
LH* — Linear Hashing for

Witold Litwin* Marie-Anne Neimat

Distributed Files

Donovan A. Schneider

Hewlett-Packard Labs

1501 Page Mill Road

Palo Alto, CA 94304

email: lastname@hplabs. hp. com

Abstract

LH* generalizes Linear Hsshing to parallel or distributed

RAM and disk files. An LH* file can be created from

objects provided by any number of distributed and au-

tonomous clients. It can grow gracefully, one bucket at

a time, to virtually any number of servers. The number

of messages per insertion is one in general, and three in

the worst case. The number of messages per retrieval

is two in general, and four in the worst case. The load

factor can be about constant, 65–95%, depending on the

file parameters. The file can also support parallel oper-

ations. An LH* file can be much faster than a single

site disk file, and/or can hold a much larger number of

objects. It can be more efficient than any file with a

centralized directory, or a static parallel or distributed

hash file.

1 Introduction

More and more applications are mission critical and re-

quire fast analysis of unpredictably large amounts of in-

coming data. The traditional architecture is to deal with

data through a single processor and its main (RAM)

memory with disk aa secondary storage. Recent archi-

tectures attempt to benefit from distributed or parallel

processing, using multiprocessor machines and/or from

distributed processing on a number of sites.

The rationale is that whatever capabilities a single

processor or site could have, a pool of sites can provide

*Paris 9, visiting HP-Labs and UC-Berkeley

Permission to copy without fee all or part of this material is
granted provided that the oopies are not made or distributed for
direct commercial advantage, the ACM copyright notica and the
title of the publication and its date appaar, and notice ie given
that copying is by permission of the Aeeociation for Computing
Machinery. To copy otherwisa, or to republish, requires a fee
and/or epecifio permission.

SIGMOD lW931Waehington, DC, USA
81993 ACM 0+9791 .592-5 /93/0005 /0327...$ 1.50

more resources. An enabling factor is the existence of

high speed links. 10 Mb/see (Megabits per second) Eth-

ernet links are common, 100 Mb/see FDDI or TCNS

are in mass production, and 100 Mb-l Gb/sec links are

coming, e.g., Ultranet and HIPPI. Similar speed cannot

be achieved using magnetic or optical disks. It becomes

more efficient to use a RAM of another processor than

to use a local disk. Furthermore, many organizations

have hundreds, or even thousands of interconnected sites

(processors), with dozens of megabytes (MB) of RAM

per site, and even more of disk space. This allows for dis-

tributed RAM files reaching dozens of gigabytes (GB).

Such RAM files in conjunction with parallel processing

should allow a DBMS to perform operations not feasible

in practice within the classical database architecture.

However, distributed processing should be applied

wisely. A frequent problem is that, while the use of too

many sites may deteriorate performance, the best num-

ber of sites to use is either unknown in advance or can

evolve during processing. We are interested in methods

for gracefully adjusting the number of sites or proces-

sors involved. We propose a solution for the following

context.

There are several client sites (clients) sharing a file F.

The clients insert objects given OIDS (primary keys),

search for objects (usually given OIDS), or delete ob-

jects. The nature of objects is unimportant here. F

is stored on server sites (servers). Clients and servers

are whole machines that are nodes of a network, or pro-

cessors with local RAMs within a multiprocessor ma-

chine. A client can also be a server. A client does not

know about other clients. Each server provides a stor-

age space for objects of F, called a bucker!. A server

can send objects to other servers. The number of ob-

jects incoming for storage is unpredictable, and can be
much larger than what a bucket can accommodate. The

number of interconnected servers can be large, e.g., 10–

10,000, The pool can offer many gigabytes of RAM,

perhaps terabytes, and even more of disk space. The

problem is to find data structures that efficiently use

327



the servers. We are interested in structures that meet

the following constraints:

1.

2.

3.

A file expands to new servers gracefully, and only

when servers already used are efficiently loaded.

There is no master site that object address compu-

tations must go through, e.g., to access a centralized

directory.

The file access and maintenance primitives, e.g.,

search, insertion, split, etc., never require atomic

updates to multiple clients.

Constraint (2) is useful for many reasons. In par-

ticular, the resulting data structure is potentially more

efficient in terms of messages needed to manipulate it,

and more reliable. The size of a centralized directory

could be a problem for creating a very large distributed

file. Constraint (3) is vital in a distributed environment

as multiple, autonomous clients may never even be si-

multaneously available. We call a structure that meets

these constraints a Scalable Distributed Data Structure

(SDDS). It is a new challenge to design an SDDS, as

constraint (2) precludes classical data structures modi-

fied in a trivial way. For instance, an extendible hash file

with the directory on one site and data on other sites, is

not an SDDS structure.

To make an SDDS efficient, one should minimize the

messages exchanged through the net, while maximizing

the load factor. We propose an SDDS called LEI*. LH*

is a generalization of Linear Hashing (LH) [Lit80]. LH,

and its numerous variants, e.g. [Sa188, Sam89], were de-

signed for a single site. LH* can accommodate any num-

ber of clients and servers, and allows the file to extend

to any number of sites with the following properties:

like LH, the file can grow to practically any size,

with the load factor about constant, between 65–

95% depending on file parameters [Lit80],

an insertion usually requires one message, three in

the worst case,

a retrieval of an object given its OID usually re-
quires two messages, four in the worst case,

a parallel operation on a file of &l buckets costs

at most 2M + 1 messages, and between 1 and

O(log2 A4) rounds of messages,

This performance cannot be achieved by a distributed

data structure using a centralized directory or a master

site.

