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Abstract 

In this work access support relataons are introduced as a 
means for optlmizmg query processing m object-oriented 
database systems The general idea 1s to mamtam re- 
dundant separate structures (dlsassoclated from the ob- 
Ject representation) to store object references that are 
frequently traversed m database queries The proposed 
access support relation technique 1s no longer restricted 
to relate an obJect (tuple) to an atonuc value (attribute 
value) as m conventional mdexmg Rather, access sup- 
port relations relate obJects with each other and can span 
over reference chains which may contain collection-valued 
components m order to support queries mvolvmg path 
expressions We present several alternative extensions 
of access support relations for a given path expresaon, 
the best of which has to be determmed accordmg to the 
apphcatlon-specific database usage profile An analytical 
cost model for access support relations and their apphca- 
tlon 1s developed This analytical cost model IS, m partlc- 
ular, used to determine the best access support relation 
extension and decomposltlon with respect to the specific 
database configuration and apphcatlon profile 

1 Introduction 

ObJect-oriented database systems constitute a promlsmg 
approach towards supportmg technical apphcatlon do- 
mams Several obJect-oriented data models have been 
developed over the last couple of years However, these 
systems are still not adequately optlmlzed for apphca- 
tlons which involve a lot of assoclatlve search for obJects 
on secondary memory they still have problems to keep up 
with the performance achieved by, e g , relational DBMSs 
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Yet it IS essentml that the object-oriented systems will 
yield at least the same performance that relational sys- 
tems achieve otherwise their acceptance m the engmeer- 
mg field 1s Jeopardized even though they provide higher 
functlonahty than conventional DBMSs by, e g , mcorpo- 
ration of type extenslblhty and obJect-specific behavior 
wlthm the model Engineers are generally not wllhng to 
trade performance for extra functlonahty and expressive 
power Therefore, we conjecture that the next couple of 
years will show an increased interest m optlmlzatlon is- 
sues m the context of obJect-oriented DBMSs The con- 
tribution of this paper can be seen as one important piece 
m the mosaic of performance enhancement methods for 
obJect-oriented database apphcatlons the support of ob- 
Ject access along reference chains 

In relational database systems one of the most per- 
formance-crltlcal operations 1s the Jozn of two or more 
relations A lot of research effort has been spent on expe- 
dltmg the Jam, e g , access structures to support the Join, 
the sort-merge Join, and the hash-lozn algorithm were de- 
veloped Recently, the binary Jam index structure [ll] 
was designed as another optlmlzatlon method for this op- 
eration 

In obJect-onented database systems with object refer- 
ences the Jam based on matching attribute values plays 
a less predominant role More important are obJect ac- 
cesses along reference chains leadmg from one object m- 
stance to another Some authors, e g , [2], call this kmd 
of obJect traversal functzonal Jam This work presents an 
mdexmg technique, called access support relattons, which 
1s designed to support the functional Join along arbitrary 
long attribute chains where the chain may even contain 
collection-valued attributes 

The access support relations described m this paper 
constitute a generahzatlon of the binary Jam indices orlg- 
mally proposed for the relational model [ll], and later 
extended for object models [3,12] Rather than relating 
only two relations (or obJect types) our techmque allows 
to support access paths of arbitrary length Our mdexmg 
techmque subsumes and extends several other previously 
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proposed strategies for optlmlzmg access along attrlbute 
chams m object bases The index paths m Gemstone [7] 
are restricted to chains that contam only single-valued at- 
tributes and their representation 1s hmlted to binary par- 
tltlons of the access path Smularly, the obJect-onented 
access techniques described for the Orion model [6,1] are 
extended m several dlmenslons m our framework 

Our technique differs m three major aspects from the 
two aforementioned approaches 

l access support relations allow collection-valued at- 
tributes wlthm the attribute chain 

l access support relations may be mamtamed m four 
different extensions The extension determines the 
amount of (reference) mformatlon that IS kept m the 
index structure 

l access support relations may be decomposed mto ar- 
bitrary partltlons This allows the database designer 
to choose the best extension and partltlon according 
to the apphcatlon characterlstlcs 

Also the (separate) rephcatlon of object values as pro- 
posed for the Extra object model [9] and for the PostGres 
model [lo,81 are subsumed by our technique 

