
Eddies: Continuously Adaptive Query Processing

Ron Avnur Joseph M. Hellerstein
University of California, Berkeley

avnur@cohera.com, jmh@cs.berkeley.edu

���������
	����
In large federated and shared-nothing databases, resources can
exhibit widely fluctuating characteristics. Assumptions made
at the time a query is submitted will rarely hold throughout
the duration of query processing. As a result, traditional static
query optimization and execution techniques are ineffective in
these environments.

In this paper we introduce a query processing mechanism
called aneddy, which continuously reorders operators in a
query plan as it runs. We characterize themoments of sym-
metry during which pipelined joins can be easily reordered,
and thesynchronization barriersthat require inputs from dif-
ferent sources to be coordinated. By combining eddies with
appropriate join algorithms, we merge the optimization and
execution phases of query processing, allowing each tuple to
have a flexible ordering of the query operators. This flexibility
is controlled by a combination of fluid dynamics and a simple
learning algorithm. Our initial implementation demonstrates
promising results, with eddies performing nearly as well as
a static optimizer/executor in static scenarios, and providing
dramatic improvements in dynamic execution environments.
���� ��������������� � �
There is increasing interest in query engines that run at un-
precedented scale, both for widely-distributed information re-
sources, and for massively parallel database systems. We are
building a system called Telegraph, which is intended to run
queries over all the data available on line. A key requirement
of a large-scale system like Telegraph is that it function ro-
bustly in an unpredictable and constantly fluctuating environ-
ment. This unpredictability is endemic in large-scale systems,
because of increased complexity in a number of dimensions:

Hardware and Workload Complexity: In wide-area envi-
ronments, variabilities are commonly observable in the bursty
performance of servers and networks [UFA98]. These systems
often serve large communities of users whose aggregate be-
havior can be hard to predict, and the hardware mix in the wide
area is quite heterogeneous. Large clusters of computers can
exhibit similar performance variations, due to a mix of user
requests and heterogeneous hardware evolution. Even in to-
tally homogeneous environments, hardware performance can
be unpredictable: for example, the outer tracks of a disk can
exhibit almost twice the bandwidth of inner tracks [Met97].

Data Complexity: Selectivity estimation for static alphanu-

Figure 1: An eddy in a pipeline. Data flows into the eddy from
input relations����� and � . The eddy routes tuples to opera-
tors; the operators run as independent threads, returning tuples
to the eddy. The eddy sends a tuple to the output only when
it has been handled by all the operators. The eddy adaptively
chooses an order to route each tuple through the operators.

meric data sets is fairly well understood, and there has been
initial work on estimating statistical properties of static sets of
data with complex types [Aok99] and methods [BO99]. But
federated data often comes without any statistical summaries,
and complex non-alphanumeric data types are now widely in
use both in object-relational databases and on the web. In these
scenarios – and even in traditional static relational databases –
selectivity estimates are often quite inaccurate.

User Interface Complexity: In large-scale systems, many
queries can run for a very long time. As a result, there is in-
terest in Online Aggregation and other techniques that allow
users to “Control” properties of queries while they execute,
based on refining approximate results [HAC� 99].

For all of these reasons, we expect query processing param-
eters to change significantly over time in Telegraph, typically
many times during a single query. As a result, it is not appro-
priate to use the traditional architecture of optimizing a query
and then executing a static query plan: this approach does
not adapt to intra-query fluctuations. Instead, for these en-
vironments we want query execution plans to be reoptimized
regularly during the course of query processing, allowing the
system to adapt dynamically to fluctuations in computing re-
sources, data characteristics, and user preferences.

In this paper we present a query processing operator called
aneddy, which continuously reorders the application of pipe-

Permission to make digital or hard copies of part or all of this
work or personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
MOD 2000, Dallas, TX USA
© ACM 2000 1-58113-218-2/00/05 . . .$5.00

261

lined operatorsin a queryplan,on a tuple-by-tuplebasis.An
eddyisan -arytuplerouterinterposedbetween datasources
andasetof queryprocessingoperators;theeddyencapsulates
the orderingof the operatorsby routing tuplesthroughthem
dynamically(Figure1). Becausetheeddyobservestuplesen-
tering and exiting the pipelinedoperators,it can adaptively
changeits routingto effectdifferentoperatororderings.In this
paperwepresentinitial experimentalresultsdemonstratingthe
viability of eddies:they canindeedreordereffectively in the
faceof changingselectivities andcosts,andprovide benefits
in thecaseof delayeddatasourcesaswell.

Reoptimizinga queryexecutionpipelineon thefly requires
significantcarein maintainingqueryexecutionstate.Wehigh-
light queryprocessingstagescalledmomentsofsymmetry, dur-
ing which operatorscanbeeasilyreordered.Wealsodescribe
synchronizationbarriers in certainjoin algorithmsthatcanre-
strict performanceto the rateof the slower input. Join algo-
rithms with frequentmomentsof symmetryandadaptive or
non-existentbarriersarethusespeciallyattractive in theTele-
graphenvironment. We observe that the Ripple Join family
[HH99] provides efficiency, frequentmomentsof symmetry,
and adaptive or nonexistent barriersfor equijoins and non-
equijoinsalike.

Theeddyarchitectureis quitesimple,obviatingtheneedfor
traditionalcostandselectivity estimation,andsimplifying the
logic of planenumeration.Eddiesrepresentour first stepin a
largerattemptto do away with traditionaloptimizersentirely,
in thehopeof providing bothrun-timeadaptivity anda reduc-
tion in codecomplexity. In this paperwe focuson continuous
operatorreorderingin a single-sitequeryprocessor;we leave
otheroptimizationissuesto ourdiscussionof futurework.
�!"$# � ��%'& �)(+*-,/. ��������	0��� � � �
Threepropertiescanvary during queryprocessing:the costs
of operators,their selectivities, andthe ratesat which tuples
arrive from the inputs. The first and third issuescommonly
occurin wideareaenvironments,asdiscussedin theliterature
[AFTU96, UFA98, IFF � 99]. Theseissuesmaybecomemore
commonin cluster (shared-nothing)systemsas they “scale
out” to thousandsof nodesor more[Bar99].

Run-timevariationsin selectivity havenotbeenwidely dis-
cussedbefore,but occurquitenaturally. They commonlyarise
dueto correlationsbetweenpredicatesandthe orderof tuple
delivery. For example,consideran employeetableclustered
by ascendingage,anda selectionsalary > 100000; age
andsalaryareoftenstronglycorrelated.Initially theselection
will filter out most tuplesdelivered,but that selectivity rate
will changeasever-olderemployeesarescanned.Selectivity
overtimecanalsodependonperformancefluctuations:e.g.,in
aparallelDBMS clusteredrelationsareoftenhorizontallypar-
titionedacrossdisks,andtherateof productionfrom various
partitionsmay changeover time dependingon performance
characteristicsandutilization of the differentdisks. Finally,
Online Aggregationsystemsexplicitly allow usersto control
the order in which tuplesaredeliveredbasedon dataprefer-
ences[RRH99], resultingin similareffects.
�!)1 ���2�435� �6*0�����5��	�.7�8���9�/(;:<��� � � �
Telegraphis intendedto efficiently andflexibly provide both
distributedqueryprocessingacrosssitesin thewidearea,and
parallelqueryprocessingin a largeshared-nothingcluster. In

this paperwe narrow our focus somewhat to concentrateon
the initial, alreadydifficult problemof run-timeoperatorre-
orderingin a single-sitequeryexecutor;that is, changingthe
effective orderor “shape”of a pipelinedqueryplantreein the
faceof changesin performance.

In our discussionwe will assumethat someinitial query
plan treewill be constructedduring parsingby a naive pre-
optimizer. This optimizerneednot exercisemuchjudgement
sincewe will be reorderingtheplan treeon thefly. However
by constructingaqueryplanit mustchoosea spanningtreeof
thequerygraph(i.e. a setof table-pairsto join) [KBZ86], and
algorithmsfor eachof thejoins. Wewill returnto thechoiceof
join algorithmsin Section2, anddeferto Section6 thediscus-
sionof changingthespanningtreeandjoin algorithmsduring
processing.

Westudyastandardsingle-nodeobject-relationalquerypro-
cessingsystem,with theaddedcapabilityof openingscansand
indexesfrom externaldatasets.This is becomingaverycom-
mon basearchitecture,available in many of the commercial
object-relationalsystems(e.g., IBM DB2 UDB [RPK� 99],
Informix Dynamic Server UDO [SBH98]) and in federated
databasesystems(e.g., Cohera[HSC99]). We will refer to
thesenon-residenttablesasexternal tables. We make no as-
sumptionslimiting thescaleof externalsources,whichmaybe
arbitrarily large. Externaltablespresentmany of thedynamic
challengesdescribedabove: they canresideover a wide-area
network, faceburstyutilization,andoffer very minimal infor-
mationoncostsandstatisticalproperties.
�!)=$>@? *<� ? � *0A
Beforeintroducingeddies,in Section2 we discussthe prop-
ertiesof queryprocessingalgorithmsthatallow (or disallow)
themto befrequentlyreordered.We thenpresenttheeddyar-
chitecture,anddescribehow it allows for extremeflexibility
in operatorordering(Section3). Section4 discussespolicies
for controllingtupleflow in aneddy. A varietyof experiments
in Section4 illustrate the robustnessof eddiesin both static
anddynamicenvironments,andraisesomequestionsfor fu-
turework. We survey relatedwork in Section5, andin Sec-
tion 6 lay outa researchprogramto carrythis work forward.
1 # *0�����5*<��	����). � �CBD��EGFH. 	 � �
A basicchallengeof run-timereoptimizationis to reorderpipe-
lined queryprocessingoperatorswhile they arein flight. To
changea queryplanon thefly, a greatdealof statein thevar-
iousoperatorshasto beconsidered,andarbitrarychangescan
requiresignificantprocessingandcodecomplexity to guaran-
teecorrectresults. For example,the statemaintainedby an
operatorlikehybridhashjoin [DKO� 84] cangrow aslargeas
the sizeof an input relation,and requiremodificationor re-
computationif the plan is reorderedwhile the stateis being
constructed.