One variant of LH, Distributed Lznear Hashing (DLH),

is designed specifically for a tightly coupled multiproces-

sor site with shared memory [SPW90]. In DLH, the file

is in RAM, and the file parameters are cached in the

local memories of processors. The caches are refreshed

selectively when addressing errors occur and through si-

multaneous updates to all the memories, at some points

during file evolution. DLH files are shown impressively

efficient for high rates of insertions compared to LH.

However, the need for the simultaneous updates pre-

cludes a DLH file from being an SDDS, and so does

not allow it to scale beyond a small number of sites.

LH* is especially useful for very large files and/or files

where the distribution of objects over several sites is ad-

vantageous for exploiting parallelism. A bucket of an

LH* file can also be a whole centralized file, e.g., a disk

LH file. It therefore becomes possible to’ cr~ate effi-

cient scalable files that grow to sizes orders of magnitude

larger than any single site file could.

Section 2 discusses Linear Hashing and Section 3 de-

scribes LH*. Section 4 presents a simulation model of

LH*, Section 5 concludes the article.

2 Linear Hashing

LH is a hashing method for extensible disk or RAM files

that grow or shrink dynamically with no deterioration

in space utilization or access time. The files are orga-

nized into buckets (pages) on a disk [Lit80], or in RAM

[Lar88]. Basically, an LH file is a collection of buck-

ets, addressable through a directoryless pair of hashing

functions hi and hi+l; i = O, 1,2... The function hi

hashes (primary) keys on N * 2i addresses; N being the

initial number of buckets, ~ ~ 1. An example of such

functions are the popular dlvlsion modulo z functions,

especially: hi : C* Cmod N*2i

Under insertions, the file gracefully expands, through
the splitting of one bucket at a time into two buckets.

The function hi is linearly replaced with hi+l when ex-

isting bucket capacities are exceeded. A special value 71,

called pointer, is used to determine which function, hi or

hi+l, should apply to an OID. The value of n grows one

by one with the file expansion (more precisely it grows

from O to N, then from O to 2N, etc.). It indicates the

next bucket to split and it is always the leftmost bucket
with }lZ. Figure 1 illustrates this process using-hi above,

for N = 1 and a bucket capacity of 4.

A split is due to the replacement of hi with hj+l, and

is done one bucket at a time. Typically, each split moves

half of the objects in bucket n to a new address that is

always n+ N * 2i. At some point, hi+l replaces h, for all
current buckets. In this case, hi+z is created, i - i + 1,

and the whole process continues for the new value of

i. It can continue in practice indefinitely. The result

shown through performance analysis is an almost con-

stant access and memory load performance, regardless

328



153

EEElmE m153 18 7

145 10 251

321 6 215

h2 hl h2

;=O ;:=oh’ I n=,

(a) (b) (c)

hz hz lQ hz

IIl=o

(d)

(a) original tile w/153 causing a collision at bucket O.

(b) after split of bucket O and inserts of 251 and 215.

(c) insert of 145 causes collision and split of bucket O; 6 and 12 inserted,

(d) insert of7caused split of bucket l;keys360 and 18 inserted

Figure 1: Linear Hashing.

of the number of insertions. This property is unique to

LH schemes. The access performance stays close to one

disk access per successful search and the load factor can

reach 95Y0.

The LH algorithm for hashing a key C, i.e., computing

the bucket address a to use for C, where a = O, 1,2, .... is

as follows:

a+h~(c); (Al)

if a < n then a + hi+l(C);

The index i or i + 1 finally used for a bucket is called

the bucket ievel. The value i + 1 is called the file level.

An LH file can also shrink gracefully with deletions

through bucket merging, which is the inverse of split-

ting [Lit80].

3 LH*

3.1 File expansion

We describe the basic LH* scheme, on which many vari-

ants are possible. Each bucket is assumed at a different

server (see figure 2). Each bucket retains its bucket level

(9 or 10 in fig. 2) in its header. Buckets are in RAM,
although they could be on disk. Buckets (and servers)

are numbered O, 1, ... . where the number is the bucket

address. These logical addresses are mapped to server

addresses as discussed in Section 3.4.

An LH* file expands as an LH file. Each key should

be at the address determined by (Al). Initially, the file

consists of bucket O only, the pointer value is n = O, and

ho applies. Thus, the addressing uging (Al) uges the

values n = O and i = O. When bucket O overflows, it

splits, bucket 1 is created, and hl is used. The address-

ing through (A 1) now uses the values n = O and i = 1.

HH H
s,”, 0

❑
1~/’R\

Dl””m““”D”””m““”Dtn=80

Figure 2: Principle of LH*.

At the next collision, bucket O splits again, the pointer

moves to bucket 1, and 112starts to be used, as shown

previously. Addressing using (Al) now uses n = 1 and

i = 1, etc. In Figure 2, the file has evolved such that

i = 9 and n = 80. The last split of bucket O created

bucket 512 and further splits expanded the LH* file to

592 servers.