The remainder of this paper 1s organized as follows 
Section 2 introduces our Generic ObJect Model (GOM), 
which serves as the research vehicle for this work, and 
some slmphfied apphcatlon example to highlight the re- 
quirements on obJect-oriented access support Then, m 
section 3 the access support relations are formally de- 
fined In section 4 we start the development of an analyt- 
ical cost model for our mdexmg technique by estlmatmg 
the cardmahtles of various representations of access sup- 
port relations Section 5 describes the utlhzatlon of ac- 
cess support relations m query evaluation and estimates 
the performance enhancement on the basis of secondary 
page accesses Section 6 1s dedicated to presentmg some 
sample results of operation mix costs for a few selected 
apphcatlon characterlstlcs Section 7 concludes this pa- 
per 

2 The Object Model GOM 

This research 1s based on an object-oriented model that 
unites the most salient features of many recently proposed 
models m one coherent framework the Generic Object 
Model GOM The interesting aspects of GOM concernmg 
the access support relations are 

object identity each object instance has an ldentlty 
that remains invariant throughout Its lifetime The 
obJect identifier (OID) IS mvlslble for the database 
user, it 1s used by the system to reference obJects 

This allows for shared subobJects because the Same 
obJect may thus be associated with many database 
components Here, OIDs are denoted #20, #21, 

type constructors the most basic type constructor IS 
the tuple constructor which aggregates differently 
typed attributes to one object In addition, GOM 
has the two built-m collection type constructors set, 
denoted as {}, and hstl, denoted as <> GOM 
also provides for subtypmg of tuple-structured types, 
however this 1s irrelevant for the present dlscusslon 

strong typing GOM 1s strongly typed, meaning that all 
database components, e g , attributes, set elements, 
etc, are constrained to a particular type This, m 
particular means that all path expressions are typed 
However, the constrained type constitutes only an 
upper bound, the actually referenced instance may 
be a subtype-instance thereof 

object references assignment of an obJect to an at- 
tnbute, a variable or msertlon of an object into a set 
corresponds to mamtammg a reference to the respec- 
tive object Thus, object references are stored umdl- 
rectlonal, conformmg to almost all pubhshed object 
models 

2.1 Type Definitions 

A hear path 1s an attribute chain that contams only at- 
tributes referring to a single object Single-obJect-valued 
attributes are only useful to model 1 1, or N 1 rela 
tlonshlps In order to represent 1 M, or general N A4 
relations one needs to mcorporate collection-valued at- 
tributes, 1 e , attributes referring to a set or list instance 
To illustrate this let us define a vastly slmphfied database 
schema for modeling a Company composed of a set of Dz- 

vwons Each Dtvwzon Manufactures a set of Products, 
which themselves are composed of BaseParts 

The schema 1s outlined below 

type Company is {Dlvlslon}, 
type Dlvlslon is [Name STRING, 

Manufactures ProdSET], 
type ProdSET is {Product}, 
type Product is [Name STRING, 

Composlt>on BasePartSET], 
type BasePartSET is {BasePart}, 
type BasePart is [Name STRING, 

Price DE@IMAL], 

Addltlonally we assume the existence of a reference to a 
given company 

var Mercedes Company, 

1 Lmts are not further consldered m this paper, though 
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Company #20 {#21,#22, #23r ) 

Division #21 
Name “Auto” 

I I 
#22 

Name “Truck” 
Manufactures #24 Manufactures #26 I I 

#b 
Name “Space” 
Manufactures NULL 

I I I I I I 

ProdSET #24 {#26, 1 #% {#26j #29 ) 

, 

Product #%I 
Name “560 SEC” 

I I 
#29 

Name “MB Trak” 
Composition #27 Composltlon NULL I I 

#211 
Name “Sausage” 
Composition #213 

1 I 1 I I J 

BasePartSET 

BasePart #Q 
Name “Door” 
Price 1205 50 

Figure 1 Database Extension With Non-Linear Paths 

A sample extension of this schema 1s presented m Fig- 
ure 1 Note that an obJect IS represented as a triple 
(#23 ,v, t) where #23 1s the obJect identifier, v the ob- 
ject representation, and t the object’s type References, 
e g , #21 Manufactures, are maintained umdlrectlonally 
by storing the associated obJect’s identifier, #24, wlthm 
the domain obJect (#21) 

Now let us illustrate some typical queries m an SQL- 
like syntax which access obJects along references (possibly 
leading through sets) 

Query 1. Which Dzvzszon uses a BasePart named 
“Door”? 

select d Name 
from d m Mercedes, 

b in d Manufactures Composltlon 
where b Name = “Door” 

“d Manufactures Composztzon” 1s a set-valued path ex- 
pression with the followmg semantics 

d Manufactures Composztaon = U 2-n Composztzon 
me d Manufactures 

Query 2 Retrieve the Name of all the BaseParts used 
by the Dzvzs2on named “Auto” 

select d Manufactures Composltlon Name 
from d in Mercedes 
where d Name = “Auto” 