By constrainingthe scenariosin which we reorderopera-
tors,we cankeepthis work to a minimum. Beforedescribing
eddies,we study the statemanagementof variousjoin algo-
rithms; this discussionmotivatesthe eddydesign,andforms
the basisof our approachfor reoptimizingcheaplyandcon-
tinuously. As aphilosophy, wefavoradaptivityoverbest-case
performance. In a highly variableenvironment,thebest-case
scenariorarely exists for a significantlengthof time. So we

262

will sacrificemarginal improvementsin idealizedquerypro-
cessingalgorithmswhenthey preventfrequent,efficient reop-
timization.
1I!"KJ B � �035��� � � L�	0��� � �NM 	0�'�2� *����
Binary operatorslike joins often capturesignificantstate. A
particularform of stateusedin suchoperatorsrelatesto the
interleaving of requestsfor tuplesfrom differentinputs.

As an example,considerthe caseof a merge join on two
sorted,duplicate-freeinputs. During processing,thenext tu-
ple is always consumedfrom the relation whoselast tuple
hadthelower value.This significantlyconstrainstheorderin
which tuplescanbe consumed:asan extremeexample,con-
siderthecaseof a slowly-deliveredexternalrelationslowlow
with many low valuesin its join column,andahigh-bandwidth
but largelocal relationfasthi with only high valuesin its join
column– theprocessingof fasthi is postponedfor a long time
while consumingmany tuplesfrom slowlow. Usingterminol-
ogyfrom parallelprogramming,wedescribethisphenomenon
as a synchronizationbarrier: one table-scanwaits until the
othertable-scanproducesa valuelargerthanany seenbefore.

In general,barrierslimit concurrency – andhenceperfor-
mance– whentwo taskstakedifferentamountsof timeto com-
plete(i.e., to “arrive” at thebarrier). Recallthatconcurrency
arisesevenin single-sitequeryengines,which cansimultane-
ouslycarryout network I/O, disk I/O, andcomputation.Thus
it is desirableto minimize the overheadof synchronization
barriersin a dynamic(or even staticbut heterogeneous)per-
formanceenvironment.Two issuesaffect theoverheadof bar-
riers in a plan: thefrequency of barriers,andthegapbetween
arrival timesof thetwo inputsat thebarrier. Wewill seein up-
comingdiscussionthatbarrierscanoftenbeavoidedor tuned
by usingappropriatejoin algorithms.
1I!)1 O �/(+* � �6�G��E J B0(;(+*4����B
Note that the synchronizationbarrier in merge join is stated
in an order-independentmanner: it doesnot distinguishbe-
tweenthe inputs basedon any propertyother than the data
they deliver. Thusmergejoin is oftendescribedasa symmet-
ric operator, sinceits two inputsaretreateduniformly1. This is
not thecasefor many otherjoin algorithms.Considerthetra-
ditional nested-loopsjoin, for example. The “outer” relation
in a nested-loopsjoin is synchronizedwith the “inner” rela-
tion, but not vice versa:after eachtuple (or block of tuples)
is consumedfrom theouterrelation,abarrieris setuntil a full
scanof theinner is completed.For asymmetricoperatorslike
nested-loopsjoin, performancebenefitscanoftenbeobtained
by reorderingtheinputs.

Whena join algorithmreachesa barrier, it hasdeclaredthe
endof a schedulingdependency betweenits two input rela-
tions. In suchcases,theorderof the inputsto thejoin canof-
tenbechangedwithout modifying any statein thejoin; when
this is true, we refer to the barrierasa momentof symmetry.
Let usreturnto theexampleof a nested-loopsjoin, with outer
relation � andinnerrelation � . At abarrier, thejoin hascom-
pleteda full inner loop, having joined eachtuple in a subset
of � with every tuplein � . Reorderingtheinputsat this point
canbe donewithout affecting the join algorithm,as long asP

If thereare duplicatesin a merge join, the duplicatesare handledby an
asymmetricbut usuallysmallnestedloop. For purposesof exposition,we can
ignorethis detailhere.

Figure2: Tuplesgeneratedby anested-loopsjoin, reorderedat
two momentsof symmetry. Eachaxisrepresentsthetuplesof
thecorrespondingrelation,in theorderthey aredeliveredby
anaccessmethod.Thedotsrepresenttuplesgeneratedby the
join, someof which maybeeliminatedby the join predicate.
Thenumberscorrespondto thebarriersreached,in order. Q�R
and Q�S arethecursorpositionsmaintainedby thecorrespond-
ing inputsat thetimeof thereorderings.

the iteratorproducing � notesits currentcursorposition QTR .
In thatcase,thenew “outer” loop on � begins rescanningby
fetchingthefirst tupleof � , and � is scannedfrom QTR to the
end. This canbe repeatedindefinitely, joining � tupleswith
all tuplesin � from position QTR to the end. Alternatively, at
theendof someloop over � (i.e. at a momentof symmetry),
theorderof inputscanbeswappedagainby rememberingthe
currentpositionof � , andrepeatedlyjoining thenext tuple in� (startingat Q R) with tuplesfrom � betweenQ S andtheend.
Figure2 depictsthis scenario,with two changesof ordering.
Someoperatorslikethepipelinedhashjoin of [WA91] haveno
barrierswhatsoever. Theseoperatorsarein constantsymme-
try, sincetheprocessingof thetwo inputsis totally decoupled.

Momentsof symmetryallow reorderingof the inputsto a
singlebinary operator. But we cangeneralizethis, by noting
thatsincejoins commute,a treeof VUXW binary joins canbe
viewed asa single -ary join. Onecouldeasilyimplementa
doubly-nested-loopsjoin operatorover relations � , � and � ,
andit would have momentsof completesymmetryat theend
of eachloop of � . At thatpoint, all threeinputscouldbe re-
ordered(sayto � then � then �) with astraightforwardexten-
sion to the discussionabove: a cursorwould be recordedfor
eachinput, andeachloop would go from therecordedcursor
positionto theendof theinput.

The sameeffect can be obtainedin a binary implementa-
tion with two operators,by swappingthe positionsof binary
operators:effectively the plan tree transformationwould go
in steps,from Y
�[Z]\/^_�a`bZ]\�c_� to Y
�dZ]\<c_�e`;Z]\/^f� and
thento Yg�hZ]\�cV�i`�Z]\5^j� . This approachtreatsan operator
andits right-handinput asa unit (e.g.,the unit k Z]\ c �ml), and
swapsunits; the ideahasbeenusedpreviously in staticquery
optimizationschemes[IK84, KBZ86, Hel98]. Viewing thesit-
uation in this manner, we can naturally considerreordering
multiple joins andtheir inputs,even if the join algorithmsare
different.In our query Y
�XZ]\ ^ �n`aZ]\ c � , we need k Z]\ ^ �ol andk Z]\�ci�ml to bemutuallycommutative, but do not requirethem
to be thesamejoin algorithm. We discussthecommutativity
of join algorithmsfurtherin Section2.2.2.

Note that the combinationof commutativity andmoments
of symmetryallows for very aggressive reorderingof a plan

263

tree. A single -ary operatorrepresentinga reorderableplan
treeis thereforeanattractive abstraction,sinceit encapsulates
any orderingthat may be subjectto change.We will exploit
this abstractiondirectly, by interposingan -ary tuple router
(an“eddy”) betweentheinput tablesandthejoin operators.1I!)1I!"qp �5� � �G	 � � ��� ��*0rs*0�

Nested-loopsjoinscantake advantageof indexeson thein-
nerrelation,resultingin a fairly efficient pipeliningjoin algo-
rithm. An index nested-loopsjoin (henceforthan“index join”)
is inherentlyasymmetric,sinceone input relation hasbeen
pre-indexed. Evenwhenindexesexist on both inputs,chang-
ing thechoiceof innerandouterrelation“on thefly” is prob-
lematic2. Hencefor the purposesof reordering,it is simpler
to think of an index join asa kind of unaryselectionoperator
on theunindexedinput (asin thejoin of � and t in Figure1).
Theonly distinctionbetweenan index join anda selectionis
that – with respectto the unindexed relation– the selectivity
of the join nodemaybegreaterthan1. Althoughonecannot
swaptheinputsto asingleindex join, onecanreorderanindex
join andits indexedrelationasaunit amongotheroperatorsin
a plan tree. Note that the logic for indexescanbe appliedto
externaltablesthat requirebindingsto bepassed;suchtables
may be gateways to, e.g.,web pageswith forms, GIS index
systems,LDAP serversandsoon [HKWY97, FMLS99].1I!)1I!)1 Fu3�B4��� ��	�./FH���/:/*��]��� *0��v7Fu�
*<�5� ��	0�6*0��v/wa�/(;(;�<�6	0��� ? � �CB

Clearly, a pre-optimizer’s choiceof anindex join algorithm
constrainsthepossiblejoin orderings.In the -ary join view,
anorderingconstraintmustbeimposedsothat theunindexed
join input is orderedbefore(but not necessarilydirectly be-
fore) the indexed input. This constraintarisesbecauseof a
physicalpropertyof an input relation: indexescanbeprobed
but not scanned,and hencecannotappearbefore their cor-
respondingprobing tables. Similar but more complex con-
straintscanarisein preservingthe orderedinputsto a merge
join (i.e.,preserving“interestingorders”).

