated mainly on the relational fea- 
tures of Paradise. 

Figure 8 shows some of the components of the Paradise sys- 
tem that are involved in optimizing and executing a query. 
The query optimizer is built using the OPT++ architec- 
ture [13], and uses a conventional dynamic programming 
algorithm based on the System-R optimizer [22]. The cost 
estimates in the optimizer are based on histograms stored in 
the system catalogs. The system uses MaxDiff histograms 
as described in [19]. This produces a static plan that con- 
tains the query execution strategy as well as the optimizer’s 
estimates of the sizes of intermediate query results. This an- 
notated plan is submitted to the database engine for query 
execution. 

At query execution time, the Memory Manager of the 
database engine determines the allocation of memory to the 
various operators of the query. It determines the memory 
requirements (minimum and maximum memory demands) 
of each operator using the estimates provided by the opti- 
mizer. Based on the memory requirements of each operator, 
and by considering the trade-offs involved, it allocates some 
amount of memory to each operator. The amount of mem- 
ory thus allocated to an operator represents the maximum 
memory that the operator is allowed to use during execu- 
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Figure 9: Query Execution with Dynamic Re- 
Optimization 

tion. If all the data required by the operator does not fit 
into the allocated amount of memory, it has to spill some 
of the data to disk. Details of the Memory Management 
module of Paradise are described in [15]. 

The Memory Manager annotates a query execution plan 
with memory allocation values, and hands over the plan to 
the query scheduler and dispatcher for execution. The query 
scheduler and dispatcher executes a complex query execution 
plan in phases by partitioning it into a number of segments. 
Each segment is a subset of the operators in the query exe- 
cution plan that can be executed concurrently. Typically, a 
segment consists of a set of consecutive operators that can 
be executed in a pipelined fashion. The different segments of 
a query execution plan are executed one after another in se- 
quence. The dispatcher dispatches a segment of operators to 
the data-servers and waits for them to complete execution. 
When all the operators of a segment complete execution, a 
message is sent to the dispatcher, and it advances to the 
next segment in the execution plan. 

Figure 9 shows how we modified Paradise to incorporate Dy- 
namic Re-Optimization. First, the statistics-collectors in- 
sertion algorithm (SCIA) was added as a post-processing 
phase after the query optimizer. This takes the query ex- 
ecution plan produced by the optimizer and inserts statis- 
tics collection operators in it as described in Section 2.5. 
The scheduler-dispatcher is modified to take into account 
the Dynamic Re-Optimization algorithm. As in the previ- 
ous design, after the Memory Manager is done with memory 
allocation, it hands over the plan to the scheduler and dis- 
patcher. This partitions the plan into segments and begins 
dispatching each segment in sequence. 

In the new scheme, when a segment is dispatched to the 
data-servers to be executed, it might contain statistics- 
collector operators. As far as the data-servers are concerned, 
these are regular operators similar to hash-join or indez- 
stun. The only difference is that when a statistics-collector 
completes execution, it sends back to the dispatcher a mes- 
sage containing the statistics collected. At this point, the 
Dynamic Re-Optimization algorithm in the dispatcher is in- 
voked. This can do one of three things at this point. First, 
it uses Equation 1 and Equation 2 (discussed in Section 2.4) 
to determine whether to consider re-optimizing the query. If 
the answer is yes, it invokes the query optimizer and obtains 
a new plan for the remainder of the query, using the new 
statistics. Then it uses the optimizer estimate of the cost of 
execution of the new plan to determine whether the cost of 
the new plan is actually less than the estimate for the old 
plan in spite of the re-optimization overhead. If this is true, 
the Dynamic Re-Optimization algorithm instructs the data- 
server to finish execution of the last operator and write the 
result to a temporary file. It deletes all the state informa- 
tion for the old plan from the dispatcher data-structures and 

then submits the new query plan for execution. If the new 
plan is not cheaper than the old plan, then the dynamic re- 
optimizer continues working with the old plan. However, it 
uses the new estimates to invoke the Memory Manager again 
to obtain an improved memory allocation for the plan based 
on the improved statistics. This process continues until the 
query completes execution. 