3.2 Addressing

3.2.1 Overview

Objects of a LH* file are manipulated by clients. A

client usually inserts an object identified with its key, or

searches for a key. A client can also perform deletions or

parallel searches. There can be any number of clients,

as shown in Figure 2.

LH is based on the traditional assumption that all

address computations use the correct values of i and

n. Under SDDS constraint, this assumption cannot be

satisfied when there are multiple clients. A master site

is needed, or n and i values need to be replicated. The

latter choice implies that every client should receive a

message with a new value of n after each split. Neither

option is attractive.

LH* principles are different in that they do not require

all clients to have a consistent view of i and n. The first

principle is that every address calculation starts with

a step called client address calculation. In this step,

the client applies (Al) to its local parameters, n’ and

it, which are the client’s view of n and i, but are not

necessarily equal to the actual n and i of the file. The

initial values are always n’ = O and i’ = O; they are

updated only after the client performs a manipulation.

Thus, each client has its own image of the file that ‘can
differ from the file, and from images of other clients. The

actual (global) n and i values are typically unknown to

a client, they evolve through the action of all the clients.

Even if n’ equaled n the last time a client performed

329



a manipulation, it could happen that splits occurred in

the meantime and n > n! or i > i’.

Figure 2 illustrates this principle. Each client has val-

ues of n’ and i’ it used for its previous access. The image

of client 1 is defined through it = 6 and n’ = 5. For this

client, the file has only 69 buckets. Client 2 perceives the

file as even smaller, with only 4 buckets. Finally, client

m sees a file with 542 buckets. None of these perceptions

is accurate, as the actual file grew to 592 buckets.

A client inserting or retrieving a key C may calculate

an address that is different from the actual one, i.e.,

one that would result from using n and i. In Figure 2,

each client calculates a different address for C = 583.

Applying (A 1) with its n’ and i’, client 1 finds a = 7.

Client 2 computes a = 3, and client m calculates a = 71.

None of these addresses is the actual one, i.e., 583. The

whole situation could not happen in a LH file.

A client may then make an addressing error, i.e., it

may send a key to an incorrect bucket. Hence, the sec-

ond principle of LH* is that every server performs its

own server address calculation. The server receiving a

key, first verifies whether its bucket should be the recip-

ient. If not, the server calculates the new address and

forwards the key there. The recipient of the forwarded

key checks again, and perhaps resends the keyl. We will

show that the third recipient must be the final one. In

other words, in the worst case, there are two forwarding

messages, or three buckets visited.

Finally, the third principle of LH* is that the client

that made an addressing error gets back an adjustment

message. This message contains the level of the bucket

the client first addressed, e.g., in Figure 2, buckets O-79

and 5 12–591 are at level 10 while buckets 80–511 are at

level 9. The client executes the client adjustment algo-

rithm which updates n’ and i’, thus getting the client’s

image closer to the actual file. The typical result is that

clients make very few addressing errors, and there are

few forwarding messages, regardless of the evolution of

the file. The cost of adjusting the image is negligible,

the adjustment messages being infrequent and the ad-

justment algorithm fast.

We now describe these three steps of the LH* address
calculation in detail.

3.2.2 Client address calculation

This is simply done using (Al) with n’ and i’ of the

client. Let a’ denote the resulting address.

a’ + 11.il((j’); (Al’)
if a’ < n’ then a’ + hi,+l (C);

(Al’) can generate an incorrect address, i.e., a’ might

not equal the a that algorithm (Al) computes, but it

can also generate the correct one, i.e. a’ = a. Figure 3

illustrates both cases. The actual file is shown in Fig-

ure 3a with i = 4 and n = 7. Thus, buckets O–6 are at

level 5, buckets 7-15 are at level 4, and buckets 16-22

are at level 5. Two clients, Figures 3b–c, perceive the

file as having i’ = 3 and n’ = 3. The client in Figure 3d

has a still different image: i’ = 3 and n’ = 4.

Figure 3b illustrates the insertion of key C = 7. De-

spite the inaccurate image, the client sends the key to

the right bucket, i.e., bucket 7, as (A 1) would yield the

same result. Hence, there is no adjusting message and

the client stays with the same image. In contrast, the

insertion of 15 by the client in Figure 3c, leads to an

addressing error, that is, a’ = 7 while a = 15. A new

image of the file results from the adjustment algorithm

(explained in Section 3.2.4). Finally, the client in Fig-

ure 3d also makes an addressing error since it sends key

20 to bucket 4, while it should have gone to bucket 20.

It ends up with yet another adjusted image.

3.2.3 Server address calculation

No address calculated by (Al’) can be beyond the file

address space, as long as there was no bucket merging.

(See [LNS93] for a discussion of bucket merging.) Thus,

every key sent by a client of a LH* file is received by a

server having a bucket of the file, although it can be an

incorrect bucket.

