
Adaptive Query Processing for Internet Applications

Zachary G. Ives

University of Washington

zives@cs.washington.edu

Alon Y. Levy

University of Washington

alon@cs.washington.edu

Daniel S. Weld

University of Washington

weld@cs.washington.edu

Marc Friedman

Viathan Corp.

marc@viathan.com

Daniela Florescu

INRIA Rocquencourt

Daniela.Florescu@inria.fr

June 5, 2000

Abstract

As the area of data management for the Internet has gained in popularity, recent work has focused

on e�ectively dealing with unpredictable, dynamic data volumes and transfer rates using adaptive query

processing techniques. Important requirements of the Internet domain include: (1) the ability to pro-

cess XML data as it streams in from the network, in addition to working on locally stored data; (2)

dynamic scheduling of operators to adjust to I/O delays and ow rates; (3) sharing and re-use of data

across multiple queries, where possible; (4) the ability to output results and later update them. An

equally important consideration is the high degree of variability in performance needs for di�erent query

processing domains: perhaps an ad-hoc query application should optimize for display of incomplete and

partial incremental results, whereas a corporate data integration application may need the best time-to-

completion and may have very strict data \freshness" guarantees. The goal of the Tukwila project at

the University of Washington is to design a query processing system that supports a range of adaptive

techniques that are con�gurable for di�erent application domains.

1 Introduction

Over the past few years, a new set of requirements for query processing has emerged, as Internet and

web-based query applications have become more prevalent. Modern query processors are very e�ective at

producing well-optimized query plans for databases, by leveraging I/O cost information as well as histograms

and other statistics to determine the best executable plans. However, data management systems for the

Internet have demonstrated a pressing need for new techniques. Since data sources in this domain may be

distributed, autonomous, and even heterogeneous, the query optimizer will often not have histograms or any

other quality statistics. Moreover, since the data is only accessible via a wide area network, the cost of I/O

operations is high, unpredictable, and variable.

These factors can be mitigated through adaptive query processing, where the query processor adapts its

execution in response to data sizes and transfer rates as the query is being executed. Moreover, the high I/O

costs suggest that data should be processed as it is streaming across the network (as is done in relational

databases with pipelining), scheduling of work should be dynamic to accommodate I/O latencies and data

ow rates, and re-use and sharing of intermediate query results should be done wherever possible | both

across concurrent queries, and between successive queries that execute within some short time delta of each

other.

An important issue in using adaptive techniques, but one that has seldom been considered, is the needs of

the application domain: the performance goals, as well as the applicable adaptive techniques, may vary widely

depending on the application. For an ad-hoc, interactive domain, the user may wish to see incomplete results

quickly, but for a business-to-business environment, the emphasis may be on providing complete results as

quickly as possible, with strict guarantees about data freshness.

The goal of the Tukwila project at the University of Washington is to support eÆcient query processing

of streaming XML data using adaptive query processing techniques, including display of incremental results,

the sharing of sub-results across queries, and updating of data sources. In conjunction with this, we believe

there is need for a method of expressing query processing policies | providing di�erent query performance

behaviors for di�erent contexts.

Tukwila is a data integration system, in which we attempt to answer queries posed across multiple,

autonomous, heterogeneous sources. All of these data sources are mapped into a common mediated schema.

The data integration system attempts to reformulate the query into a series of queries over the data sources,

then combine the data into a common result. Tukwila's ancestors, the Information Manifold [LRO96] and

Razor [FW97], focused on the problems of mapping, reformulation, and query planning; Tukwila attempts

to address the challenges of generating and executing plans eÆciently with little knowledge and variable

network conditions.

Previously, data integration required wrappers to convert data from the various Web and database sources

into a common format; this requirement is likely to be alleviated somewhat because of the advent of XML,

the eXtensible Markup Language, as a standard protocol for describing information. XML provides two

important capabilities for data integration: it provides a common data format, which had previously been a

major function of wrappers; and it allows for representation of tabular, hierarchical, or even graph-structured

data.