Theapplicabilityof certainjoin algorithmsraisesadditional
constraints.Many join algorithmswork only for equijoins,and
will not work on otherjoins like Cartesianproducts.Suchal-
gorithmsconstrainreorderingson theplan treeaswell, since
they always requireall relationsmentionedin their equijoin
predicatesto be handledbeforethem. In this paper, we con-
siderorderingconstraintsto bean inviolableaspectof a plan
tree, andwe ensurethat they always hold. In Section6 we
sketchinitial ideason relaxingthis requirement,by consider-
ing multiple join algorithmsandquerygraphspanningtrees.1I!)1I!)=xp �5� � ��. y������ ��35(+�G	 � � # *4���2��*���� � y

In orderfor aneddyto bemosteffective,wefavor join algo-
rithmswith frequentmomentsof symmetry, adaptive or non-
existentbarriers,andminimal orderingconstraints:theseal-
gorithmsoffer the mostopportunitiesfor reoptimization. In
[AH99] we summarizethe salientpropertiesof a variety of
join algorithms.Ourdesireto avoid blockingrulesout theuse
of hybrid hashjoin, andour desireto minimizeorderingcon-
straintsandbarriersexcludesmergejoins. Nestedloopsjoinsz

In unclusteredindexes,theindex orderingis not thesameasthescanorder-
ing. Thusaftera reorderingof theinputsit is difficult to ensurethat– usingthe
terminologyof Section2.2– lookupsontheindex of thenew “inner” relation {
produceonly tuplesbetween|~} andtheendof { .

have infrequentmomentsof symmetryandimbalancedbarri-
ers,makingthemundesirableaswell.

The other algorithmswe considerare basedon frequent-
ly-symmetricversionsof traditionaliteration,hashingandin-
dexing schemes,i.e., theRipple Joins[HH99]. Note that the
original pipelinedhashjoin of [WA91] is a constrainedver-
sionof the hashripple join. Theexternalhashingextensions
of [UF99, IFF � 99] are directly applicableto the hashrip-
ple join, and [HH99] treatsindex joins as a specialcaseas
well. For non-equijoins,theblock ripple join algorithmis ef-
fective, having frequentmomentsof symmetry, particularly
at the beginning of processing[HH99]. Figure 3 illustrates
block, index and hashripple joins; the readeris referredto
[HH99, IFF� 99, UF99] for detaileddiscussionsof theseal-
gorithmsand their variants. Thesealgorithmsare adaptive
without sacrificingmuchperformance:[UF99] and[IFF � 99]
demonstratescalableversionsof hashripple join thatperform
competitively with hybrid hashjoin in thestaticcase;[HH99]
shows that while block ripple join can be lessefficient than
nested-loopsjoin, it arrives at momentsof symmetrymuch
more frequently than nested-loopsjoins, especiallyin early
stagesof processing.In [AH99] we discussthememoryover-
headsof theseadaptive algorithms,which canbe larger than
standardjoin algorithms.

Ripple joins have momentsof symmetryat each“corner”
of a rectangularripple in Figure3, i.e., whenever a prefix of
the input stream� hasbeenjoinedwith all tuplesin a prefix
of inputstream� andviceversa.For hashripple joinsandin-
dex joins, thisscenariooccursbetweeneachconsecutive tuple
consumedfrom a scannedinput. Thusripple joins offer very
frequentmomentsof symmetry.

Ripple joins areattractive with respectto barriersaswell.
Ripple joins weredesignedto allow changingratesfor each
input; thiswasoriginally usedto proactivelyexpendmorepro-
cessingon theinput relationwith morestatisticalinfluenceon
intermediateresults.However, thesamemechanismallows re-
activeadaptivity in thewide-areascenario:abarrieris reached
at eachcorner, andthe next cornercanadaptively reflectthe
relative ratesof the two inputs. For theblock ripple join, the
next corneris chosenuponreachingthepreviouscorner;this
canbe doneadaptively to reflectthe relative ratesof the two
inputsover time.

The ripple join family offers attractive adaptivity features
at a modestoverheadin performanceandmemoryfootprint.
Hencethey fit well with ourphilosophyof sacrificingmarginal
speedfor adaptability, and we focus on thesealgorithmsin
Telegraph.
= # � ? *����e	 � �N�I�5�/� *4�
The above discussionallows us to considereasilyreordering
queryplansat momentsof symmetry. In this sectionwe pro-
ceedto describethe eddy mechanismfor implementingre-
orderingin a naturalmannerduring query processing.The
techniqueswedescribecanbeusedwith any operators,but al-
gorithmswith frequentmomentsof symmetryallow for more
frequentreoptimization.Beforediscussingeddies,we first in-
troduceour basicqueryprocessingenvironment.
=I!"$# � ? *��
We implementededdiesin thecontext of River [AAT � 99], a
shared-nothingparallelqueryprocessingframework that dy-

264

Figure3: Tuplesgeneratedby block, index, andhashripple join. In block ripple,all tuplesaregeneratedby thejoin, but somemay
be eliminatedby the join predicate.Thearrows for index andhashripple join representthe logical portion of the cross-product
spacecheckedsofar; thesejoins only expendwork on tuplessatisfyingthejoin predicate(blackdots).In thehashripplediagram,
onerelationarrives3 � fasterthantheother.

namicallyadaptsto fluctuationsin performanceandworkload.
River hasbeenusedto robustly producenear-recordperfor-
manceon I/O-intensive benchmarkslike parallelsortingand
hashjoins, despiteheterogeneitiesanddynamicvariability in
hardware and workloadsacrossmachinesin a cluster. For
moredetailsonRiver’sadaptivity andparallelismfeatures,the
interestedreaderis referredto theoriginal paperon the topic
[AAT � 99]. In Telegraph,we intendto leveragetheadaptabil-
ity of River to allow for dynamicshifting of load(bothquery
processinganddatadelivery) in a shared-nothingparallelen-
vironment. But in this paperwe restrict ourselves to basic
(single-site)featuresof eddies;discussionsof eddiesin par-
allel riversaredeferredto Section6.

Since we do not discussparallelismhere, a very simple
overview of theRiver framework suffices.River is a dataflow
queryengine,analogousin many waysto Gamma[DGS� 90],
Volcano [Gra90] and commercialparallel databaseengines,
in which “iterator”-style modules(query operators)commu-
nicatevia a fixed dataflow graph(a queryplan). Eachmod-
ule runsasan independentthread,andtheedgesin thegraph
correspondto finite messagequeues.When a producerand
consumerrun at differing rates,the fasterthreadmay block
on the queuewaiting for the slower threadto catchup. As
in [UFA98], River is multi-threadedandcanexploit barrier-
free algorithmsby readingfrom various inputs at indepen-
dent rates. The River implementationwe usedderives from
the work on Now-Sort [AAC� 97], andfeaturesefficient I/O
mechanismsincludingpre-fetchingscans,avoidanceof oper-
ating systembuffering, andhigh-performanceuser-level net-
working.=I!"�!" Fu�
* %C> :���� (D� L�	0��� � �

Althoughwe will useeddiesto reordertablesamongjoins,
a heuristicpre-optimizermustchoosehow to initially pair off
relationsinto joins, with theconstraintthateachrelationpar-
ticipatesin onlyonejoin. Thiscorrespondsto choosingaspan-
ning treeof a querygraph,in which nodesrepresentrelations
and edgesrepresentbinary joins [KBZ86]. One reasonable
heuristicfor pickingaspanningtreeformsachainof cartesian
productsacrossany tablesknown to bevery small (to handle
“starschemas”whenbase-tablecardinalitystatisticsareavail-
able);it thenpicksarbitraryequijoinedges(ontheassumption

that they arerelatively low selectivity), followed by asmany
arbitrarynon-equijoinedgesasrequiredto completea span-
ning tree.

Givena spanningtreeof thequerygraph,thepre-optimizer
needsto choosejoin algorithmsfor eachedge. Along each
equijoinedgeit canuseeitheranindex join if anindex is avail-
able,or ahashripplejoin. Along eachnon-equijoinedgeit can
usea block ripple join.