To check whether it should be the actual recipient,

each bucket in a LH* file retains its level, let it be j; j =

i or j = i + 1. In LH* files, values of n are unknown to

servers so they cannot use (Al). Instead, a server (with

address a) recalculates C’s address, noted below as a’,

through the following algorithm:

a’ - hj (C); (A2)

if a’ # a then

a“ + hj_l(C)

if a’1 > a and a“ < a’ then a’ + al!;

If the result is a = a’, then the server is the correct
recipient and it performs the client’s query. Otherwise,

it forwards the query to bucket a’. Server a’ reapplies

(A2) using its local values of j and a. It can happen
that C is resent again. But then, it has to be the last

forwarding for C.

Proposition 3.1 Algorithm (A2) jinds the address of

every key C sent through (Al’), and C is forwarded at

most twice.

1If the file can shrink, a server may occasionally send a key
to a bucket that does not exist any more. See [LNS93] for the

discussion of this case.

The following examples facilitate the perception of the

proposition, and of its proof, immediately afterwards.

330



Examples: Consider a client with n’ = O and

i’ = O, i.e. in the initial state, inserting key C where

C’ = 7. Assume that the LH* file is as the LH file in

Figure lC with n = 1. Then, C is at first sent to bucket O

(using Al’), aa by the way, would any other key inserted

by this client. The calculation using (A2) at bucket O

yields initially a’ = 3, which means that C should be

resent. If it were resent to bucket /zj (C), bucket 3, in our

case, it would end up beyond the file. The calculation of

a’) and the test through the second if statement prevents

such a situation. It therefore sends key 7 to bucket 1.

The calculation at bucket 1 leads to a’ = 1, and the key

is inserted there, as it should be according to (Al).

Assume now that n = O and i = 2 for this file, as

shown in Figure ld. Consider the same client and the

same key. The’ client sends key 7 to bucket O, where

it is resent to bucket 1, as previously. However, the

calculation 7 mod 4 at bucket 1 now yields a’ = 3. The

test of a’! leads to keeping the value of a’ at 3, and the

key is forwarded to bucket 3. Since the level of bucket

1 is 2, the level of bucket 3 must be 2 as well. The

execution of (A2) at this bucket leads to a’ = 3, and the

key is inserted there. Again, this is the right address, as

(Al) leads to the same resultz.

In Figures 3c-d, keys 15 and 20 are forwarded once. 1

Proofi (Proposition 3.1.)

Let a be the address of the bucket receiving C from

the client. a is the actual address for C and there are

no forwards iff a = at = hi(C). Otherwise, let a“ =

hj_l(C). Then, either (i) n ~ a < 2i, or (ii) a < n or

a > 2i. Let it be case (i), then j = i. It can happen that

a“ # a, consider then that the forward to all occurs. If
a“ # a, then, i’ < j – 1, a“ > a, the level j(a”) is j = i,

and a“ = hj(=/J)_l (C). Then, either a“ = a’ = hi(C),

or a“ < a’. In the former case a“ is the address for

C, otherwise let us consider the forward to a’. Then,

j(a’) = i, and a’ is the address of C. Hence, there are

two forwards at most in case (i).

Let us now assume case (ii), so j = i+ 1, and we must

have a“ ~ a. If a“ > a, then C is forwarded to bucket

a“. Then, j(a”) = i, or j(a”) = i +1. In the latter case,
hj(a,,)(C) = a“, so a“ is the address for C. Otherwise,

IIa= hj(aJJ)_l (C), and it can happen that a’ = a“, in

which case all is the address for C. Otherwise, it can

only be that a’ > all, a’ ~ 2i, hence j(a’) = i + 1, and

at is the address for C. Thus, C is forwarded at most

twice in ca9e (ii). 1

(A2) implements the proof reasoning. The first and

second lines of the algorithm check whether the current

bucket is the address for C. The third and fourth lines

2We assume a reliable network that does not unreasonably de-

lay messages. Hence, we assume a forwarded key reaches bucket p

before p is split using hi+z. The latter split mn only occur after

alf the buckets preceding p are also split using h,+z.

(a)

j=5 j=4 1 j=5
o 67 15 16 22

t

‘b)u“ LLLl
03 7 10 03 7 10

(c)

j=4 15 “Dj=3 j=4
03 7 10 0 15

o 4 7 11 0 5 16 20

Figure 3: Images of a LH* File.

(a) – actual file

(b) – inaccurate image, but no addressing emor

(c, d) – imuge adjustments

trigger the forward to a’{, if at’ > a.

As the examples showed, the rationale in forwarding

using j – 1 is that the forwarding using j could send a key

beyond the file. Note that several variants of (A2) can

be designed. For instance, one may observe that in (A2),

the calculation of a“ may be used to indirectly recognize

that C was already forwarded once. If a server can know

this from the incoming message, the calculation of a“ by

the second recipient is useless. On the other hand, if the

client sends it along with C, then if i’ ~ j, the calculation

of a’ can be eliminated.