In this paper we discuss a number of important areas that must be addressed using adaptive techniques

for an e�ective wide-area XML data integration system. The paper is organized as follows: we begin in

Section 2 with an overview of the di�erent dimensions of adaptive query processing, which underly our

research agenda for the Tukwila system. Section 3 describes adaptive techniques currently used within the

Tukwila data integration system, and explains how they address some of the problems in this domain; in

Section 4, we discuss the current focus areas of the Tukwila project. Finally, we conclude in Section 5.

2 Needs for Adaptive Query Processing in Di�erent Contexts

Adaptive query processing encompasses a variety of techniques dating back to the beginnings of relational

database technology. The paper by Hellerstein et al in this issue relates these adaptive techniques by focusing

on their granularities of adaptivity. An orthogonal set of issues are related to the speci�c domain and context

in which a query processor is being applied. Below we begin by identifying a set of dimensions that vary

by context, and which determine the applicability of di�erent adaptive techniques. In Sections 3 and 4, we

discuss how current and future work on Tukwila addresses the requirements of these dimensions.

Number of queries If the domain includes large numbers of similar queries being posed frequently, the

query processor should cache partial results and make use of common subexpressions. Work in this area

includes the NiagraCQ [CDTW00] system at Wisconsin and the OpenCQ and WebCQ projects at Georgia

Tech. This problem is similar to that of multi-query optimization [RSSB00] but with a more \online"

character | as optimization is done for potential future reuse of subquery results | and generally larger

numbers of queries.

Approximate results In interactive domains, we may wish to see incremental display of the query results,

with incomplete or approximate answers that evolve towards their �nal values. Operators supporting output

of partial results have been a focus of recent work in [HHW97], which provided incremental display of

approximate results for root-level aggregation, and [STD+00], which proposed a more general approach for

providing partial results on demand. However, another important aspect of this area is a method of specifying

when to provide partial answers, as the user may only want to see tentative results for certain data items.

Moreover, a more formal de�nition is needed for the semantics of when a partial or approximate result is

meaningful.

First vs. last tuple For batch-oriented domains, the query processor should optimize for overall query

running time | the traditional focus of database query optimizers. Most of today's database systems do

2

all of their optimization in a single step. However, the INGRES optimizer [SWKH76] and techniques for

mid-query re-optimization [KD98] often facilitate better running times by re-optimizing later portions of the

query plan as more knowledge is gained from executing the earlier stages. Similar re-optimization techniques

can also be applied to interactive domains, as discussed in [IFF+99, AH00, UFA98], because they can often

produce output faster by using a superior query plan.

Freshness Data may often be prefetched and cached by the query processor, but the system may also

have to provide data freshness guarantees. Caching and prefetching are well-studied areas in the database

community. Likewise, the work on rewriting queries over views [Lev00] can be used to express new queries

over cached data.

Data model To this point, most adaptive query processing techniques have focused on a relational (or

object-relational) data model. While there are clearly important research areas within this domain, other

data models may require extensions to these techniques. In particular, XML, as a universal protocol for

describing data, allows for hierarchical and graph-structured data. We believe an execution model similar

to pipelining is important for the XML realm, as processing of streaming data is of growing impact.

Remote vs. local data Traditional database systems have focused on local data. Recent work has focused

on techniques for increasing the performance of network-bound query applications, including [UFA98, UF99,

IFF+99, AH00, HH99]. (See the Hellerstein et al paper in this volume for greater detail.)

Incremental updates In certain applications where data constantly changes, it is important to be able

to start with an initial data set, and to process \deltas" describing updates to the original data values. Early

work in this area includes the partial-results feature of the Niagara system [STD+00].

3 The Tukwila Data Integration System

In a domain where costs are unpredictable and dynamic, such as data integration for the wide area, a query

processing system must react to changing conditions and acquired knowledge. This is the basic philosophy

behind the Tukwila project, which focuses on providing a con�gurable platform for adaptive query processing

of streaming data.