Thesearesimpleheuristicsthatwe useto allow usto focus
onour initial eddydesign;in Section6 wepresentinitial ideas
onmakingspanningtreeandalgorithmdecisionsadaptively.
=I!)1 � � �I�5�5Bb� � ��3�* # � ? *<�
An eddy is implementedvia a modulein a river containing
an arbitrary numberof input relations,a numberof partici-
patingunaryandbinarymodules,anda singleoutputrelation
(Figure1)3. An eddyencapsulatesthe schedulingof its par-
ticipatingoperators;tuplesenteringtheeddycanflow through
its operatorsin a varietyof orders.

In essence,an eddy explicitly mergesmultiple unary and
binary operatorsinto a single -ary operatorwithin a query
plan,basedon the intuition from Section2.2 thatsymmetries
canbeeasilycapturedin an -ary operator. An eddymodule
maintainsafixed-sizedbuffer of tuplesthatareto beprocessed
by oneor moreoperators.Eachoperatorparticipatingin the
eddyhasoneor two inputsthatarefed tuplesby theeddy, and
anoutputstreamthatreturnstuplesto theeddy. Eddiesareso
namedbecauseof thiscirculardataflow within a river.

A tupleenteringaneddyis associatedwith a tupledescrip-
tor containinga vector of Readybits and Done bits, which
indicaterespectively thoseoperatorsthat areelgibile to pro-
cessthetuple,andthosethathavealreadyprocessedthetuple.
Theeddymoduleshipsa tupleonly to operatorsfor which the
correspondingReadybit turnedon. After processingthetuple,
theoperatorreturnsit to theeddy, andthecorrespondingDone
bit is turnedon. If all the Donebits areon, the tuple is sent
to the eddy’s output; otherwiseit is sentto anothereligible
operatorfor continuedprocessing.�

Nothing preventsthe useof � -ary operatorswith �f��� in an eddy, but
sinceimplementationsof theseareatypicalin databasequeryprocessingwe do
notdiscussthemhere.

265

Whenaneddyreceivesa tuplefrom oneof its inputs,it ze-
roesthe Donebits, andsetsthe Readybits appropriately. In
the simple case,the eddy setsall Readybits on, signifying
that any orderingof the operatorsis acceptable.Whenthere
are orderingconstraintson the operators,the eddy turns on
only theReadybitscorrespondingto operatorsthatcanbeex-
ecutedinitially. Whenanoperatorreturnsa tupleto theeddy,
theeddyturnsontheReadybit of any operatoreligible to pro-
cessthe tuple. Binary operatorsgenerateoutput tuplesthat
correspondto combinationsof input tuples;in thesecases,the
DonebitsandReadybits of thetwo input tuplesareORed.In
this manneran eddypreservesthe orderingconstraintswhile
maximizingopportunitiesfor tuplesto follow differentpossi-
bleorderingsof theoperators.

Two propertiesof eddiesmeritcomment.First,notethated-
diesrepresentthefull classof bushytreescorrespondingto the
setof join nodes– it is possible,for instance,thattwo pairsof
tuplesarecombinedindependentlyby two differentjoin mod-
ules,andthenroutedto a third join to performthe4-way con-
catenationof thetwo binaryrecords.Second,notethateddies
do not constrainreorderingto momentsof symmetryacross
theeddyasa whole. A given operatormustcarefully refrain
from fetchingtuplesfrom certaininputsuntil its next moment
of symmetry– e.g.,a nested-loopsjoin would not fetcha new
tuple from the currentouter relationuntil it finishedrescan-
ningtheinner. But thereis norequirementthatall operatorsin
theeddybeat a momentof symmetrywhenthis occurs;just
theoperatorthatis fetchinganew tuple.Thuseddiesarequite
flexible both in the shapesof treesthey cangenerate,andin
thescenariosin which they canlogically reorderoperators.
� # �/����� � y & �/:5. *0�G� � �I�5�5� *0�
An eddy moduledirects the flow of tuples from the inputs
throughthevariousoperatorsto theoutput,providing theflex-
ibility to allow eachtuple to be routedindividually through
theoperators.Theroutingpolicy usedin theeddydetermines
the efficiency of the system. In this sectionwe study some
promisinginitial policies;webelieve thatthis is arich areafor
future work. We outline someof the remainingquestionsin
Section6.

An eddy’s tuple buffer is implementedasa priority queue
with a flexible prioritization scheme.An operatoris always
giventhehighest-prioritytuplein thebuffer thathasthecorre-
spondingReadybit set.For simplicity, westartby considering
a very simplepriority scheme:tuplesentertheeddywith low
priority, andwhenthey arereturnedto theeddyfrom anoper-
ator they aregivenhigh priority. This simplepriority scheme
ensuresthat tuplesflow completelythroughthe eddybefore
new tuplesare consumedfrom the inputs, ensuringthat the
eddydoesnotbecome“clogged”with new tuples.
� !" ��r0:/*����)(+* � �6	�. J *s���/:
In orderto illustratehow eddieswork, we presentsomeinitial
experimentsin this section;we pausebriefly hereto describe
our experimentalsetup. All our experimentswere run on a
single-processorSunUltra-1 workstationrunningSolaris2.6,
with 160MB of RAM. WeusedtheEuphratesimplementation
of River[AAT � 99]. Wesyntheticallygeneratedrelationsasin
Table1, with 100bytetuplesin eachrelation.

To allow usto experimentwith costsandselectivitiesof se-
lections,our selectionmodulesare(artificially) implemented

Table Cardinality valuesin column �
R 10,000 500- 5500
S 80,000 0 - 5000
T 10,000 N/A
U 50,000 N/A

Table 1: Cardinalitiesof tables; valuesare uniformly dis-
tributed.

0� 2� 4
�

6� 8� 10

cost of s1.�
50

100

150

200

250

co
m

pl
et

io
n

tim
e

(s
ec

s)

s1 before s2
s2 before s1
Naive
�
Lottery

Figure4: Performanceof two 50% selections,��� hascost5,�0W variesacrossruns.

as spin loops correspondingto their relative costs,followed
by arandomizedselectiondecisionwith theappropriateselec-
tivity. We describetherelative costsof selectionsin termsof
abstract“delay units”; for studyingoptimization,theabsolute
numberof cyclesthroughaspinloopareirrelevant.Weimple-
mentedthesimplestversionof hashripplejoin, identicalto the
originalpipelininghashjoin [WA91]; ourimplementationhere
doesnot exert any statistically-motivatedcontrolover disk re-
sourceconsumption(asin [HH99]). Wesimulatedindex joins
by doing randomI/Os within a file, returningon averagethe
numberof matchescorrespondingto apre-programmedselec-
tivity. Thefilesystemcachewasallowedto absorbsomeof the
index I/Osafterwarmingup. In orderto fairly compareeddies
to staticplans,we simulatestaticplansvia eddiesthatenforce
a static orderingon tuples(settingReadybits in the correct
order).
� !)1 � 	�� ? *-�I�5�5B��i,/. ��� �_�8B � 	�(D� ���e	 � � > :/*��
	0�6����wu�����6�
To illustratehow an eddyworks, we considera very simple
single-tablequerywith two expensiveselectionpredicates,un-
der the traditionalassumptionthat no performanceor selec-
tivity propertieschangeduring execution. Our SQL queryis
simply thefollowing:

SELECT *
FROM U

WHERE �0W<Y�` AND ����Y�` ;
In ourfirst experiment,wewishto seehow well a“naive” eddy
canaccountfor differencesin costsamongoperators.We run
the query multiple times, always settingthe cost of ��� to 5
delayunits,andtheselectivities of bothselectionsto 50%. In
eachrun we usea different cost for �0W , varying it between
1 and 9 delay units acrossruns. We comparea naive eddy
of the two selectionsagainstbothpossiblestaticorderingsof

266

0.0� 0.2� 0.4� 0.6� 0.8� 1.0�
selectivity of s1�

30

40

50

60

co
m

pl
et

io
n

tim
e

(s
ec

s)

s1 before s2
s2 before s1
Naive
�
Lottery
�

Figure5: Performanceof two selectionsof cost5, ��� has50%
selectivity, �0W variesacrossruns.

the two selections(andagainsta “lottery”-basededdy, about
which we will saymorein Section4.3.) Onemight imagine
thattheflexible routingin thenaive eddywould deliver tuples
to the two selectionsequally: half the tupleswould flow to�0W before �s� , andhalf to ��� before �0W , resultingin middling
performanceover all. Figure4 shows thatthis is not thecase:
thenaiveeddynearlymatchesthebetterof thetwo orderingsin
all cases,withoutany explicit informationabouttheoperators’
relative costs.

The naive eddy’s effectivenessin this scenariois due to
simplefluid dynamics,arisingfrom thedifferentratesof con-
sumptionby �0W and ��� . Recallthatedgesin a River dataflow
graphcorrespondto fixed-sizequeues.This limitation hasthe
sameeffect asback-pressure in a fluid flow: productionalong
the input to any edgeis limited by therateof consumptionat
theoutput.Thelower-costselection(e.g., �<W at theleft of Fig-
ure 4) canconsumetuplesmorequickly, sinceit spendsless
time per tuple; asa result the lower-costoperatorexerts less
back-pressureon the input table. At thesametime, thehigh-
costoperatorproducestuplesrelatively slowly, sothelow-cost
operatorwill rarely be requiredto consumea high-priority,
previously-seentuple.Thusmosttuplesareroutedto thelow-
costoperatorfirst, eventhoughthecostsarenot explicitly ex-
posedor trackedin any way.� !)= ,<	<�6�+���/��B5�G�0*0	0� � � � y J *�. *0����� ? � ��� *0�
Thenaive eddyworkswell for handlingoperatorswith differ-
entcostsbut equalselectivity. But we have notyet considered
differencesin selectivity. In our secondexperimentwe keep
the costsof the operatorsconstantandequal(5 units), keep
the selectivity of ��� fixed at 50%, andvary the selectivity of�0W acrossruns. The resultsin Figure5 arelessencouraging,
showing thenaive eddyperformingaswe originally expected,
abouthalf-way betweenthebestandworstplans.Clearlyour
naive priority schemeandthe resultingback-pressurearein-
sufficient to capturedifferencesin selectivity.