3.2.4 Client image adjustment

In case of an addressing error by the client, one of the

servers participating in the forwarding process sends

back to the client the adjustment message with the level
j of the bucket a where the client sent the key, The

client then updates i’ and n’. The goal is to get i’ and

n’ closer to i and n so as to maximize the number of

keys for which (A 1’) provides the correct address. The

LH* algorithm for updating i’ and n’ when an address-

ing error occurs is as follows. a is the address where key

331



C was sent by the client, j is the level of the bucket at

server a.

l.ifj>i’ t~eni’ej-l, n’+a+l; (A3)

2. if n’ ~ 2’ then n’ +0, i’ -i’+ l;-

Initially, i’ = O and n’ = Ofor each client. Figures 3c-d

illustrate the evolution of images implied by (A3). After

the image adjustment through Step 1, the client sees the

file as with n’ = a + 1 and with k buckets, k ~ a, with

file level j – 1. Step 2 takes care of the pointer revolving

back to zero. The whole guess can of course be inaccu-

rate, as in both Figures 3c-d. However, the client view

of the file gets closer to the true state of the file, thus

resulting in fewer addressing errors. Furthermore, any

new addressing errors result in the client’s view getting

closer to the true state of the file.

If no client inserts objects, (A3) makes every n’ con-

verge to n. Otherwise, for each client there may be a

gap between n’ and n, because of the evolution of n.

A rarely active client makes more errors, as the gap is

usually wider, and errors are more likely.

Examples: Consider Figure 3c. Before the adjust-

ment, an addressing error could occur for every bucket

in the client’s image of the file, i.e., buckets 0–10, as

for every such bucket the actual level was different from

the considered one. The insertion of key 15 leads to a

new perception — a file with level 4 for every bucket.

This image differs from the actual file only at buckets

O–6. No addressing error can occur anymore for a key

sent by the client to a bucket in the range 7–15. This

should typically decrease the probability of addressing

errors for this client.

For the client in Figure 3d, the insertion of key 20 led

to an image that was accurate everywhere but at two

buckets: 5 and 6. Hence the probability of an addressing

error became even smaller than in Figure 3c.

Consider that the client from Figure 3C subsequently
searches for a key whose address is in the range 1–6.

Every such search leading to an adjustment can only

decrease the number of buckets with the level perceived

as 4, instead of the actual level 5. The remaining buckets

must be rightmost in the range. For instance, the search

for key 21 will lead to a new image, where only the level
of bucket 6 remains incorrect. Under the uniform hash-

ing assumption, the probability of an addressing error

will become almost negligible (1/32 exactly). Finally,

the insertion of a key such as 22 would make the image

exact, unless insertions expanded the file further in the

meantime. ~

3.3 Splitting

As stated in Section 3.1, an LH* file expands as an LH

file, through the linear movement of the pointer and

splitting of each bucket n. The splitting can be un-

controlled, i.e., for each collision, Alternatively it can

be controlled, e.g., occurring only when the load factor

reaches some threshold, e.g., 80%, leading to a constant

load factor in practice [Lit80]. The values of 71 and i

can be maintained at a site that becomes the split coor-

dinator, e.g., server O. For uncontrolled splits, the split

coordinator receives a message from each site that un-

dergoes a collision. This message triggers the message

“you split” to site n, and, assuming IV = 1, it triggers

the LH calculation of new values for n and i by the split

coordinator using:

Server n (with bucket level j) which receives the mes-

sage to split: (a) creates bucket n + 2$ with level j + 1,

(b) splits bucket n applying hj+l (qualifying objects are
sent to bucket n+2J ), (c) updates j +- j+ 1, (d) commits

the split to the coordinator.

Step (d) allows the coordinator to serialize the visi-

bility of splits. This is necessary for the correctness of

the image adjustment algorithm. If splits were visible

to a client out of sequence, the client could compute a

bucket address using an n that would be, for the time

being, beyond the file.

Several options exist for handling splits [LNS93]. Most

importantly, the split coordinator can be eliminated and

splits can be done in parallel.

3.4 Allocation of sites

The bucket addresses a above are logical addresses to be

translated to actual addresses s of the sites on which the

file might expand. The translation should be performed

in the same way by all the clients and servers of a file.

There are two approaches: (i) a static table known to

all clients and servers, and (ii) a dynamic table that

can become arbitrarily large, perhaps encompassing the

entire INTERNET [LNS93].

3.5 Parallel operations

A parallel operation on a LH* file F is an operation to

be performed on every bucket of F. Examples include a

selection of objects according to some predicate, an up-

date of such objects, a search for sets of keys in a bucket
to perform a parallel hash equijoin, etc. An interesting

characteristic of LH* is that a client might not know all

the buckets in the file. In [L NS93], we show that the cost

of a parallel operation on a file of M buckets is at most

2A4 + 1 messages delivered between 1 and 0(log2 M)

rounds of messages.

332



3.6 Performance

The basic measure of access performance of LH* is the

number of messages to complete a search or an inser-

tion. A message here is a message to the networking

system, we ignore the fact that it can result in several

messages. For a random search for a value of C, as-

suming no address mismatch, two messages suffice (one

to send C, and one to get back information associated

with C). This is a minimum for any method and is im-

possible to attain if a master directory site is necessary,

since three messages are then needed. In the worst case

for LH*, two additional forwarding messages are needed,

i.e., a search needs at most four messages. We will see

in the next section that the average case is around two

messages and is hence better than any approach based

on a master directory.

For a random insertion, the object reaches its bucket

in one or, at most, three messages. Again, the best case

is better than for a scheme with a master site, where two

messages are needed. The bad cases should usually be

infrequent, making the average performance close to one

message. Furthermore, messages associated with bucket

splitting (discussed in the following section) do not slow

insertions as they are performed asynchronously.