In this section, we present an overview of the basic techniques implemented in Tukwila. There are three

primary aspects to the Tukwila adaptive framework: an event-condition-action-based rule system, a set of

adaptive operators, and the ability to incrementally re-optimize a query plan as greater knowledge about

the data is gained. Here we provide a brief overview of these capabilities; for more information, please

see [IFF+99].

3.1 Controlling Adaptive Behavior

An important need in dealing with network-based query sources is the ability to respond to unexpected

conditions: slow data sources, failed sources, amounts of data that are much larger than expected, etc. In

order to handle conditions such as these, Tukwila incorporates event-condition-action rules that can respond

to execution events such as operator start, timeout, insuÆcient memory, end of pipeline, and so forth. In

response to these events, Tukwila can return to the query optimizer to re-optimize the remainder of a query

plan; it can modify memory allocations to operators; it can switch to an alternate set of data sources.

Note that these rules are at a lower granularity than triggers or active rules: they respond to events at the

sub-operation level, and can also modify the behavior of query plan operators.

3.2 Intra-Operator Adaptivity

The Tukwila system provides two operators that can respond to varying network conditions and produce

optimal behavior. The �rst is an implementation of the pipelined hash join [WA91] with extensions to

3

support overow of large hash tables to disk; in many ways it resembles the hash ripple join [HH99] and the

XJoin [UF99].

A pipelined hash join operates with two hash tables, rather than the single hash table of a typical hybrid

hash join. A tuple read from one of the operator's inputs is stored in that input's hash table and probed

against the opposite table. Each input executes in a separate thread, and this provides two highly desirable

characteristics: it allows overlap of I/O and computation, which is important in an I/O-bound environment,

and it produces output tuples as early as possible. The pipelined hash join also adjusts its behavior to the

data transfer rates of the sources. The trade-o� is that it uses more memory than a standard hybrid hash

join; however, this problem can be mitigated with the overow strategies implemented in Tukwila or in the

XJoin operator.

In many web applications, there may be multiple sites or sets of sites from which the same input data can

be obtained; some of these data sources may be preferable to others, perhaps because of connection speed

or cost. Tukwila's collector operator provides a robust method for reading data from sources with identical

schemas: according to a policy speci�ed in Tukwila's rule language, the collector attempts to read from a

subset of its sources; if a given source is slow or unavailable, the collector can switch to one or more alternate

data sources. This operator allows a query plan to adaptively choose its data sources based on criteria such

as availability or speed.

3.3 Incremental Re-Optimization

Adaptive behavior during query execution is key in situations where I/O costs are variable and unpredictable.

When data sizes are also unpredictable, it is unlikely that the query optimizer will produce a good query

plan, so it is important to be able to modify the query plan being executed. As a result, Tukwila supports

incremental re-optimization of queries during particular plan execution points.

The Tukwila re-optimization model is based on fragments, or pipelined units of execution. Fragment

boundaries, at which a pipeline is broken and the results are materialized, are chosen by the optimizer

according to their cost and potential bene�ts. In general, a large query plan must already be broken into

smaller pipelines so operators will �t into memory; this is particularly true if memory intensive operators

such as the pipelined hash join are used. At each materialization point, Tukwila's execution system can check

whether the result cardinality was close to that expected by the optimizer; if the cardinality is suÆciently

divergent, Tukwila will keep the current query subresults and re-optimize the remainder of the query plan,

using the subresults as inputs for a new and better plan.

The Tukwila model for re-optimization is similar to that proposed in [KD98], but it allows the optimizer

to choose fragmentation points in an integrated, cost-based approach, rather than adding the capabilities in

a separate postprocessing step.

4 Current Areas of Focus in Tukwila

The Tukwila system already supports a number of adaptive techniques, but the system is being extended in

a number of ways. Our current work focuses on many of the areas discussed in Section 2.

4.1 XML: a Foundation for Data Integration

Tukwila was initially developed for a relational data model, and required wrappers to translate data from

source formats into the standard Tukwila data format. XML has largely eliminated the need for full-edged

wrappers, as most data sources have begun to include XML export capabilities, and as various HTML-to-

XML wrapper toolkits (e.g. [SA99, LPH00]) have emerged. However, the use of XML, which supports at,

hierarchical, and graph-structured data, has led to a natural extension of the Tukwila data model to fully

support semistructured data.