3 Access Support Relations 

As mentioned earlier access paths are used to support 
query evaluation More precisely, access paths allow the 
fast selection of those members of an object collectlon 
which fulfill a given selection criteria based on obJect ref- 
erences along an attribute chain or path expression A 
path expression or attribute cham IS defined as follows 

Definition 3 1 Let to, ,t, be (not necessarzly dzs- 
tznct) types A path expresszon on to 2s an expresszon 
to AI A,, 28 for each 1 5 2 5 n one of the followzng 
condrtzons holds 

l Type t,-1 2s defined as type t,-1 IS [ ,A 4, I, 
2 e , a tuple type contaznzng at least the attnbute A, 
of type t, 

l Type t,-1 2s defined as type t,-1 is [ ,A t:, I 
and the type t: 2s defined as type t: is {t,} In thzs 
case we speak of a set occurrence at A, 2n the path 
to AI An 

The type t,-1 2s called the domaan of A,, and t, 2s called 
the range of A, 

The second part of the definition 1s useful to support 
access paths through sets2 If it does not apply to a given 
path the path 1s called 12near 

For slmphclty we require each path expression to ong- 
mate m some type to, alternatlvely we could have chosen 
a particular collection C of elements of type to as the an- 
chor of a path (leading to more difficult defimtlons and 
cost functions, though) 

2Note, however, that we do not perrmt powersets 
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Since an access path can be seen as a relation we will 
use relation extensions to represent access paths The 
next defimtlon maps a given path expression to the un- 
derlying access support relation declaration 

Definition 3.2 Let to, ,t, be types, to AI A,, be 
a path expressaon, and k the number of set occurren- 
ces zn to Al A, Then the access support relataon 

;gl 
A, as of anty n + k + 1 and has the followang 

Eto AI A, [SO, ,%+kl 

The domaan of the attnbute So as the set of adentafiers 
(OIDs) of obJects of type t 0 For(1 5 a 5 n) let k(a) be the 
number of set occurrences before A,, a e , set occurrences 
at A, for3 < a Then the domaan of the attnbute S,+k(,) 
as the set of OIDs that adentafy ob3ects of type 

l t,, af A, as a sangle-valued attnbute 

l t:, af A, as a set-valued attnbute In thas case the 
domaan of S,+k(,)+l as the set of OIDs of type t, 

Ift,, as an atomac type then the domaan of S,,+k as t,, a e , 
values are darectly stored an the access support relataon 
If the underlyang path expressaon as clear from context we 
wall wrate E anstead of Et, A, A, 

Let further m be defined as m = n + k 
We dlstmgulsh several posslbdltles for the extension 

of such relations To define them for a given path ex- 
pression to Al A,, we need n temporary relations 
Eo, , En-1 

Definition 3 3 For each A, (1 5 3 5 n) we construct 
the temporary relataon E,-1 Dependang on the domaan 
of A, the relataon El-l as 

banary, af A, as a sangle-valued attnbute In 
thas case the relataon EJ-l contaans the tuples 
(ad(03-1),ad(03)) for every oblect 4-1 of type t,-1 
and o3 of type t, such that 0~~1 A3 = oJ If t, as 

an atomac type then ad(o,) corresponds to the value 
al-l A3 

ternary, af the attnbute A, as a set-valued at- 
tnbute Then the relataon E,-l contaans the tu- 
ples (ad(o,-I), ad(oi), ad(o,)) for every obJect 0~~1 of 
We t, -I, 0: of type ti, and o, of type t, such that 
o,-~ A, = 0: and the set o(, contaans o, In the spe- 
caal case that 0; as an empty set the relataon E3-l 
contaans the tuple (ad(o,-I), ad(oi), NULL) 

Example: Recall the Company database extension of 
Figure 1 For the underlying schema we could de- 
clare the access support relation on the path expression 
Davasaon Manufactures Composataon Name This results 
m 3 temporary relations Eo, El, and E2 

EQ 

El OIDproduct OIDBasepartSE~ OID~ase~ort 

#all #113 #I14 

#,6 #W #aa 

Let us now introduce different possible extensaons of a 
given access support relation E For a given path expres- 
sion to Al A,, we dlstmgulsh four extensions 

the canonacal extension, denoted E,,, contams only 
mformatlon about complete paths, 1 e , paths ong- 
mating m to and leading to t, Therefore, it can 
only be used to evaluate queries that originate m 
an obJect of type to and “go all the way” to t, 

the left-complete extension El,ft contams all paths 
orlgmatmg m to but not necessarily leading to t,, 
but possibly endmg m a NULL 

the right--complete extension E,.+, analogously, 
contams paths leading to t,, but possibly originat- 
mg m some object o, of type t, which IS not ref- 
erenced by any obJect of type t,-1 via the A, at- 
tribute 

finally, the full extension Efull contains all partial 
paths, even If they do not originate m to or do end 
m a NULL 