To resolve thisdilemma,we would like ourpriority scheme
to favor operatorsbasedon both their consumptionandpro-
ductionrate.Notethattheconsumption(input)rateof anoper-
atoris determinedby costalone,while theproduction(output)
rateis determinedby a productof costandselectivity. Since
anoperator’s back-pressureon its input dependslargelyon its
consumptionrate, it is not surprisingthat our naive scheme

0.0� 0.2� 0.4� 0.6� 0.8� 1.0�
Selectivity of s1�

0

20

40

60

80

100

cu
m

ul
at

iv
e

%
 o

f t
up

le
s r

ou
te

d
to

 s1
 fi

rs
t

� Naive
�
Lottery
�

Figure 6: Tuple flow with lottery schemefor the variable-
selectivity experiment(Figure5).

doesnotcapturedifferingselectivities.
To track both consumptionand productionover time, we

enhanceour priority schemewith a simplelearningalgorithm
implementedvia LotteryScheduling[WW94]. Eachtime the
eddygivesa tuple to an operator, it creditsthe operatorone
“ticket”. Eachtime the operatorreturnsa tuple to the eddy,
oneticket is debitedfrom theeddy’s runningcountfor thatop-
erator. Whenaneddyis readyto senda tupleto beprocessed,
it “holds a lottery” amongtheoperatorseligible for receiving
the tuple. (The interestedreaderis referredto [WW94] for
a simpleandefficient implementationof lottery scheduling.)
An operator’s chanceof “winning the lottery” andreceiving
thetuplecorrespondsto thecountof ticketsfor thatoperator,
which in turn tracksthe relative efficiency of the operatorat
drainingtuplesfrom thesystem.By routing tuplesusingthis
lottery scheme,the eddytracks(“learns”) an orderingof the
operatorsthatgivesgoodoverall efficiency.

The “lottery” curve in Figures4 and5 show the more in-
telligent lottery-basedrouting schemecomparedto the naive
back-pressureschemeandthetwo staticorderings.Thelottery
schemehandlesboth scenarioseffectively, slightly improv-
ing theeddyin thechanging-costexperiment,andperforming
muchbetterthannaive in thechanging-selectivity experiment.

To explain this a bit further, in Figure6 we displaytheper-
cent of tuplesthat followed the order �0W4����� (as opposedto�������0W) in the two eddyschemes;this roughly representsthe
averageratio of lottery tickets possessedby �0W and ��� over
time. Note that the naive back-pressurepolicy is barelysen-
sitive to changesin selectivity, and in fact drifts slightly in
the wrong directionasthe selectivity of �0W is increased.By
contrast,the lottery-basedschemeadaptsquite nicely as the
selectivity is varied.

In both graphsonecanseethat whenthe costsandselec-
tivities are closeto equal(�0W �¡���¢�¤£s¥<¦), the percent-
ageof tuples following the cheaperorder is close to 50%.
Thisobservationis intuitive,but quitesignificant.Thelottery-
basededdy approachesthe cost of an optimal ordering,but
doesnotconcernitself aboutstrictly observingtheoptimalor-
dering. Contrastthis to earlierwork on runtimereoptimiza-
tion [KD98, UFA98, IFF � 99], wherea traditionalqueryop-
timizer runsduring processingto determinethe optimal plan
remnant. By focusingon overall cost ratherthanon finding

267

theoptimalplan,thelottery schemeprobabilisticallyprovides
nearly optimal performancewith much lesseffort, allowing
re-optimizationto bedonewith anextremelylightweighttech-
niquethatcanbeexecutedmultiple timesfor every tuple.

A relatedobservationis thatthelotteryalgorithmgetscloser
to perfectrouting (§¨�©¥ %) on the right of Figure6 than it
does(§D�ªWT¥0¥ %) on theleft. Yet in thecorrespondingperfor-
mancegraph(Figure5), the differencesbetweenthe lottery-
basededdyandtheoptimalstaticorderingdonotchangemuch
in the two settings.This phenomenonis explainedby exam-
ining the“jeopardy” of makingorderingerrorsin eithercase.
Considertheleft sideof thegraph,wheretheselectivity of �0W
is 10%, ��� is 50%,andthecostsof eachare Q��«£ delayunits.
Let ¬ betherateat which tuplesareroutederroneously(to ���
before �0W in this case). Thenthe expectedcostof the query
is YCWiU�¬4`8�W4®¯WTQ@°±¬²�W4® £�Q-�d® ³0¬�Qm°´W0®¯W9Q . By contrast,in
thesecondcasewheretheselectivity of �0W is changedto 90%,
theexpectedcostis YCWeUµ¬s`n�W4® £�Q�°�¬e�W4® ¶sQ��h® ³0¬�Q8°±W0® £�Q .
Sincethejeopardyishigherat90%selectivity thanat10%,the
lottery moreaggressively favors the optimalorderingat 90%
selectivity thanat 10%.
� ! � p �5� � �
We have discussedselectionsup to this point for easeof ex-
position,but of coursejoins arethemorecommonexpensive
operatorin query processing. In this sectionwe study how
eddiesinteractwith thepipeliningripple join algorithms.For
the moment,we continueto studya staticperformanceenvi-
ronment,validating the ability of eddiesto do well even in
scenarioswherestatictechniquesaremosteffective.

Webegin with a simple3-tablequery:
SELECT *

FROM �����H�C�
WHERE ��® �+�±�H® �

AND �H® ·m����® ·
In our experiment,we constructeda preoptimizedplanwith a
hashripple join between� and � , andan index join between� and � . Sinceour datais uniformly distributed,Table1 in-
dicatesthat the selectivity of the �i� join is W0® ¸V�¨W�¥5¹Iº ; its
selectivity with respectto � is 180%– i.e.,each� tupleenter-
ing the join finds 1.8 matching � tupleson average[Hel98].
Weartificially settheselectivity of theindex join w.r.t. � to beW�¥0¦ (overallselectivity Wo�»WT¥ ¹½¼). Figure7 showstherelative
performanceof our two eddyschemesandthe two staticjoin
orderings. The resultsechoour resultsfor selections,show-
ing the lottery-basededdy performingnearly optimally, and
thenaiveeddyperformingin betweenthebestandworststatic
plans.

As notedin Section2.2.1,index joinsareveryanalogousto
selections.Hashjoins have morecomplicatedandsymmetric
behavior, andhencemerit additionalstudy. Figure8 presents
performanceof two hash-ripple-onlyversionsof this query.
Our in-memorypipelinedhashjoins all have the samecost.
Wechangethedatain ����� and � sothattheselectivity of the�o� join w.r.t. � is 20%in oneversion,and180%in theother.
In all runs,theselectivity of the �i� join predicatew.r.t. � is
fixed at 100%. As the figure shows, the lottery-basededdy
continuesto performnearlyoptimally.

Figure9 shows thepercentof tuplesin theeddythatfollow
oneorderor theotherin all four join experiments.While the
eddy is not strict aboutfollowing the optimal ordering,it is

0

50

100

150

200

ex
ec

ut
io

n
ti

m
e

of
 p

la
n

(s
ec

s)

¾ Hash First
¿
Lottery
À
Naive
Á
Index First
Â

Figure7: Performanceof two joins: aselective Index Joinand
aHashJoin

0

50

100

150

ex
ec

ut
io

n
ti

m
e

of
 p

la
n

(s
ec

s)

Ã
20%, ST before SR
Ä
20%, Eddy
Ä
20%, SR before ST
Ä
180%, ST before SR
180%, Eddy
180%, SR before ST

Figure 8: Performanceof hashjoins �ÅZ]\X� and �hZ]\�� .�¢Z]\»� hasselectivity 100%w.r.t. � , theselectivity of �_Z]\i�
w.r.t. � variesbetween20%and180%in thetwo runs.

quiteclosein thecaseof the experimentwherethe hashjoin
shouldprecedethe index join. In this case,the relative cost
of index join is so high that the jeopardyof choosingit first
drivesthehashjoin to nearlyalwayswin thelottery.
� !)Æ # *0�9:/� � �/� � yj�6�N�8B � 	�(D� �V,�. �5������	4��� � � �
Eddiesshould adaptively reactover time to the changesin
performanceanddatacharacteristicsdescribedin Section1.1.
Theroutingschemesdescribedup to this point have not con-
sideredhow to achieve this. In particular, our lottery scheme
weighsall experiencesequally: observationsfrom thedistant
pastaffect thelottery asmuchasrecentobservations.As a re-
sult, anoperatorthatearnsmany ticketsearly in a querymay
becomesowealthythat it will take a greatdealof time for it
to losegroundto thetopachieversin recenthistory.