Our data model is based on an ordered, directed-graph approach like that of XML-QL [DFF+99].

This model is powerful enough to support any of the proposed XML query languages, including XML-QL,

4

XQL [RLS98]/XPath [CD99], and Quilt [CRF00]. We are developing extensions to this model to include a

stronger de�nition of order in XML.

To this point, XML query processors have worked by mapping XML data into an underlying local store

| relational, object-oriented, or semistructured | and have done their processing within this store. For

a network-bound domain where data needs to be refreshed on each query to guarantee \freshness," this

approach does not produce good performance. Thus it is imperative that an XML data integration system

support direct querying of data as it streams in, much as a relational engine can pipeline tuples as they

stream in.

4.2 Processing Streaming XML Data

The primary di�erence between XML queries and those for object-oriented or object-relational systems is

a reliance on regular path expressions, which describe traversals of the data graph using edge labels and

optional regular-expression symbols such as the Kleene-star (for repetition) and the choice operator (for

alternate subpaths). Regular path expressions bear many similarities to object-oriented path expressions,

and can be computed similarly; however, if regular expression operators are used, they may require expensive

operations such as joins with transitive closure.

In order to provide pipeline-like processing of network data as it streams in, we must be able to support

eÆcient evaluation of regular path expressions over the incoming data, and incremental output of the bound

values. This capability is provided by Tukwila's x-scan operator, which evaluates regular path expressions

across XML data as it is read, and which binds query variables to nodes and subgraphs within the XML

document. X-scan is discussed in greater detail in [ILW00], and includes support for both tree- and graph-

structured documents, while preserving document order.

There are two other operators that are important in producing an XML engine: a nest operator, which

nests subelements under parents, in a join-like fashion; and a fuse operator, which can be used to support

graph-model features in an XML output document by consolidating multiple output nodes.

Another important area we are addressing within the Tukwila project is how to express incremental

XML updates | a way of describing changes to the current ordered XML document. This is important

for producing incremental results, for processing continuous streams of XML data, and for reducing data

transfer amounts in network applications.

4.3 Specifying Adaptive Behavior

In Section 2, we discussed a number of dimensions of adaptive query processing. Di�erent data management

applications have very di�erent needs within these dimensions. Factors may include whether to optimize for

�rst or last tuple, how fresh the data from each query must be (and thus how long data can be cached), and

whether (and when) the user should see approximate or incomplete data.

Additionally, the query optimizer should behave quite di�erently if the domain is one in which many

similar queries are being posed, rather than one in which a few simple queries are given. For the multi-query

case, the query processor should evaluate the potential bene�ts of materializing subresults for reuse in future

queries.

Although optimizing for each of these various needs has been fairly well-studied, much less work has been

done on actually expressing the query processing requirements, and on being able to support all of these

cases within a single uni�ed framework. This is an area we plan to address within Tukwila: developing a

system to support a wide range of applications, and, equally important, providing a con�guration language

for specifying the requirements of a given domain.

4.4 Increasing Pipelined Behavior

In terms of query execution, an important need for interactive applications is to facilitate output of �rst

tuples | the user should receive results as soon as possible. Tukwila includes adaptive operators whose

intent is to address this requirement.

5

However, these needs must be balanced by the fact that the query optimizer, which does not have good

knowledge of the data sources, may have produced a suboptimal plan. The optimizer initially divides the plan

into fragments (pipelines with materialization points) based on expected memory usage and other factors

such as con�dence in its statistics. Each of these materialization points breaks the pipeline, generally slowing

time to �rst tuple | however, if the plan gets re-optimized into a more eÆcient form, the net result should

be a faster time to completion, and potentially even a better time to �rst tuples.

4.4.1 Dynamically Materializing Data

Clearly, there is a trade-o� between the number of materialization points and the query processing time.