In addition to implementing the Dynamic Re-Optimization 
and the statistics-collectors insertion algorithms in the sys- 
tem, we had to add the statistics-collector operator to the 
data-server. The statistics-collector operator was added as 
a regular streamed operator (similar to the filter operator). 
It took a stream of tuples as its input and produced exactly 
the same stream of tuples as its output. Since this opera- 
tor just needs to examine the tuples without modifying or 
discarding any of them, it can be implemented without re- 
quiring an extra copy. To compute the size of the relation, 
the number of tuples, and the minimum and maximum value 
for an attribute, we maintain a single value that is updated 
after each tuple is examined. For computing a histogram, 
one database page is allocated to hold a reservoir sample [24] 
for the histogram. As each tuple is examined, the value of 
the corresponding attribute is copied into the reservoir ac- 
cording to the sampling technique described in [19]. When 
all the tuples from the input are exhausted, the reservoir is 
examined to build the histogram. 

3.2 Experimental Results 

To study the effect of Dynamic Re-Optimization on real 
queries, we performed experiments using some TPC-D 
queries. The TPC-D dataset generator was used with a 
scale factor of 3 to generate a 3GB database. Using this 
database, we ran queries Ql, Q3, Q5, 26, Q7, Q8, Ql.0 
described in the TPC-D specification [21] All the experl- 
ments were run on a cluster of 4 PCs each configured with 
dual 133 Mhz Pentium processors, 128 MB of memory, dual 
fast and wide SCSI-2 adapters (Adaptec 787OP), and one 
Seagate Barracuda 2.1 GB disk drive (ST32500WC). So- 
laris 2.5 was used as the operating system. The processors 
were connected using lOOMbit/second ethernet and a Cisco 
Catalyst 5000 switch that has an internal bandwidth of 1.2 
GB/second. The buffer pool was kept at 32MB at each node 
of the system. We purposely chose not to have a larger buffer 
pool since we wanted to study the effect of memory manage- 
ment techniques on query optimization. Refer to [21] for the 
specifications of the queries. We ran each query with and 
without the use of Dynamic Re-Optimization. Each query 
was executed 5 times and the average execution time was 
reported. 

In all these quer’ies, we set the value of ,u (maximum allow- 
able overhead) to 0.05 ensuring that none of the queries ever 
performed 5% worse than normal. The parameters 81 and 
02 were kept. at 0.05 and 0.2 respectively. An analysis of the 
sensitivity of the Dynamic Re-Optimization algorithm to the 
values of b, 81, and 02 is contained in [12]. 

4The other queries in the TPC-D benchmark specification were 
not included in our experiments because some of the necessary fea- 
tures were not supported by Paradise. For the same reason, minor 
modifications were made to the queries that where included. In all 
cases where a query contained aggregates over expressions (e.g. SUM 
(L-EXTENDEDPRICE*(l-L-DISCOUNT))) we replaced it with a 
simpler aggregate expression (e.g. SUM (L-EXTENDEDPRICE)). 
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Based on the expected effects of Dynamic Re-Optimization 
on different types of queries, we can classify all queries into 
three categories. Queries that contain zero or one joins will 
never get re-optimized. We refer to such queries as sim- 
ple queries. Queries containing two or three joins will usu- 
ally not benefit much from plan modification, but might see 
some benefits from improved memory management. We re- 
fer to this category of queries as medium queries. Finally, all 
queries containing four or more joins are the primary targets 
for which Dynamic Re-Optimization is designed. We will re- 
fer to them as complex queries. In the query set that we 
used, Ql and QS are simple, Q3 and QlO are medium, while 
Q5, Q7 and Q8 axe complex. 

Figure 10 shows the results of our experiments. We see 
that queries Ql and QS do not benefit at all from Dynamic 
Re-Optimization. This is an expected result, since these are 
simple queries. We see a small increase in the execution time 
for Ql, indicating the overhead of statistics collection. Q3 
and QlO show modest improvements (upto 5%) in perfor- 
mance, while the complex queries show larger improvements 
(10 to 30%). 

From the previous experiment, it is unclear how much of 
the performance improvement is due to improvements in 
the memory allocation for the query and how much is due 
to plan modification. To isolate these effects we performed 

another experiment in which the Dynamic Re-Optimization 
was run in two different modes. In one mode, the improve- 
ments in statistics were used solely for improving the mem- 
ory management of the query, and plan modification was 
turned off. In the second mode, dynamic re-allocation of 
memory was turned off and only plan modification was used 
to improve the performance of the query. The results of this 
experiment are shown in Figure 11. A couple of interest- 
ing observations can be made about these results. First, we 
see that all the medium queries benefit only from improved 
memory management. Second, the complex queries benefit 
from both, improved memory management, as well as plan 
modification. They see a small improvement (5 to 10%) due 
to memory management and a larger one (10 to 20%) due 
to plan modification. Since the simple queries are not really 
affected by Dynamic Re-Optimization we have not included 
them in this or later experiments. 