Definition 3.4 (Extensions) Let W (X,ZCU,W) de- 
note the natural (outer, left outer, nght outer) loan on 

the last column of the first relataon and the first column 
of the second relataon Then the dafferent extensaons are 
obtaaned as follows 

E can = E,,W w &-I 

EjUll = EoW ~&.-I 

Elejt = ( (EomEl)m mE,-1) 

E rrght = (EoK( K(E,-zKE~-I) ) 

Example: For our example apphcatlon the full exten- 
sion contains also the mcompleke paths, 1 e , those that 
lead to a NULL (e g , the first tuple m the extension 
shown m Figure 2) or those not orlgmatmg m an object 
00 of type to (the second tuple m Ej,,ll shown m Figure 2) 
Even partial paths not orlgmatmg m to and leading to a 
NULL are to be included The extension E,,, would only 
contam the last tuple shown m Efurr Er,ght would not 
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Ejdl OID Dwwon OIDProdSET OIDProduct OIDB~~~P~V-~SET OIDB~~~P,M VALUEN,,, 

#a2 #a5 #a9 NULL NULL NULL 
NULL NULL #all #al3 #al4 “Pepper” 

#al #a4 #a6 #a7 #Q “Door” 

Figure 2 A Sample Extension of EfUll 

contam the first tuple shown m Figure 2, whereas m El,ft 
the second tuple would be ormtted 

Aside from different extensions of the access support 
relation also several decomposltlons are possible, which 
are discussed now Since not all of them are meanmgful 
we define a decomposltlon as follows (Remember m = 
n+k) 

Defimtlon 3 5 (Decomposition) Let E be an (m+l)- 
ary access support relataon wath attrabutes So, , S,,, 
Then the relataons 

J+ 

F’ 
> S*l for 0 < 21 5 m 

E”‘,‘2 11) 9 %I for 21 < 22 _< m 

E’kF Pa, Y ,%I for zk < 773 

are called a decomposataon of E The rndavadual relataons 
E’JI’J+I, called partataons, are matenalazed by prolectang 
the correspondang attrabutes of E If every partataon as a 
banary relataon the decomposataon as called banary The 
above decomposataon as denoted by (O,a1,22, ,zk,m) 

Note that m and n are equal only m the case that there 
1s no set occurrence along the path If there 1s any then 
m > n Under the aasumptlon that there 1s no set sharmg, 
the set identifiers may be dropped from the access support 
relation This results m m = n To slmphfy the analysis 
we will do so for the examples considered m the next 
section Note, however, that the analytical cost model 
captures the general case If one reads n as m 

The last question discussed m this sectlon concerns the 
usefulness of the above defined decomposltlons 

Theorem 3 6 Every decomposataon of an access support 
relalaon as lossless 

The proof of this theorem 1s obvious since we decom- 
pose along multi-valued dependencies 

3.1 Sharing of Access Support Relations 

Consider the followmg two path expressions 

If to A1 A, and SO BI Bl are path expressions 
both leadmg to obJects of type t, then part of the access 
support predicates may be shared 

This, m general, 1s only possible when a full extension 
of at least one of the access support relations 1s mam- 
tamed Let Efull be the full extension for the path PI, 
and ,!?j,,ll the full extension of the access support relation 
for path P2 Then the decomposltlon (0, a, a+J, n) of Ej,,ll 
and (O,l,l +J, r)3 of ,??jUll share a common partltlon, 1 e , 
E;$y = E;;; 

Thus we obtain the followmg five partltlons 

E;;f, [OIDt,, , OIDt,] E;;:, [OID,,, > OIDt,l 

E;$ = E;$ PI&,, , OIDt,+,l 

E;,::‘” [OIDt.+, , QIDtr.1 $Y$’ Wh,+, , , OIDJ 

The five partltlons may then, mdlvldually, be further de- 
composed 

In general, this sharmg 1s only possible for full exten- 
sions Exceptions are 

l If both paths PI and Pz originate m to, 1 e , a = I= 0 
and to = SO Then the sharing 1s also possible for 
left-complete extensions 

l If both paths lead to t,, 1 e , their right-most part 
IS Identical, then the correspondmg partition of the 
right-complete extensions may be shared 