The load factor of a LH* file is as for LH1 i.e., 65-

95% [Lar80, 0u91].

4 ~imulation modeling of LH*

We constructed a simulation model of LH* in order to

gather performance results that were not amenable to

analysis in Section 3. We show that average case per-

formance is very close to the best case for insert and

retrieve operations, that clients incur few addressing er-

rors before converging to the correct view of the file,

that performance for very inactive clients is still quite

good, and that file growth is a relatively smooth and

inexpensive pro cess.

We first describe the simulation model and then report

the detailed results of our performance analysis. The

simulator used the CSIM simulation package [Sch90].

The logical model of the simulator contains the follow-

ing components. The clients model users of the LH* file

and insert and retrieve keys, the servers each manage a

single bucket of the file, the split coordinator controls

the evolution of the file, and the network manager

provides the intercommunication. More detailed behav-

ior of each of these components is described below.

We assume a shared-nothing multiprocessor environ-
ment where each node has a CPU and a large amount of

local memory. Each server (and hence bucket) is mapped

to a separate processing node, aa is each client. The split

coordinator shares the processor with bucket O.

\/ J,

split
nsert

Coord

l.ovfl
4. Splitdone

2.Spli

Bucket Bucket
3 Init

-El

---- Bucket

c n Tuples n+2J

Figure 4: Splitting of a Bucket.

4.1 Simulation components

Clients: Clients typically act in three phases: a

series of random keys are inserted into an empty file,

the client’s view of the file is cleared, i.e., i’ and n’ are

set to 0, and finally, some randomly selected keys are

retrieved.

In our implementation, a client may or may not re-

ceive an acknowledgement message for each insert com-

mand. If acknowledgements are required, a minimum

of two messages is necessary to insert a key into a file

— the original insert request from the client to a server

and a status reply. If an addressing error occurs in the

processing of such an insert, the adjustment message is

piggybacked onto the client reply. If acknowledgments

are not required, a server sends the adjustment message

directly to the client. In the case of retrieves, adjustment

messages are always piggybacked onto the client reply.

In any case, a client uses the information in an adjust-

ment message to update its view of the file (Algorithm

A3 in Section 3.2.4).

Servers: Each bucket in a LH* file is managed by a

distinct server. Servers execute algorithm (A2) to deter-

mine whether they should process the operation or for-

ward it to a different server. If forwarding is required, an

adjustment message is sent to the client unless it is pos-

sible to piggyback it onto the client reply (as explained

above). Upon receipt of a split message from the split

coordinator, a server sends an init message to create a

new bucket of the file and then scans all the tuples in its

local bucket and transfers those that rehash to the new

bucket. In the current implementation, this complete

operation requires a single message. When the transfer

of tuples is done, a splitdone message is sent back to

the coordinator.
Split coordinator: In our implementation, the

split coordinator controls file evolution using uncon-

trolled splitting (see Section 3.3). The actual flow of

messages required to split a bucket is shown in Figure 4.

As is shown, four messages are required for each bucket

333



from the client to the server, forwarding messages from

server to server, and finally, adjustment messages from

servers back to the client. This curve confirms our per-

formance predictions in Section 3. First, performance

is better for files with larger bucket capacities, although
A.h@@rutn in this cxe performance is quite stable. And second,

154

145—

1.40—

135—

130—

123—

lm -

115—

1,10—

1,0s—

. . . . ..-- ...”. _.”. __. ”.._... _.....--
lco —

BUM (s!/0spud
0,95—

0.s0 —

085—

Om

’30 lal ‘w Im 3WI Iaxn
&IOkca oapdty

Figure 5: Performance of file creation.

split. This is a slight simplification because it could take

several messages to transfer the keys to a new bucket,

when bucket capacities are large. Furthermore, the co-

ordinator only allows a single bucket to be undergoing

a split operation. All collision notification messages re-

ceived from servers while a split is in progress are queued

for later processing.

Network manager: A common network interlinks

the servers, clients, and the split coordinator. The net-

work is restricted to one active transmission and uses a

first-come, first-served (FCFS) protocol.

4.2 Experimental results

4.2.1 Performance of file creation and search

insert performance is very close to the best possible —

one message per insertion. The figure shows that the

difference is under 3?Z0.

The upper curve shows the complete load on the net-

working system for building LH* files. That is, it in-

cludes the messages from the lower curve plus the mes-

sages associated with bucket splitting (four messages per

split). Since inserts can take place concurrently with

bucket splits, this metric should not adversely affect

client performance (as shown by the lower curve) un-

less the network becomes a bottleneck. Note that the

curve converges rapidly towards the lower one anyway.

Table 1 presents a more detailed picture of the curves

in Figure 5. In addition to the average messages per

key insert (AvMsgs), which forms the upper curve in

Figure 5, it includes the number of addressing errors

incurred for the key inserts during file creation (column

Errs). As is shown, the number of addressing errors is

very small, even when the bucket capacity is small.

The column Msgs-ack in Table 1 shows the average

number of messages per insert when the status of each

insert operation has to be returned to the client. For ex-

ample, this might be a requirement for clients that need

strong guarantees on the success of their updates. As

is shown, these numbers are almost exactly one greater

than the previous case where inserts are not acknowl-

edged. The reason for being slightly less than one is due

to the piggybacking of addressing error messages onto

the acknowledgement messages to the client.