To avoid this, we needto modify our point schemeto for-
get history to someextent. Onesimpleway to do this is to
usea windowscheme,in which time is partitionedinto win-
dows, and the eddy keepstrack of two countsfor eachop-
erator: a numberof banked tickets,anda numberof escrow
tickets. Banked ticketsareusedwhenrunninga lottery. Es-
crow tickets are usedto measureefficiency during the win-
dow. At the beginning of the window, the value of the es-

268

0

20

40

60

80

100

cu
m

ul
at

iv
e

%
 o

f t
up

le
s r

ou
te

d
to

 th
e

co
rr

ec
t j

oi
n

fir
st

Ç index beats hash
hash beats index
hash/hash 20%
hash/hash 180%

Figure9: Percentof tuplesroutedin theoptimalorderin all of
thejoin experiments.

0

1000

2000

3000

4000

5000

ex
ec

ut
io

n
tim

e
of

 p
la

n
(s

ec
s)

È I_sf first
Eddy
I_fs first

Figure10: Adaptingto changingjoin costs:performance.

crow accountreplacesthe valueof the banked account(i.e.,
banked = escrow), andtheescrow accountis reset(es-
crow = 0). This schemeensuresthat operators“re-prove
themselves” eachwindow.

We considera scenarioof a 3-tableequijoin query, where
two of the tablesare external and usedas “inner” relations
by index joins. Our third relation has30,000tuples. Since
we assumethat the index serversare remote,we implement
the “cost” in our index moduleasa time delay(i.e., while
(gettimeofday() É x) ;) ratherthanaspinloop; this
bettermodelsthebehavior of waitingonanexternaleventlike
a network response.We have two phasesin the experiment:
initially, oneindex (call it Ê�Ë�Ì) is fast(no time delay)andthe
other(Ê Ì~Ë) is slow (5 secondsper lookup). After 30 seconds
we begin the secondphase,in which the two indexes swap
speeds:the Ê�Ë�Ì index becomesslow, and Ê�Ì~Ë becomesfast.
Both indexesreturna singlematchingtuple1%of thetime.

Figure 10 shows the performanceof both possiblestatic
plans,comparedwith an eddyusinga lottery with a window
scheme.As we would hope,theeddyis muchfasterthanei-
ther staticplan. In the first static plan (Ê�Ì~Ë before Ê�Ë�Ì), the
initial index join in theplanis slow in thefirst phase,process-
ing only 6 tuplesanddiscardingall of them.In theremainder
of therun,theplanquickly discards99%of thetuples,passing
300 to the (now) expensive secondjoin. In the secondstatic

0Í 20 40 60 80 100Í
% of tuples seen.Î

0

20

40

60

80

100

cu
mu

lat
ive

 %
 of

 tu
ple

s r
ou

ted
 to

 In
de

x #
1 f

irs
t.

Figure11: Adaptingto changingjoin costs:tuplemovement.

plan (Ê�Ë�Ì before Ê�ÌCË), the initial join begins fast,processing
about29,000tuples,andpassingabout290of thoseto thesec-
ond(slower) join. After 30 seconds,thesecondjoin becomes
fastandhandlestheremainderof the290tuplesquickly, while
thefirst join slowly processestheremaining1,000tuplesat 5
secondsper tuple. Theeddyoutdoesbothstaticplans: in the
first phaseit behavesidenticallyto thesecondstaticplan,con-
suming29,000tuplesandqueueing290 for the eddyto pass
to Ê ÌCË . Justafterphase2 begins, theeddyadaptsits ordering
andpassestuplesto Ê�ÌCË – thenew fastjoin – first. As aresult,
the eddyspends30 secondsin phaseone,and in phasetwo
it haslessthen290 tuplesqueuedat Ê�Ì~Ë (now fast),andonly
1,000tuplesto process,only about10 of which arepassedtoÊ Ë�Ì (now slow).

A similar, morecontrolledexperimentillustratestheeddy’s
adaptabilitymore clearly. Again, we run a three-tablejoin,
with two externalindexesthatreturnamatch10%of thetime.
We read4,000tuplesfrom thescannedtable,andtogglecosts
between1 and100 costunits every 1000 tuples– i.e., three
timesduring the experiment. Figure11 shows that the eddy
adaptscorrectly, switching orderswhen the operatorcosts
switch. Sincethe cost differential is lessdramatichere,the
jeopardyis lowerandtheeddytakesabit longerto adapt.De-
spitethe learningtime, the trendsareclear– the eddysends
mostof thefirst 1000tuplesto index #1 first, which startsoff
cheap. It sendsmostof the second1000 tuplesto index #2
first, causingthe overall percentageof tuplesto reachabout
50%, as reflectedby the near-linear drift toward 50% in the
secondquarterof thegraph. This patternrepeatsin the third
and fourth quarters,with the eddy eventually displayingan
evenuseof thetwo orderingsover time – alwaysfavoring the
bestordering.

For brevity, we omit herea similar experimentin which
we fixed costsand modified selectivity over time. The re-
sultsweresimilar, exceptthatchangingonly theselectivity of
two operatorsresultsin lessdramaticbenefitsfor anadaptive
scheme.This can be seenanalytically, for two operatorsof
cost Q whoseselectivitesareswappedfrom low to hi in aman-
neranalogousto ourpreviousexperiment.To lower-boundthe
performanceof eitherstatic ordering,selectivities shouldbe
toggledto theirextremes(100%and0%) for equalamountsof
time – sothathalf the tuplesgo throughbothoperators.Ei-
therstaticplanthustakes 7Q4°bW�Ï0�s 7Q time,whereasanoptimal

269

0

50

100

150

200

ex
ec

ut
io

n
tim

e
of

 p
la

n
(s

ec
s)

Ð RS First
Ñ
Eddy
Ò
ST First
Ó

Figure12: Adaptingto aninitial delayon � : performance

0Ô 20 40 60 80 100Ô
% of S tuples seen.

0

20

40

60

80

100

cu
mu

lat
ive

 %
 of

 tu
ple

s r
ou

ted
 to

 ST
 fi

rst

Õ

Figure13: Adaptingto aninitial delayon � : tuplemovement.

dynamicplantakes 7Q time,aratioof only 3/2. With moreop-
erators,adaptivity to changesin selectivity canbecomemore
significant,however.� !)ÆI!" �8*�. 	4B�*0�Ö�8*�. � ? *<��B

Asafinalexperiment,westudythecasewhereaninputrela-
tion suffersfrom aninitial delay, asin [AFTU96,UFA98]. We
returnto the3-tablequeryshown in the left of Figure8, with
the �i� selectivity at100%,andthe �H� selectivity at20%.We
delaythedelivery of � by 10 seconds;the resultsareshown
in Figure12. Unfortunately, we seeherethatour eddy– even
with a lottery anda window-basedforgettingscheme– does
not adaptto initial delaysof � aswell asit could. Figure13
tells someof the story: in the early part of processing,the
eddyincorrectlyfavorsthe �i� join, eventhoughno � tuples
arestreamingin, andeven thoughthe �i� join shouldappear
secondin a normalexecution(Figure8). Theeddydoesthis
becauseit observesthatthe �i� join doesnotproduceany out-
put tupleswhengiven � tuples. So the eddyawardsmost �
tuplesto the �i� join initially, whichplacesthemin aninternal
hashtableto besubsequentlyjoinedwith � tupleswhenthey
arrive. The �o� join is left to fetch andhash � tuples. This
wastesresourcesthat couldhave beenspentjoining � tuples
with � tuplesduring the delay, and“primes” the �G� join to
producealargenumberof tuplesoncethe � sbegin appearing.

Notethattheeddydoesfar betterthanpessimally:when �

begins producingtuples(at 43.5on the x axis of Figure13),
the � valuesbottled up in the �i� join burst forth, and the
eddyquickly throttlesthe �i� join, allowing the �o� join to
processmost tuplesfirst. This scenarioindicatestwo prob-
lemswith our implementation.First, our ticket schemedoes
not capturethe growing selectivity inherentin a join with a
delayedinput. Second,storingtuplesinsidethehashtablesof
a singlejoin unnecessarilypreventsotherjoins from process-
ing them;it might beconceivableto hashinput tupleswithin
multiple joins, if careweretaken to prevent duplicateresults
from beinggenerated.A solutionto thesecondproblemmight
obviate theneedto solve thefirst; we intendto explore these
issuesfurtherin futurework.

For brevity, we omit herea variationof this experiment,in
which we delayedthedelivery of � by 10 secondsinsteadof� . In this case,the delayof � affectsboth joins identically,
andsimply slows down the completiontime of all plansby
about10 seconds.
Æ # *�. 	4�6*<�V×Ø���CÙ
To ourknowledge,thispaperrepresentsthefirst generalquery
processingschemefor reorderingin-flight operatorswithin a
pipeline, though [NWMN99] considersthe specialcaseof
unaryoperators.Ourcharacterizationof barriersandmoments
of symmetryalsoappearsto benew, arisingasit doesfrom our
interestin reoptimizinggeneralpipelines.