We also ran some experiments to study the effect of skew on 
the performance of Dynamic Re-Optimization. For this, we 
used the same queries with skewed data. Instead of generat- 
ing TPC-D data with uniform distributions, we modified the 
data generator to skew all non-key using generalized Zipfian 
distribution ([27] as described in [18]). We ran two sets of 
experiments with values for the Zipf factor (z) value set at 
0.3 and 0.6. The results of these experiments are plotted 
in Figure 12. Comparing these charts with the charts for 
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the uniform data (Figure 10) we see that the relative per- 
formance of Dynamic Re-Optimization improves slightly as 
more skew is introduced in the system. In some cases the 
benefit from re-optimization actually decreases when skew 
increases (for example QlO). This can be attributed to the 
fact that in some cases, the accuracy of serial histograms 
actually increases when skew is increased. 

4 Related Work 

One of the earliest query optimizers [25] was, in some sense, 
a dynamic query optimizer. However, after the publication 
of [22], most of the work on query optimization has focussed 
on optimization of a query at compile time. Since the late 
8Os, however, the limitations of this approach have begun 
to be felt, and there has been an emergence of a number 
of different query optimization schemes in which some of 
the optimization decisions are postponed to query execution 
time. 

[5] describes a scheme in which query execution plans gen- 
erated by an optimizer are re-optimized just before query 
execution time if they are believed to be sub-optimal. At 
query optimization time, the statistics used by the optimizer 
to generate the optimal plan are stored with the plan in 
the database system. At query execution time, the actual 
statistics from the system catalogs are compared against the 
statistics stored in the plan. If they are found to differ sig- 
nificantly the query is re-optimized before execution. This 
differs significantly from our approach. First, the query 
is only re-optimized before execution begins. In their ap- 
proach, there is no collection of statistics, or modification of 
the plan in the middle of query execution. 

The competition model of Antoshenkov [2, 31 represents an- 
other way of dynamically determining the plan of a query. 
In his approach, competing executions start executing using 
different plans. After a while, it becomes clear that one of 
the plans is better than the others, and the execution of the 
sub- optimal plan is stopped. While this approach might 
work well for determining which access method to use for 
a particular table-scan, or which join algorithm to use for 
executing a particular join, it cannot be extended easily to 
the case where the join order for a complex query might 
be sub-optimal. Further, the competition model cannot be 
used for dynamically improving the resource allocation of a 
query. 

Query Scrambling described in [I] also does some dynamic 
re-optimization of a queries but it is directed towards a 
very different problem. Execution of queries that access 
data from widely distributed data sources can get stalled 
if the data from some data source is arrives very slowly. 
Query Scrambling dynamically re-schedules operators to 
tackle such unexpected delays, and in some cases, adds new 
operators. This is a very specific technique to tackle a spe- 
cific problem found in distributed databases. Unlike our 
algorithm, Query Scrambling is not intended to be a gen- 
eral algorithm for dynamic re-optimization of sub-optimal 
queries 

One important reason for sub-optimality of query execution 
plans is that a lot of information about the run-time system 
(availability of memory, bindings of host language variables, 
existence of indices) is not available at query compile time. 

The dynamic execution plans of (8, 71, and the parametric 
query optimization algorithm of [lo] try to tackle this prob- 
lem. Their approach is to produce a composite plan that is 
in effect a combination of a number of different plans, each 
of which is optimal for a given set of values of run-time pa- 
rameters. One of the problems with this approach is that 
as the number of things that are unknown at query opti- 
mization time increases, the space/time complexity of the 
optimization algorithm, and the complexity of the parame- 
terized/dynamic plan produced by the algorithm increases. 
Given the limited amount of time that is available for query 
optimization, these approaches either have to resort to the 
use of randomization for exploring the vast search space [lo], 
or to make simplifying assumptions [7]. Another shortcom- 
ing of these approaches is that they do not address the issue 
of statistical and propagational errors in estimates. Thus, if 
a histogram-based estimate of the selectivity of a predicate is 
inaccurate, the corresponding sub-optimality in a plan can- 
not be detected using these approaches. However, they do 
have an advantage over Dynamic Re-Optimization in that 
they do not impose any overheads on query execution at 
run-time. 