This should indicate that there may exist a higher level 
of organization, 1 e , an access support relations manager 
which controls (and constrains) the possible extensions 
and decomposltlons 
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4 Analytical Cost Model: Cardi- 
nality of Access Relations 

In this section we develop the basrs of our analytical cost 
model a model of the apphcatron profile and formulas 
for the cardmahtres of access support relations under drf- 
ferent extensions and decomposrtrons Later on, the cost 
model 1s used to derrve the best physrcal database de- 
sign, i e , to find the best extension and decomposrtron of 
a given path expression accordmg to the predetermmed 
operation rmx 

4.1 Preliminaries 

Before grvmg the sizes of the relatrons we introduce some 
parameters that model the characterrstlcs of an apphca- 
tlon These are listed m Figure 3 not hit 1s given as 

application-specrfic parameters 
1 semantics (and derlvatlon/default) parameter 

n 
Cl 
d, 

fan, 

shar, 

sue, 

length of access path 
total number of obJects of type 2, 
the number of objects of type t, for which the 
attribute A,+1 1s not NULL 
the number of references emanatmg on the 
average from the attnbute A,+1 of an obJect 
0, of type t, 
the average number of objects of type t, that 
reference the same obJect m t,+l If no value 
for shar, 1s determined by the user, It 1s de- 
rived as shar, = man(1, (d, * fan,)/c,+l) 

average size of objects of type t, 
system-specific parameters 
net size of pages, which 1s set to 4056 

size of obJect identifiers, default IS 8 

fan out of the Bt tree, which 1s derived as 
[PageScze/( PPsrze + OIDscze)J 

Figure 3 System and Apphcatron Parameters 

4.1.1 Some Derived Quantities 

The probablhty PH, that a particular object o, of type 
2, 1s “hit” by a reference emanating from some object of 
type t,-1 is 

PH, = 5 

Let us now derive the probabrhty that, for some object 
o, of type t, none of the fan, references of the attrrbute 
o, A,+1 hits a particular obJect o,+r E t,+l, which belongs 
to the e,+r referenced obJects 

This value IS deduced by using the number of fan,- 
element subsets of the e,+r obJects of type tr+l Thrs 
number 1s given as the bmomral coefficient 

es+1 

C> 

e,+ll 

an, = fan,‘(e,+l -fan,>’ 

Then, the probablhty that the particular object ot+l 1s 

m= 
c;2:, 

es+1 -fan, = 1 _ fan, 

es+1 eat1 
The probabrhty that o,+r 1s not hit by any of the refer- 

ences emanatmg from a subset { 0,’ , of, , of} of obJects 
of type t,, all of whose A, attributes are defined, 1s 

( ) 123 f k 

e,+l 

For 0 5 a < J 5 n we now define RefBy(a, 3, k), which 
denotes the number of objects m t, which he on at least 
one (partial) path emanating from a k-element subset of 
4 

RefBy(a,J, k) = 

where the exponent E(a, J, k) = RefBy(a, J - 1, k) * PA,-~ 
Further the probablhty, denoted PRefBY(a,g), that a 

path between anyone object m t, and a particular obJect 
o3 m tJ exists for 0 5 2 < J 5 n, 1s derived as 

1 a=] 
pRejBy(hd = RefBy(a,J, d,) else 

5 
The number of objects m t, which are referenced by a6 
least one object m t,-1 1s denoted as e, 

Let Ref (a, 3, k) d enote the number of objects of type t, 
whrch have a path leading to some element of a %-element 
subset of obJects of type t, for 0 5 a < 3 5 n This value 
can be approximated as 

I I 

The probablhty PA, that an obJect o, of type 2, has a 
defined A,+1 attrlbute value 1s 

Ref(a,J, k) = 
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where the exponent E’(z,J, Ic) = Ref(z + 1,~~ h> * PH,+~ 

Let PR~J(z,J) be the probability that a given obJect m 
t, has at least one path leading to any one object m t, 
Then 

The number of paths between the obJects m t, and the 
objects m t, can be estimated by 

4.3 Storage Representation of Access 
Support Relations 

Followmg the proposal by Valdurlez [ll] for Jam indices 
an access support relation (partltlon) E$’ IS stored m two 
redundant B+ trees, one being keyed (clustered) on the 
first attribute, 1 e , OIDs of obJects of type t,, and the 
second B+ tree being clustered on the last attribute, 1 e , 
OIDs of tl obJects In this way we can achieve a fast look- 
up of all tuples (partial paths) originating m some obJect 
o, of type t, and all (part&) paths leadmg to some object 
oj of type t, Particularly, m this way the semi-Join of 
access support relation partitions 1s efficiently performed 
m both dlrectlons The right-to-left semi-Join, e g , 