Recentpapersconsiderreoptimizingqueriesat theendsof
pipelines[UFA98, KD98, IFF � 99], reorderingoperatorsonly
aftertemporaryresultsarematerialized.[IFF � 99] observantly
notesthat this approachdatesback to the original INGRES
querydecompositionscheme[SWK76]. Theseinter-pipeline
techniquesarenotadaptivein thesenseusedin traditionalcon-
trol theory(e.g.,[Son98])or machinelearning(e.g.,[Mit97]);
they make decisionswithout any ongoingfeedbackfrom the
operationsthey areto optimize,insteadperformingstaticop-
timizationsat coarse-grainedintervals in thequeryplan. One
canview theseefforts ascomplementaryto our work: eddies
canbeusedto do tupleschedulingwithin pipelines,andtech-
niqueslike thoseof [UFA98, KD98, IFF � 99] canbe usedto
reoptimizeacrosspipelines. Of coursesucha marriagesac-
rifices the simplicity of eddies,requiringboth the traditional
complexity of costestimationandplanenumerationalongwith
theideasof this paper. Therearealsosignificantquestionson
how bestto combinethesetechniques– e.g.,how many mate-
rializationoperatorsto put in a plan,whichoperatorsto put in
whicheddypipelines,etc.

DEC Rdb (subsequentlyOracleRdb) usedcompetitionto
chooseamongdifferentaccessmethods[AZ96]. Rdb briefly
observedtheperformanceof alternativeaccessmethodsatrun-
time, and then fixed a “winner” for the remainderof query
execution.This bearsa resemblanceto samplingfor costesti-
mation(see[BDF � 97] for asurvey). Moredistantlyrelatedis
thework on“parameterized”or “dynamic” queryplans,which
postponesomeoptimizationdecisionsuntil the beginning of
queryexecution[INSS97,GC94].

The initial work on Query Scrambling[AFTU96] studied
network unpredictabilitiesin processingqueriesover wide-
areasources.This work materializedremotedatawhile pro-
cessingwas blocked waiting for other sources,an idea that
canbeusedin concertwith eddies.Note that local material-
ization amelioratesbut doesnot remove barriers:work to be

270

donelocally aftera barriercanstill bequitesignificant.Later
work focusedon reschedulingrunnablesub-plansduring ini-
tial delaysin delivery [UFA98], but did not attemptto reorder
in-flight operatorsaswe dohere.

Two out-of-coreversionsof the pipelinedhashjoin have
beenproposedrecently[IFF � 99, UF99]. TheX-Join [UF99]
enhancesthepipelinedhashjoin notonly by handlingtheout-
of-corecase,but alsoby exploiting delaytime to aggressively
matchpreviously-received (andspilled) tuples. We intendto
experimentwith X-Joinsandeddiesin futurework.

TheControlproject[HAC� 99] studiesinteractive analysis
of massive datasets,usingtechniqueslikeonlineaggregation,
online reorderingand ripple joins. There is a natural syn-
ergybetweeninteractiveandadaptivequeryprocessing;online
techniquesto pipelinebest-effort answersarenaturallyadap-
tive to changingperformancescenarios.The needfor opti-
mizing pipelinesin theControlprojectinitially motivatedour
work on eddies. The Control project [HAC� 99] is not ex-
plicitly relatedto the field of control theory [Son98],though
eddiesappearsto link thetwo in someregards.

TheRiver project[AAT � 99] wasanothermain inspiration
of this work. River allows modulesto work as fast as they
can,naturallybalancingflow to whichever modulesarefaster.
We carriedtheRiver philosophyinto the intial back-pressure
designof eddies,and intend to return to the parallel load-
balancingaspectsof theoptimizationproblemin futurework.

In additionto commercialprojectslike thosein Section1.2,
therehavebeennumerousresearchsystemsfor heterogeneous
dataintegration,e.g.[GMPQ� 97,HKWY97, IFF � 99], etc.
Ú wu� � �4. ���9� � � �e	 � �Û,��<���5��*;×Ø���CÙ
Queryoptimizationhastraditionallybeenviewedasa coarse-
grained,staticproblem.Eddiesarea queryprocessingmech-
anismthat allow fine-grained,adaptive, online optimization.
Eddiesare particularly beneficialin the unpredictablequery
processingenvironmentsprevalent in massive-scalesystems,
andin interactive online queryprocessing.They fit naturally
with algorithmsfrom theRippleJoin family, which have fre-
quentmomentsof symmetryandadaptiveor non-existentsyn-
chronizationbarriers.Eddiescanbeusedasthesoleoptimiza-
tion mechanismin a queryprocessingsystem,obviating the
needfor muchof the complex coderequiredin a traditional
query optimizer. Alternatively, eddiescan be usedin con-
certwith traditionaloptimizersto improve adaptabilitywithin
pipelines.Our initial resultsindicatethateddiesperformwell
undera variety of circumstances,thoughsomequestionsre-
main in improving reactiontime and in adaptively choosing
join orderswith delayedsources.We aresufficiently encour-
agedby theseearlyresultsthatwe areusingeddiesandrivers
asthebasisfor queryprocessingin theTelegraphsystem.

In orderto focusour energiesin this initial work, we have
explicitly postponeda numberof questionsin understanding,
tuning, and extendingtheseresults. One main challengeis
to develop eddy“ticket” policiesthat canbe formally proved
to converge quickly to a near-optimalexecutionin staticsce-
narios,andthatadaptively convergewhenconditionschange.
This challengeis complicatedby consideringboth selections
andjoins, includinghashjoins that “absorb” tuplesinto their
hashtablesasin Section4.5.1.We intendto focusonmultiple
performancemetrics, including time to completion,the rate

of outputfrom aplan,andtherateof refinementfor onlineag-
gregationestimators.Wehavealsobegunstudyingschemesto
allow eddiesto effectively orderdependentpredicates,based
onreinforcementlearning[SB98]. In arelatedvein,wewould
like to automaticallytune the aggressivenesswith which we
forget pastobservations,so that we avoid introducinga tun-
ing knobto adjustwindow-lengthor someanalogousconstant
(e.g.,a hysteresisfactor).

Anothermaingoal is to attacktheremainingstaticaspects
of our scheme: the “pre-optimization” choicesof spanning
tree,join algorithms,andaccessmethods.Following [AZ96],
we believe that competitionis key here: onecan run multi-
ple redundantjoins, join algorithms,andaccessmethods,and
track their behavior in an eddy, adaptively choosingamong
them over time. The implementationchallengein that sce-
nario relatesto preventing duplicatesfrom being generated,
while theefficiency challengecomesin not wastingtoo many
computingresourcesonunpromisingalternatives.

A third major challengeis to harnessthe parallelismand
adaptivity availableto usin rivers.Massively parallelsystems
are reachingtheir limit of manageability, even as datasizes
continueto grow very quickly. Adaptive techniqueslike ed-
diesandriverscansignificantlyaid in themanageabilityof a
new generationof massively parallelqueryprocessors.Rivers
have beenshown to adaptgracefullyto performancechanges
in largeclusters,spreadingqueryprocessingloadacrossnodes
andspreadingdatadelivery acrossdatasources.Eddiesface
additionalchallengesto meetthepromiseof rivers:in particu-
lar, reoptimizingquerieswith intra-operatorparallelismentails
repartitioningdata,which addsan expenseto reorderingthat
wasnot presentin our single-siteeddies.An additionalcom-
plicationariseswhentrying to adaptively adjustthedegreeof
partitioningfor eachoperatorin a plan. On a similar note,we
would like to explore enhancingeddiesandriversto tolerate
failuresof sourcesor of participantsin parallelexecution.

Finally, weareexploringtheapplicationof eddiesandrivers
to thegenericspaceof dataflow programming,includingappli-
cationssuchasmultimediaanalysisandtranscoding,andthe
compositionof scalable,reliableinternetservices[GWBC99].
Our intent is for riversto serve asa genericparalleldataflow
engine,andfor eddiesto be themain schedulingmechanism
in thatenvironment.
���0Ù � �<A@. *0�5y/(+* � �6�
VijayshankarRamanprovided muchassistancein the course
of thiswork. RemziArpaci-Dusseau,EricAndersonandNoah
Treuhaft implementedEuphrates,andhelpedimplemented-
dies.MikeFranklinaskedhardquestionsandsuggesteddirec-
tionsfor futurework. StuartRussell,ChristosPapadimitriou,
Alistair Sinclair, Kris Hildrum andLakshminarayananSubra-
manianall helpedusfocuson formal issues.Thanksto Navin
KabraandMitch Cherniackfor initial discussionson run-time
reoptimization,andto thedatabasegroupatBerkeley for feed-
back.StuartRussellsuggestedtheterm“eddy”.

This work wasdonewhile bothauthorswereat UC Berke-
ley, supportedby a grant from IBM Corporation,NSF grant
IIS-9802051,anda SloanFoundationFellowship.Computing
andnetwork resourcesfor thisresearchwereprovidedthrough
NSFRI grantCDA-9401156.

271

*sE
*��
* � �s*4�
[AAC Ü 97] A. C.Arpaci-Dusseau,R.H. Arpaci-Dusseau,D. E. Culler, J.M.

Hellerstein,andD. A. Patterson.High-PerformanceSortingon
Networks of Workstations. In Proc. ACM-SIGMOD Interna-
tional Conferenceon Managementof Data, Tucson,May 1997.