Unfortunately, with few statistics available, the optimizer is unlikely to be able to choose good materialization

points; it is likely to have too many, too few, or poorly placed breaks in the pipeline. (This problem is

also present in traditional systems with quality statistics, appearing for complex queries with many join

operations.) We are investigatating the performance implications of choosing the materialization points

adaptively, during plan execution. In our approach, the query optimizer creates long pipelines; when these

pipelines run out of memory, the execution engine will, using \hints" provided by the optimizer, insert a new

materialization point into the middle of the pipeline. All operators \upstream" of this new materialization

point will ush their results to disk; execution of the operators below the materialization point will continue.

Once they complete, the upstream operators will reload their intermediate results, begin reading from the

materialized �le, and resume normal operation.

We expect that there will be several bene�ts to this approach. First, early results will likely be able

to percolate through the entire long pipeline before the system runs out of memory | this speeds time to

initial tuples. Second, the system will only insert materialization points where necessary, something that is

extremely diÆcult to do statically. Third, the cost of breaking a pipeline should generally be less than that

of having multiple join algorithms simultaneously overowing, as it allows the query processor to \stage"

portions of the data that exceeds memory.

4.4.2 Returning Incremental Results

Another important feature that is important for interactive applications is the ability to display approximate

results incrementally. Initial work in this area has been done in the context of the Niagara system [STD+00],

which allows the user to request partial results at any time, and also within the CONTROL project [HHW97]

for top-level aggregate operators.

Our focus in this area is on two important problems. First, an interactive query system would ideally

provide incremental results for all query types in an interactive, browsable window, where the query processor

\focuses" on �nalizing the results currently in the user's view. Second, it will often be the case that for a

given domain or query, approximate or partial results are only useful for certain items within the data set.

A system that supports partial results should also support a mechanism for expressing which data items

should be approximated. We believe this should be one aspect of the con�guration language discussed in

Section 4.3.

5 Conclusions

Adaptive query processing is a rapidly growing �eld, as evidenced by this special issue. Certain aspects of

this work go back to the early days of relational databases, but the evolution of data integration and data

management systems for the Internet has led to a number of recent developments.

We believe that one of the most important areas of future exploration should be in developing a system

exible enough to meet the wide range of domain-speci�c needs, and providing a means of specifying the

relevant parameters to the system. The Tukwila project is attempting to address aspects of both of these

problems, using XML as the standard data format and data model. We believe that the current system has

taken a number of steps in this direction, and that our current and future work will take us much closer to

a comprehensive data management solution for Internet-based data.

6

References

[AH00] Ron Avnur and Joseph M. Hellerstein. Continuous query optimization. In SIGMOD 2000, Proceedings

ACM SIGMOD International Conference on Management of Data, May 14-19, 2000, Dallas, Texas,

USA. ACM Press, 2000.

[CD99] James Clark and Steve DeRose. XML path language (XPath) recommendation.

http://www.w3.org/TR/1999/REC-xpath-19991116, November 1999.

[CDTW00] Jianjun Chen, David DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: A scalable continuous query

system for internet databases. In SIGMOD 2000, Proceedings ACM SIGMOD International Conference

on Management of Data, May 15-18, 1999, Dallas, TX, USA, 2000.

[CRF00] Donald D. Chamberlin, Jonathan Robie, and Daniela Florescu. Quilt: An XML query language for

heterogeneous data sources. In WebDB (Informal Proceedings) 2000, pages 53{62, 2000.

[DFF+99] Alin Deutsch, Mary F. Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. A query language for

XML. In Proceedings of the International Word Wide Web Conference, Toronto, CA, 1999.

[FW97] Marc Friedman and Daniel S. Weld. EÆciently executiong information-gathering plans. In Proceedings

of the Fifteenth International Join Conference on Arti�cial Intelligence, pages 785{791, 1997.

[HH99] Peter J. Haas and Joseph M. Hellerstein. Ripple joins for online aggregation. In Alex Delis, Christos

Faloutsos, and Shahram Ghandeharizadeh, editors, SIGMOD 1999, Proceedings ACM SIGMOD Inter-

national Conference on Management of Data, June 1-3, 1999, Philadephia, Pennsylvania, USA, pages

287{298. ACM Press, 1999.