4.2 Cardinalities of Access Support Re- ( K(E;;“K(Efj’K~$)K ) ) 

lat ions 
IS performed for evaluating a backward query, the left-to- 

We can now deduce closed formulas for the number of right sent-Join to evaluate a forward query (cf sectlon 5) 
tuples m the access support relations 

Let us first introduce two more probablhstlc values Let 
P~~(z,J) denote4 the probability that a particular ObJect 

4.4 Storage Costs for Access Support 

of type t, is not “hit” by any path emanating from some Relations 
object in t, for 0 2 2 < J 2 n The size of a tuple m the access support relation E$’ m 

Plb(2,3) = 
1 

1 - PRefBy(bJ) 2 < 3 
1 else 

bytes IS 

ab”3 = OIDszze * (3 - z $ 1) 

Analogously, let Prb(z,f) denote’ the probablhty that 
a particular obJect of type t, contams no emanatmg path 

The number of tuples m access relation E;i’ per page 

to some obJect m t, for 0 5 a < J 5 n 

2 < 3 

else 

Let #E>J denote the cardmahty of the access relation 
The size of the access relation E;;’ m bytes 

partltlon E;i3 for the general decomposltlon ( r2,3, ) 
under the extension X, 1 e , X E {CUR, full, left, rzght} 

as>’ = #E>’ * ats’J 

The approximate number of pages needed to store the 

#Et&, = pRejBy(%2) * @h(z,j) * pref(h n) 

access relation E$’ 

j-r 3-k 

#E;$ = c c Plb(ma2(2, / - l), I) * pdh(l, I+ Ic) 
kc1 I=r 

* Prb(i + k, mtn(J, 1 + k + 1)) 

3-r 

#E:$ = c pRefBy(o, 2) * @h(t, 1 + k) 
k=l 

* Prb(z + k, mZn(j, 2 + k + 1)) 

3-s 

= ~Plb(maC(E,J - k - l),~ - k) 

Note that this value has to be multiplied by a factor of 
2 due to the redundant maintenance of access support 
relations 

5 Query Processing and Update 
costs 

In this section we first evaluate the apphcablhty and the 
costs of the different extensions and decomposltlons to 
query processing 

*lb left-bound 
5 rb r&t-bound 
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5.1 Query Costs relations are slightly lower than for binary decomposed re- 

To compare the query evaluation costs we consider ab- 
lations For this apphcatlon profile the performance gain 

stract, representative query examples of the followmg two 
1s m the order of a factor of 100, for larger databases the 

forms 
performance gam IS even more drastic (the performance 
gain grows proportional to the database size) 

Backward Queries In this query expression the ob- 
jects o E C are retrieved, where C 1s a collection of t, 
instances The resultmg objects are selected based on 
the membership of some other object o1 of type t, m the 1000 

path expression o A,+1 A, 
q nodec 

QtJ(bw) 3 select o 100 
from 0 in C /* set oft, instances */ a 
where o, in o A,+1 A, 8 

$ 10 
Forward Queries Forward queries retrieve obJects of 
type t, which can be reached via a path emanatmg from 
some given object o of type i, 1 

no sup canonical f u I I left right 

Q’J(fw) E select o A,+1 A, 
from 0 in C /* set oft, instances */ 
where 

Figure 4 Query Costs for a Backward Query 

Let us now mvestlgate the apphcablhty of var’~ous 
extensions of an access support relation for the path 
to AI An The full extension can be used to sup- 
port the evaluation of all path expressions of the form 
0 A, A3, 1 e , all sub-paths of the path expresslon 
to Al A,, On the other hand, the canomcal extension 
can only be used If 2 = 0 and J = n The left-complete 
extension can support the evaluation If 2 = 0, the nght- 
complete extension 1s only apphcable d J = n 

Unfortunately, the space hmltatlons do not allow us to 
derive the analytlcal formulas for estlmatmg the costs of 
queries under different access support relations, see [4] for 
a more detailed treatment 

Query Costs for an Example Application Figure 
4 vlsuahzes the cost of a backward query of the form 
Q014(bw) for the apphcatlon-specific parameters shown 
below (the path under conslderatlon 1s of length 4) 

The access support relations were either decomposed 
mto binary partitions (bz) or non-decomposed (no dec) 
As expected, the query costs for non-decomposed access 