A hybrid algorithm that combines the parametric/dynamic 
query plans approach and the Dynamic Re-Optimization al- 
gorithm could possibly combine the best features of both 
approaches. The query optimizer can try to anticipate the 
most common cases that might arise at run-time and pro- 
duce a parameterized plan that covers these possibilities. At 
query execution time, statistics can be observed/collected 
to determine which plan to choose for query execution. If a 
situation arises at run-time that is not covered by the com- 
mon cases anticipated by the query optimizer, dynamic re- 
optimization can be used. This approach suggests a possible 
direction of future research. 

5 Conclusions 

In this paper, we have described an algorithm that can de- 
tect sub-optimalities in query execution plans for complex 
queries, and improve the performance of such queries by 
dynamically re-optimizing the execution plan. Strategically 
placed statistics collectors are inserted into query execution 
plans to observe sizes and data distributions of intermediate 
query result sizes at run-time. These run-time statistics are 
used for improving the allocation of shared resources (mem- 
ory) to the query, and for modifying the query execution 
plan if need be. We also describe how this can be done 
efficiently without placing too much of an overhead on the 
execution of the query. We have demonstrated experimental 
results to support our claim that Dynamic Re-Optimization 
can significantly improve the performance of complex queries 
if their query execution plans are sub-optimal without signif- 
icantly slowing down the queries whose plans do not benefit 
from re-optimization. 

As emerging new applications force databases to support 
complex decision support queries, complex data-types and 
user-defined methods, it will become more and more diffi- 
cult for query optimizers to statically produce good query 
execution plans. Some form of re-optimization of query exc- 
cution plans at run-time will become necessary in such cases. 
We believe that the techniques we have presented, possibly 
in combination with parameterized plans will form the ba- 
sis for the future evolution of query optimizers to meet this 
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challenge. 

Declarative query languages and automatic query optimiza- 
tion were an important reason for the success of relational 
database systems. Lack of good query optimizers could very 
well lead to the downfall of the next wave of innovations 
in database system technology. In this paper, we have ex- 
amined the inadequacies of traditional query optimizers in 
dealing with issues raised by modern database systems and 
demonstrated ways to overcome them. We believe that the 
ideas contained in this paper represent an important step 
in ensuring that query optimizers keep up with the other 
advances in database systems. 

Acknowledgements 

We would like to thank the Paradise team for their help with 
the use of the Paradise Database System. We would also like 
to thank Yannis Ioannidis and Joseph Hellerstein for useful 
discussions, and the anonymous referees for their comments 
on drafts of this paper. 

References 

PI 

[31 

141 

PI 

[61 

171 

PI 

191 

[lOI 

AMSALEO, L., FRANKLIN, M. J., TOMASIC, A., AND 
URHAN, T. “Scrambling Query Plans to Cope with 
Unexpected Delays”. In The 4th International Confer- 
ence on Parallel and Distributed Information Systems 
(PDIS) (Miami Beach, Florida, Dec. 1996). 

ANTOSHENKOV, G. “Dynamic Query Optimization in 
Rdb/VMS”. In In Proceedings of the IEEE Conference 
on Data Engineering (1993), pp. 538-547. 

ANTOSHENKOV, G. “Dynamic Optimization of Index 
Scan Restricted by Booleans”. In In Proceedings of the 
IEEE Conference on Data Engineering (1996), pp. 430- 
440. 

CHEN, M. S., ET AL. “Using Segmented Right-Deep 
Trees for Execution of Pipelined Hash Joins”. In Proc. 
of the 18th VLDB Conf. (1992). 

DERR, M. A., MORISHITA, S., AND PHIPPS, G. “Adap- 
tive Query Optimization in a Deductive Database Sys- 
tem”. In In Proceedings of the Proceedings of the Second 
International Conference on Information and Knowl- 
edge Management (Washington D. C., USA, 1993). 

FLAJOLET, P., AND MARTIN, G. N. “Probabilis- 
tic Counting Algorithms for Database Applications”. 
In Journal of Computer and System Sciences (1985), 
vol. 31(2), pp. 182-209. 