[HHW97] Joseph M. Hellerstein, Peter J. Haas, and Helen Wang. Online aggregation. In Joan Peckham, editor,

SIGMOD 1997, Proceedings ACM SIGMOD International Conference on Management of Data, May

13-15, 1997, Tucson, Arizona, USA, pages 171{182. ACM Press, 1997.

[IFF+99] Zachary G. Ives, Daniela Florescu, Marc T. Friedman, Alon Y. Levy, and Daniel S. Weld. An adaptive

query execution system for data integration. In SIGMOD 1999, Proceedings ACM SIGMOD International

Conference on Management of Data, June 1-3, 1999, Philadephia, Pennsylvania, USA, pages 299{310,

1999.

[ILW00] Zachary G. Ives, Alon Y. Levy, and Daniel S. Weld. EÆcient evaluation of regular path expressions over

streaming XML data. Technical Report UW-CSE-2000-05-02, University of Washington, May 2000.

[KD98] Navin Kabra and David J. DeWitt. EÆcient mid-query re-optimization of sub-optimal query execution

plans. In Laura M. Haas and Ashutosh Tiwary, editors, SIGMOD 1998, Proceedings ACM SIGMOD

International Conference on Management of Data, June 2-4, 1998, Seattle, Washington, USA, pages

106{117. ACM Press, 1998.

[Lev00] Alon Y. Levy. Answering queries using views: A survey, 2000. Manuscript available from

www.cs.washington.edu/homes/alon/views.ps.

[LPH00] Ling Liu, Calton Pu, and Wei Han. XWRAP: An XML-enabled wrapper construction system for web

information sources. In Proceedings of the 16th International Conference on Data Engineering, San Diego,

CA USA, pages 611{621, 2000.

[LRO96] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous information sources using

source descriptions. In T. M. Vijayaraman, Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda,

editors, VLDB'96, Proceedings of 22th International Conference on Very Large Data Bases, September

3-6, 1996, Mumbai (Bombay), India, pages 251{262. Morgan Kaufmann, 1996.

[RLS98] Jonathan Robie, Joe Lapp, and David Schach. XML Query Language (XQL).

http://www.w3.org/TandS/QL/QL98/pp/xql.html, September 1998.

[RSSB00] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. EÆcient and extensible algorithms for

multi query optimization. In SIGMOD 2000, Proceedings ACM SIGMOD International Conference on

Management of Data, May 14-19, 2000, Dallas, Texas, USA. ACM Press, 2000.

[SA99] Arnaud Sahuguet and Fabien Azavant. Building light-weight wrappers for legacy web data-sources using

W4F. In VLDB'99, Proceedings of 25th International Conference on Very Large Data Bases, September

7-10, 1999, Edinburgh, Scotland, UK, pages 738{741. Morgan Kaufmann, 1999.

[STD+00] Jayavel Shanmugasundaram, Kristin Tufte, David J. DeWitt, Je�rey F. Naughton, and David Maier.

Architecting a network query engine for producing partial results. In WebDB (Informal Proceedings)

2000, pages 17{22, 2000.

7

[SWKH76] Michael Stonebraker, Eugene Wong, Peter Kreps, and Gerald Held. The design and implementation of

INGRES. TODS, 1(3):189{222, 1976.

[UF99] Tolga Urhan and Michael J. Franklin. XJoin: Getting fast answers from slow and bursty networks.

Technical Report CS-TR-3994, University of Maryland, College Park, February 1999.

[UFA98] Tolga Urhan, Michael J. Franklin, and Laurent Amsaleg. Cost based query scrambling for initial delays.

In SIGMOD 1998, Proceedings ACM SIGMOD International Conference on Management of Data, June

2-4, 1998, Seattle, Washington, USA, pages 130{141, 1998.

[WA91] Annita N. Wilschut and Peter M. G. Apers. Dataow query execution in a parallel main-memory

environment. In Proc. First International Conference on Parallel and Distributed Information Systems

(PDIS), pages 68{77, December 1991.

8