5.2 Update Costs 

For the different extension and decomposltlon posslblh- 
ties we now consider the dynamic aspect of maintenance 
Of course, updates m the obJect base have to be reflected 
m the access relation extensions 

We consider the msertlon and deletion of an object 
Into/from a set-valued attrlbute (smgle-valued attributes 
are a special case) Thus, we dlstmgulsh the followmg 
two abstract operations 

212s’ E insert o into o, A,+1 

del’ 3 delete o from o, A,+, 

We assume that the obJect o, 1s of type t,, and o IS of 
type t,+l Note, that the costs for both update operations 
are essentially the same The cost formulas are again 
developed m [4] W e consider only “pure” update costs, 
that is, the costs of the queries to locate the obJects o, 
and o 1s not mcluded m our update costs Therefore, some 
cost functions (cf Figure 5 and 6) may actually decrease 
as the update probability Increases, this happens when 
the pure update cost 1s lower than the query costs 

6 Evaluation 

In this chapter we demonstrate the cost estimates for a 
few selected apphcatlon examples Before domg so, we 
need a model of a database load profile, called an opera- 
tzon ma2 
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Figure 5 Cost of Operation Mix for two Decomposltlons (a) bmary decomposltlon, (b) the decomposltlon (0,3,4) 

6.1 Modeling an Operation Mix 

In our analytical cost model an operation mix M IS de- 
scribed as a triple 

M = (Qmz, Km,, Pup> 

Here, Qmil 1s a set of weighted queries of the form 

Q m12 = {(WAl), 7 (%t qtJ1 

where for (1 5 z 5 p) the q, are queries and 20, are 
weights, 1 e , w, constitutes the probability that among 
the listed queries m Qmrr qt 1s performed It follows that 

CL w, = 1 has to hold 

Analogously, the update mix U,,,,, 1s described Fl- 
nally, the value Pup determines the update probability, 
1 e , the probablhty that a given database operation turns 
out to be an update 

6.2 Update Mix under Binary and Non- 
Binary Decomposition 

This example IS based on the same apphcatlon profile as 
introduced m section 5 1 Let us derive the costs for a 
pre-determined operation profile 

u mlz = {(l/2, 2ns2), (l/2, gns3)l 
This means that, when a query 1s performed, the first one 
1s chosen with probablhty 0 5, and either of the remaining 
1s selected with probablhty 0 25 The update operations 
are selected with equal probability 

Figure 5 a shows the (normalized) costs under bmary 
decomposltlon for different update probablhtles P,,p rang- 
mg between 0 0 1 0 It can be seen that for an update 
probablhty less than 0 3 the left-complete extension and 
the full extension mcur about the same cost The break 
even point between no support and full extension 1s at an 
update probablhty of 0 998 as shown m the upper left- 
hand plot6 

The experiment was run again for the (0,3,4) decompo- 
sltlon of the access support relations The result IS shown 
m Figure 5 b In this case the left-complete extension 
1s generally superior to the other extensions Comparing 
Figures 5 a and 5 b we conclude that the binary decompo- 
sltlon for full extension 1s better than the decomposltlon 
(0,3,4) (left-complete extension) for update probablhtles 
exceeding 0 1 

6.3 Comparison: Left-Complete vs Full 
Extension 

Let us now consider the followmg, larger database profile 
with a path expression of length 5 

number of co Cl c4 c5 

objects 1000 1000 Zoo EiP lo5 10” 

#obJ with do dl dz d3 dr ds 
def A.L~ 100 1000 3000 8000 10’ - I 1 I I I I 

fan-out f0 fl A f3 f4 I t-5 

2 I2 13 I 4 I10 I- 

I size of sue0 sue1 sue2 stze3 scze4 sue5 
ob lects 600 1 500 1 400 1 300 1 300 1 100 

6Note, that some cost functions decrease as the update probabd- 
lty mcreases because the query costs that may be needed to perform 
an update IS not Included m the update costs 
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For this apphcatlon characterization the normalized lowing queries and updates was computed 
costs for a database operation mix conslstmg of the fol- 
lowing queries and updates was computed Q maz = {(l/2, Qop5(W), (l/4,Q’*5(b~)), (l/4,Q2*5(bu+)) 

Q,,,={(1/3, QoT5(bw>>, (l/3, Qop4(W), (l/3, Q”~“(f~>)) 
u mrz={(1/3, 2ns3), (l/3, 2nso, (l/3, 2ns4)} 