GRAEFE, G., AND COLE, R. “Optimization of Dynamic 
Query Evaluation Plans”. In Proceedings of the 1994 
ACM-SIGMOD Conference (1994). 

GRAEFE, G., AND WARD, K. “Dynamic Query Eval- 
uation Plans. In SIGMOD Proceedings (June 1989), 
ACM, pp. 377-388. 

IOANNIDIS, Y., AND CHRISTODOULAKIS, S. “On the 
Propogation of Errors in the Size of Join Results”. 
In Proceedings of the 1991 ACM-SIGMOD Conference 
(Denver, Colorado, May 1991). 

IOANNIDIS, Y., NG, R. T., SHIM, K., AND SELLIS, T. 
“Parametric Query Optimization”. In Proc. of the 18th 
VLDB Conf. (1992). 

[121 

PI 

[I41 

P51 

P61 

P71 

P81 

P91 

PO1 

Pll 

[221 

1231 

1241 

P51 

[261 

1271 

IOANNIDIS, Y., AND POOSALA, V. “Balancing His- 
togram Optimality and Practicality for Query Result 
Size Estimation”. In Proceedings of the 1995 ACM- 
SIGMOD Conference (San Jose, California, May 1995). 

KABRA, N. “Query Optimization for Relational and 
Object-Relational Database Systems”. PhD thesis, Uni- 
versity of Wisconsin, Madison, 1998. 

KABRA, N., AND DEWITT, D. J. ‘LOpt++: An Ob- 
ject Oriented Implementation for Extensible Database 
Query Optimization”. In to appear in The VLDB Jour- 
nal (1998). 

MEH’TA, M., AND DEWITT, D. J. “Dynamic Memory 
Allocation for Multiple Query Workloads”. In Proc. of 
the 19th VLDB Conf. (Dublin, Ireland, 1993). 

NAG, B., AND DEWITT, D. J. “Memory Alloca- 
tion Strategies for Complex Decision Support Queries”. 
Submitted for publication. 

ONO, K., AND LOHMANN, G. “Extensible Enumeration 
of Feasible Joins for Relational Query Optimization”. 
In Proc. of the 16th VLDB Conf. (Aug. 1990). 

PATEL, J. M., ET AL. “Building a Scalable Geo-Spatial 
DMBS: Technology, Implementation, and Evaluation”. 
In Proceedings of the 1997 ACM-SIGMOD Conference 
(Tuscon, Arizona, May 1997). 

POOSALA, V. “Zipf’s Law”. Tech. rep., University of 
Wisconsin, Madison, 1995. 

POOSALA, V., AND IOANNIDIS, Y. “Histogram-Based 
Solutions to Diverse Database Estimation Problems”. 
In Data Engineering Bulletin (1995), vol. 18(3), pp. lo- 
18. 

POOSALA, V., IOANNIDIS, Y., HAAS, P. J., AND 
SHEKITA, E. “Improved Histograms for Selectivity Es- 
timation of Range Predicates”. In Proceedings of the 
1996 ACM-SIGMOD Conference (Montreal, Canada, 
June 1996). 

RAAB, F. “TPC Ben&ma& D - Standard Specifi- 
cation, Revision 1.0”. Transaction Processing Perfor- 
mance Council, May 1995. 

SELINGER, P., ASTRAHAN, M., CHAMBERLIN, D., Lo- 
RIE, R., AND PRICE, T. “Access Path Selection in a 
Relational Database Management System”. In Proceed- 
ings of the ACM SIGMOD Conference on Management 
of Data (May 1979). 

STONEBRAKER, M., ANTON, J., AND HIROHAMA, M. 
“Extendability in POSTGRES”. In Data Engineering 
Bulletin (1987), vol. 10(2), pp. 16-23. 

VI’YTER, J. S. “Random Sampling with a Reservoir”. In 
ACM nansactions on Mathematical Software (1985), 
vol. 11, pp. 37-57. 

WONG, E., AND YOUSSEFI, K. “Decomposition - A 
Strategy for Query Processing”. In ACM Z’ransactions 
on Database Systems (Sept. 1976). 

Yu, P. S., AND CORNELL, D. W. “Buffer Management 
Based on Return on Consumption in a Multi-Query En- 
vironment”. In VLDB Journal (Jan. 1993), vol. 2(l). 

ZIPF, G. K. “iHumnn Behavior and the Principle 
of Least Resistance”. Addison-Wesley, Reading, MA, 
1949. 

117 