Finally, column Search shows the average perfor-

mance of a client retrieving random keys from the files.

For each bucket capacity the client first inserted 10,000

random keys. It then reset its view of the file to empty

and retrieved 1,000 keys. This was repeated 100 times

and the results were averaged. As the table shows, it

generally requires just over two messages to retrieve an

object, regardless of the capacity of the buckets. These
values are very close to the befit possible of two messages

per retrieval, with the differences being under l~o.

Figure 5 shows the average cost, in messages per insert, 4.2.2 Convergence of a client view
to build LH* files with bucket capacities ranging from

10 to 10,000 keys. Each file was constructed by-in~erting In this set of experiments we were interested in determin-

10,000 random keys, thus resulting in files with the num- ing how fast a read-only client, starting with a view of

ber of buckets ranging from over 1,000 down to 1. In- the file aa empty, obtains a true view of the file (using the

serts did not require acknowledgements. The lower curve image adjustment algorithm (A3)). Two metrics are of

plots the average number of messages per inserted key as int crest: the number of addressing errors incurred before
seen by the client, i.e., it consists of the original message converging to the true state of the file, and the number

334



I
Bkt No. of

Cap Bkts

17 1012

33 512

62 255

125 128

250 64

1000 16

4000 4

8000 2

Build Search

Errs ] AvMsgs I Msgs-ack AvMsgs

161 1.437 2.421 2.008

134

94

64

41

14

3

1.231

1.120

1.064

1.033

1.009

1.002

2.218

2.111

2.057

2.029

2.007

2.002

2.007

2.007

2.006

2.006

2.004

2.002

1 1.001 2.001 2.001

Table 1: File build and search performance ( 10K inserts,

lK retrieves).

II Bkt I No. of II Addr Errors Retrieves 1

Table 2: Convergence of a client view (1OOK inserts),

of objects retrieved before convergence is reached,

Table 2 presents the detailed results for files with

bucket capacities ranging from 25 to 2500 (each file was

populated with 100,000 random keys). The client was

run 100 times, each time starting with an empty view

of the file, and the results were averaged. The results,

under the column Addr Errors, show that it takes rel-

at ively few addressing errors before the client’s image

converges to the true state, even when the capacity of

each bucket is small and hence the number of buckets is

large. In fact, the average number of addressing errors

is slightly less than logz of the number of buckets. This

is intuitive, because, on average, each addressing error

halves the number of buckets that the client may address

incorrectly. Note also that performance is better for files

with large bucket capacities.

Furthermore, the results under the column Retrieves

demonstrate that a client can retrieve many objects

without incurring addressing errors even though the

client’s view of the file is inaccurate. For example, when

the bucket capacity was 25, the client retrieved 3,996
objects before its view of the file matched the true state

of the file. Since only 9 addressing errors were incurred

in order to reach convergence in this case, 3987 of the

3996 objects were retrieved without error, for an average
of just 2.002 messages per retrieve.

Insert Client O (Active) Client 1 (Less Active)

Ratio AvMsg Errs YoErrs AvMsg Errs

1:1

YoErrs
2.01 125 1 .’25% 2.01 126 1.26% 1

10:1 2.01 115 1.15% 2.05 49 4.90%
100:1 2.01 104 1.04% 2.23 23 Zs.ooyo

1000:1 2.01 104 1.04% 2.50 4 40.00%

Table 3: Two clients (bucket capacity = 50).

Insert Client O (Active) Client 1 (Less Active)

Ratio AvMsg Errs YoErrs AvMsg Errs YoErrs

1:1 2.004 38 I 0.38’% 2.004 39 I 0.39~o

10:1 2.002 20 0.20% 2.013 13 1.30?4
100:1 2.002 20 0.20% 2.100 10 10.00%

1000:1 2.002 20 0.20% 2.500 5 50<00%

Table 4: Two clients (bucket capacity = 500).

4.2.3 Performance of less active clients

In this section, we analyze the performance of LH* when

two clients are concurrently accessing a file. Specifically,

we are interested in the case where one client is signifi-

cantly less active than the other. The expectation is that

a less active client experiences more addressing errors

than an active client since the file may evolve between

accesses by the lazy client.

In these experiments, the two clients are synchronized

such that the first client inserts IV keys for every key

inserted by the second client (IV is referred to sa the

Insert Ratio). The first client always inserts 10,000 keys.

Thus, with an insert ratio of 100 to 1, the second client

only inserts 100 keys. All insert operations required an

acknowledgment.

The results are summarized in Table 3 for LH* files

with a capacity of 50 keys at each bucket. The aver-

age number of messages per insert, the total number of

addressing errors, and the percentage of addressing er-

rors related to the number of inserts are shown for each

client. As the table shows, the performance of the sec-

ond client degrades as it is made progressively less ac,-

tive. This occurs because the inserts by the first client

expand the file thus causing the second client’s view of

the file to be outdated. This then results in the second,

less active client experiencing an increased percentage of

addressing errors.