In Figure 6 the costs for the operation n-~x under 
left-complete and full extension of the access relations 
are plotted for two different decomposltlons (1) binary 
decomposltlon (0, 1,2,3,4,5) and (2) the decomposltlon 
(0,3,4,5) It turns out that up to an update probablhty 

25 
1 

+ full-blnafy 
0 left-bmary 
* full (0,3,4,5) 
0 left (0,3,4,5) 

I 1 1 
OS4 09’3 098 1 ,o 
update probablllty 

Figure 6 Operation Mix for Full and Left-Complete Ac- 
cess Relations 

u vat2 = ((1, 2ns3))} 
Figure 7 vlsuahzes the costs for the operation mix under 
the followmg decomposltlons of the right-complete and 
full extension 

1 the binary decomposltlon (0, 1,2,3,4,5) 

2 the decomposltlon (0,3,5) 

It turns out that the latter decomposltlon IS always su- 
perior For very low update probablhtles less than 0 005 
the right-complete extension 1s better than the full ex- 
tension under this particular decomposltlon This break- 
even point 1s shown m the upper plot of Figure 7 

1~ 0,000 0,004 OjO8 f 

* full (0,3,5) 
9 right (0,3,5) 

1 full-binary 

of 0 4 the left-complete, decomposltlon (0,3,4,5) 0,oo 0,05 0 to optl- 0,15 0,2' 1s 
update probability 

mal Then, for an update probability 0 4 5 P,,,, 5 0 6 the 
left-complete, binary decomposltlon 1s superior Finally, Figure 7 Isolatmg Right-Complete and Full Extension 

for Pup 2 0 6 the full extension under binary decompoa- 
tlon 1s the optimal choice 

6.4 Comparison: Right-Complete vs 
7 Conclusion and Future Work 

Full Extension In this work we have tackled a maJor problem m optl- 

In this experiment the followmg apphcatlon profile 1s be- 
mlzmg object-oriented DBMS the evaluation of path ex- 

mg used 
presslons We have described the framework for a whole 
class of optlmlzatlon methods, which we call access szlp- 
port reldton The primary idea 1s to materlahze such 
path expressions and store them separate from the object 
(data) representation The access support relation con- 
cept subsumes and extends several previously published 
proposals for access support m obJect-oriented database 
processing 

me of stzeo 91281 32ze2 sue3 srte4 s2ze5 

objects 600 1 500 1 400 1 300 1 200 1 700 

Access support relations provide the physical database 
designer with design choices m two dlmenslons 

1 one can choose among four extensions of the access 
support relation (canomcal, full, left-, and nght- 
complete extension) 

For this apphcatlon characterlzatlon the normalized 
costs for a database operation nux conslstmg of the fol- 
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2 for a fixed extension one can choose among all pos- 
sible decomposltlons of an access support relation 

It 1s not possible, to provide a generally valid forecast 
for the optimal design choice this 1s highly apphcatlon 
dependent Therefore, It 1s essential that a complete an- 
alytlcal cost model has been developed which takes as 
input the apphcatlon-specific parameters, such as num- 
ber of obJects, obJect size, fan-out, number of not-NULL 
attributes, etc Based on the apphcatlon characterlstlcs 
the analytical model can be used to compute for all (feasl- 
ble) design choices the expected costs (based on secondary 
page accesses) of pre-determmed database usage profiles, 
1 e , envisaged operation rmxes From this, the best suited 
access support relation extension and decomposltlon can 
be selected 

From our cost evaluations for a few (sometimes con- 
trived) apphcatlon profiles it follows that an obJect ori- 
ented database system that allows assoclatlve access 
should provide the full range of options along both dl- 
menslons extensions and decomposltlons 

The cost model 1s fully implemented Presently, It 1s 
being used to vahdate the access support relation con- 
cept So far, we have used the cost model to deter- 
mine operation costs for some apphcatlon characterlstlcs 
that we deemed typlcal as non-standard database apph- 
cations However, m a “real” database apphcatlon one 
should perlodlcally verify that the once envlsloned usage 
profile actually remams valid under operation There- 
fore, the cost model IS intended to be integrated mto our 
object-onented DBMS m order to verify a given physlcal 
database design, or even to automate the task of phya- 
cal database design Thus, for a recorded database usage 
pattern the system could (semi-) automatically adJust the 
physical database design 

So far, the access support relation manager has been 
Implemented, we are currently working on the query op- 
tmuzer that transforms queries with path expressions m 
order to take full advantage of any exlstmg access sup- 
port relations As much of the query evaluation should be 
performed using the access support relations, rather than 
searching m the stored obJect representation For this 
purpose we are currently developing a rule-based query 
optimizer [5] 
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