[AAT Ü 99] R. H. Arpaci-Dusseau,E. Anderson,N. Treuhaft,D. E. Culler,
J. M. Hellerstein,D. A. Patterson,andK. Yelick. ClusterI/O
with River: Making theFastCaseCommon.In SixthWorkshop
on I/O in Parallel andDistributedSystems(IOPADS’99), pages
10–22,Atlanta,May 1999.

[AFTU96] L. Amsaleg, M. J. Franklin,A. Tomasic,andT. Urhan. Scram-
bling QueryPlansto CopeWith UnexpectedDelays. In 4th In-
ternationalConferenceon Parallel andDistributedInformation
Systems(PDIS), Miami Beach,December1996.

[AH99] R. Avnur andJ.M. Hellerstein.Continuousqueryoptimization.
TechnicalReportCSD-99-1078,Universityof California,Berke-
ley, November1999.

[Aok99] P. M. Aoki. How to Avoid Building DataBladesThatKnow the
Valueof Everythingandthe Costof Nothing. In 11th Interna-
tional Conferenceon Scientificand StatisticalDatabaseMan-
agement, Cleveland,July 1999.

[AZ96] G. Antoshenkov andM. Ziauddin. QueryProcessingandOpti-
mizationin OracleRdb. VLDB Journal, 5(4):229–237,1996.

[Bar99] R. Barnes. ScaleOut. In High PerformanceTransactionPro-
cessingWorkshop(HPTS’99), Asilomar, September1999.

[BDF Ü 97] D. Barbara,W. DuMouchel, C. Faloutsos,P. J. Haas, J. M.
Hellerstein,Y. E. Ioannidis,H. V. Jagadish,T. Johnson,R. T.
Ng, V. Poosala,K. A. Ross,andK. C. Sevcik. TheNew Jersey
DataReductionReport.IEEEData EngineeringBulletin, 20(4),
December1997.

[BO99] J. BoulosandK. Ono. CostEstimationof User-DefinedMeth-
odsin Object-RelationalDatabaseSystems.SIGMODRecord,
28(3):22–28,September1999.

[DGSÜ 90] D. J. DeWitt, S. Ghandeharizadeh,D. Schneider, A. Bricker,
H.-I Hsiao,andR. Rasmussen.The Gammadatabasemachine
project. IEEE Transactionson Knowledge and Data Engineer-
ing, 2(1):44–62,Mar 1990.

[DKO Ü 84] D. J.DeWitt, R. H. Katz, F. Olken,L. D. Shapiro,M. R. Stone-
braker, and D. Wood. ImplementationTechniquesfor Main
Memory DatabaseSystems. In Proc. ACM-SIGMODInterna-
tional Conferenceon Managementof Data, pages1–8,Boston,
June1984.

[FMLS99] D. Florescu, I. Manolescu,A. Levy, and D. Suciu. Query
Optimization in the Presenceof Limited AccessPatterns. In
Proc.ACM-SIGMODInternationalConferenceon Management
of Data, Phildelphia,June1999.

[GC94] G. GraefeandR. Cole.Optimizationof DynamicQueryEvalua-
tion Plans.In Proc.ACM-SIGMODInternationalConferenceon
Managementof Data, Minneapolis,1994.

[GMPQÜ 97] H. Garcia-Molina,Y. Papakonstantinou,D. Quass,A Rajaraman,
Y. Sagiv, J.Ullman,andJ.Widom. TheTSIMMIS Project:Inte-
grationof HeterogeneousInformationSources.Journalof Intel-
ligentInformationSystems, 8(2):117–132,March1997.

[Gra90] G. Graefe. Encapsulationof Parallelismin the VolcanoQuery
ProcessingSystem.In Proc.ACM-SIGMODInternationalCon-
ferenceon Managementof Data, pages102–111,Atlantic City,
May 1990.

[GWBC99] S.D. Gribble,M. Welsh,E.A. Brewer, andD. Culler. TheMulti-
Space:anEvolutionaryPlatformfor InfrastructuralServices.In
Proceedingsof the 1999UsenixAnnualTechnical Conference,
Monterey, June1999.

[HAC Ü 99] J. M. Hellerstein,R. Avnur, A. Chou, C. Hidber, C. Olston,
V. Raman,T. Roth,andP. J.Haas.InteractiveDataAnalysis:The
ControlProject.IEEE Computer, 32(8):51–59,August1999.

[Hel98] J. M. Hellerstein. OptimizationTechniquesfor Querieswith
Expensive Methods. ACM Transactionson DatabaseSystems,
23(2):113–157,1998.

[HH99] P. J. Haasand J. M. Hellerstein. Ripple Joinsfor Online Ag-
gregation. In Proc.ACM-SIGMODInternationalConferenceon
Managementof Data, pages287–298,Philadelphia,1999.

[HKWY97] L. Haas,D. Kossmann,E. Wimmers,andJ. Yang. Optimizing
QueriesAcrossDiverseData Sources. In Proc. 23rd Interna-
tional Conferenceon Very Large Data Bases(VLDB), Athens,
1997.

[HSC99] J. M. Hellerstein,M. Stonebraker, andR. Caccia. Open,Inde-
pendentEnterpriseData Integration. IEEE Data Engineering
Bulletin, 22(1),March1999.http://www.cohera.com.

[IFF Ü 99] Z. G. Ives,D. Florescu,M. Friedman,A. Levy, andD. S. Weld.
An Adaptive QueryExecutionSystemfor DataIntegration. In
Proc.ACM-SIGMODInternationalConferenceon Management
of Data, Philadelphia,1999.

[IK84] T. Ibaraki and T. Kameda. Optimal Nesting for Computing
N-relational Joins. ACM Transactionson DatabaseSystems,
9(3):482–502,October1984.

[INSS97] Y. E. Ioannidis,R. T. Ng, K. Shim,andT. K. Sellis. Parametric
QueryOptimization.VLDBJournal, 6(2):132–151,1997.

[KBZ86] R. Krishnamurthy, H. Boral, andC. Zaniolo. Optimizationof
Nonrecursive Queries. In Proc. 12th InternationalConference
onVeryLargeDatabases(VLDB), pages128–137,August1986.

[KD98] N. KabraandD. J.DeWitt. EfficientMid-QueryReoptimization
of Sub-OptimalQueryExecutionPlans.In Proc.ACM-SIGMOD
InternationalConferenceon Managementof Data, pages106–
117,Seattle,1998.

[Met97] R. Van Meter. Observingthe Effectsof Multi-Zone Disks. In
Proceedingsof theUsenix1997TechnicalConference, Anaheim,
January1997.

[Mit97] T. Mitchell. MachineLearning. McGraw Hill, 1997.

[NWMN99] K. W. Ng, Z. Wang,R. R. Muntz,andS.Nittel. DynamicQuery
Re-Optimization.In 11thInternationalConferenceon Scientific
andStatisticalDatabaseManagement, Cleveland,July 1999.

[RPKÜ 99] B. Reinwald,H. Pirahesh,G.Krishnamoorthy, G.Lapis,B. Tran,
andS.Vora.HeterogeneousQueryProcessingThroughSQLTa-
ble Functions. In 15th InternationalConferenceon Data Engi-
neering, pages366–373,Sydney, March1999.

[RRH99] V. Raman,B. Raman,andJ. M. Hellerstein. Online Dynamic
Reorderingfor Interactive DataProcessing.In Proc.25th Inter-
national Conferenceon Very Large Data Bases(VLDB), pages
709–720,Edinburgh,1999.

[SB98] R. S. SuttonandA. G. Bartow. ReinforcementLearning. MIT
Press,Cambridge,MA, 1998.

[SBH98] M. Stonebraker, P. Brown, and M. Herbach. Interoperability,
DistributedApplications,andDistributedDatabases:TheVirtual
TableInterface. IEEE Data EngineeringBulletin, 21(3):25–34,
September1998.

[Son98] E. D. Sontag. MathematicalControl Theory: Deterministic
Finite-DimensionalSystems,SecondEdition. Number6 in Texts
in Applied Mathematics.Springer-Verlag,New York, 1998.

[SWK76] M. R. Stonebraker, E. Wong,andP. Kreps. TheDesignandIm-
plementationof INGRES. ACM Transactionson DatabaseSys-
tems, 1(3):189–222,September1976.

[UF99] T. UrhanandM. Franklin. XJoin: GettingFastAnswersFrom
Slow andBurstyNetworks.TechnicalReportCS-TR-3994,Uni-
versityof Maryland,February1999.

[UFA98] T. Urhan, M. Franklin, and L. Amsaleg. Cost-BasedQuery
Scramblingfor Initial Delays. In Proc.ACM-SIGMODInterna-
tional Conferenceon Managementof Data, Seattle,June1998.

[WA91] A. N. WilschutandP. M. G. Apers. Dataflow QueryExecution
in aParallelMain-MemoryEnvironment.In Proc.First Interna-
tional Conferenceon Parallel andDistributedInfo. Sys.(PDIS),
pages68–77,1991.

[WW94] C. A. Waldspurger andW. E. Weihl. Lottery scheduling:Flex-
ible proportional-shareresourcemanagement.In Proc. of the
First Symposiumon Operating SystemsDesignand Implemen-
tation (OSDI ’94), pages1–11,Monterey, CA, November1994.
USENIX Assoc.

272