Table 4 repeats the experiments of Table 3 with the

exception that the bucket capacity has been increased
from 50 to 500. The overall result from this experiment

is that the percentage of addressing errors decreases with

larger bucket capacities because greater capacities result

in files with fewer buckets and hence it is less likely that

a slower client will have an outdated view of the file.

335



(For example, with an insert ratio of 1:1, the number of

buckets was decreased from 579 to 64 when the bucket

capacity was increased from 50 to 500. ) However, a com-

parison of the two tables shows that the percentage of

addressing errors does not increase significantly for files

with smaller bucket capacities.

An experiment with 100,000 keys and with set-

tings identical to that of Table 4 showed that perfor-

mance of less active clients tends to be better for large

files [LNS93]. For example, the percentage of errors ob-

served by the less active client was reduced to 17% and

the message cost was decreased to 2.17, for an insert

ratio of 1000:1.

4.2.4 Marginal costs during file growth

Many file access methods incur high costs at some points

during file evolution. For example, in extendible hash-

ing, an insertion triggering the doubling of the directory

incurs a much higher cost. In LH*, the cost of file evo-

lution is rather stable over the lifetime of a file. Exper-

iments computing marginal costs reported in [LNS93]

show that access performance stays between 2.00 and

2,06 messages over the lifetime of the file, even for files

with small bucket capacities.

5 Conclusion

LH* is an efficient, extensible, distributed data struc-

ture. An LH* file can grow to virtually any size. In

particular, the algorithm allows for more efficient use

of interconnected RAMs and should have numerous ap-

plications: very large distributed object stores, network

file systems, content-addressable memories, parallel hash

joins, and, in general, for next generation databases.

Operations that were not possible in practice for a cen-

tralized database may become feasible with LH*.

Our analysis showed that it takes one message in the

best case and three messages in the worst case to insert

a key into a LH* file. Correspondingly, it requires two

messages to retrieve a key in the best case and four in

the worst case. Furthermore, through simulations we
showed that average performance is very close to optimal

for both insert and retrieve queries. Hence, performance

of any algorithms that use a centralized directory has to

be worse than the average performance of LH*.

There are many areas of further research for LH*.

Variants of the basic LH* scheme outlined in this paper
and in [LNS93] should be analyzed in greater depth. Ap-

plications of LH*, e.g., hash-joins and projection, should

be examined. Concurrent use of LH*, e.g., on the ba-

sis of [E1187], and fault tolerance are especially interest-

ing areas. The evaluation of an actual implementation
would also be interesting. For example, we ignored the

internal organization of LH* buckets. As buckets can be

several megabytes large, their organization could have

many performance implications. One attractive idea is

that of buckets of different size, depending on bucket

address.

Finally, one should investigate other SDDSS, e.g.,

based on other dynamic hashing schemes, [ED88, Sa188,

Sam89], or preserving a lexicographic order, e.g., B-trees

or [Hac89, Kri86, LRLH9 1], that can improve the pro-

cessing of range queries.

Acknowledgements

We would like to thank Spyros Potamianos for his in-

valuable help in formatting the paper.

References

[ED88] R. Enbody and H. Du, Dynamic hashing systems.

ACM Computing Surveys, 20(2), June 1988.

[El187] Carla S. Ellis. Concurrency in linear hashing.

ACM TODS, 12(2), June 1987.

[Hac89] N .1. Hachem, et al. Key-sequentiaJ access meth-

ods for very large files derived from linear hashing.

In Intl. CorLj. on Data Engineering, 1989.

[Kri86] H.-P. Kriegel, et al. Multidimensional order pre-

serving linear hashing with partial expansions. In

Intl. f30nf. on Database Theory. Springer-Verlag,

1986.

[Lar80] P.A. Larson. Linear hashing with partial expan-

sions. In Proc. of VLDB, 1980.

[Lar88] P.A. Larson. Dynamic hash tables. CA CM, 31(4),

April 1988.

[Lit80] W. Litwin. Linear hashing: A new tool for file

and table addressing. In Proc. of VLDB, 1980.

[LNS93] W. Litwin, M.-A. Neimat, and D. Schneider.

LH*—linear hashing for distributed files. Tech.

report HPL-93-21, Hewlett-Packard Labs, 1993.

~LRLH911 W. Litwin, N. ROUSSOPOU1OS,C. Levy, and

[OU91]

[sa188]

[Sam89]

[Sch90]

[SPW90]

W. Hong. Trie hsshlng w~h controlled load.’ IEEE

Trans. on Sofizuare Engineering, 17(7), 1991.

S. F. Ou, et al. High storage utilisation for single-

probe retrieval linear hashing. Computer Journal,

34(5), Oct. 1991.

B. Salzberg. File Structures. Prentice Hall, 1988.

H. Samet. The design and analysis of spatial data

structures. Addison Wesley, 1989.

H. Schwetman. Csim reference manuaJ (revision

14), Tech. report ACT-ST-252-87, Rev. 14, M(3C,

March 1990.

C. Severance, S. Pramanik, and P. Wolberg. Dis-

tributed linear hashing and parallel projection in

main memory databsses. In Proc. of VLDB, 1990.

336


	Abstract
	Introduction
	Linear Hashing
	LH*
	Simulation modeling of LH*
	Conclusion
	References

