
Access Support in Object Bases

Alfons Kernper Guzdo Moerkotte

Umverslt at Karlsruhe
Fakultat fur Informatlk

7500 Karlsruhe, W Germany
Netmall Hemper/moer@lra uka de

Abstract

In this work access support relataons are introduced as a
means for optlmizmg query processing m object-oriented
database systems The general idea 1s to mamtam re-
dundant separate structures (dlsassoclated from the ob-
Ject representation) to store object references that are
frequently traversed m database queries The proposed
access support relation technique 1s no longer restricted
to relate an obJect (tuple) to an atonuc value (attribute
value) as m conventional mdexmg Rather, access sup-
port relations relate obJects with each other and can span
over reference chains which may contain collection-valued
components m order to support queries mvolvmg path
expressions We present several alternative extensions
of access support relations for a given path expresaon,
the best of which has to be determmed accordmg to the
apphcatlon-specific database usage profile An analytical
cost model for access support relations and their apphca-
tlon 1s developed This analytical cost model IS, m partlc-
ular, used to determine the best access support relation
extension and decomposltlon with respect to the specific
database configuration and apphcatlon profile

1 Introduction

ObJect-oriented database systems constitute a promlsmg
approach towards supportmg technical apphcatlon do-
mams Several obJect-oriented data models have been
developed over the last couple of years However, these
systems are still not adequately optlmlzed for apphca-
tlons which involve a lot of assoclatlve search for obJects
on secondary memory they still have problems to keep up
with the performance achieved by, e g , relational DBMSs

permws~on to copy mthout fee all or part of this matenal ts granted prwded
that the copa are not made or dlstnbuted for direct commercial advantage, the
ACM copyright no”ce and the We of the pubIcWon and ,ts date appear and
notice as gNen that copymg 1s by pemxsaon of the Awx~atwn for Computmg
Machmay To copy otherwe, or to repubbsh, requ,res a fee and/or spewtic
petTlMSW”
0 1990 ACM NW791 365 5/90/0005/0?44 $150

Yet it IS essentml that the object-oriented systems will
yield at least the same performance that relational sys-
tems achieve otherwise their acceptance m the engmeer-
mg field 1s Jeopardized even though they provide higher
functlonahty than conventional DBMSs by, e g , mcorpo-
ration of type extenslblhty and obJect-specific behavior
wlthm the model Engineers are generally not wllhng to
trade performance for extra functlonahty and expressive
power Therefore, we conjecture that the next couple of
years will show an increased interest m optlmlzatlon is-
sues m the context of obJect-oriented DBMSs The con-
tribution of this paper can be seen as one important piece
m the mosaic of performance enhancement methods for
obJect-oriented database apphcatlons the support of ob-
Ject access along reference chains

In relational database systems one of the most per-
formance-crltlcal operations 1s the Jozn of two or more
relations A lot of research effort has been spent on expe-
dltmg the Jam, e g , access structures to support the Join,
the sort-merge Join, and the hash-lozn algorithm were de-
veloped Recently, the binary Jam index structure [ll]
was designed as another optlmlzatlon method for this op-
eration

In obJect-onented database systems with object refer-
ences the Jam based on matching attribute values plays
a less predominant role More important are obJect ac-
cesses along reference chains leadmg from one object m-
stance to another Some authors, e g , [2], call this kmd
of obJect traversal functzonal Jam This work presents an
mdexmg technique, called access support relattons, which
1s designed to support the functional Join along arbitrary
long attribute chains where the chain may even contain
collection-valued attributes

The access support relations described m this paper
constitute a generahzatlon of the binary Jam indices orlg-
mally proposed for the relational model [ll], and later
extended for object models [3,12] Rather than relating
only two relations (or obJect types) our techmque allows
to support access paths of arbitrary length Our mdexmg
techmque subsumes and extends several other previously

364

proposed strategies for optlmlzmg access along attrlbute
chams m object bases The index paths m Gemstone [7]
are restricted to chains that contam only single-valued at-
tributes and their representation 1s hmlted to binary par-
tltlons of the access path Smularly, the obJect-onented
access techniques described for the Orion model [6,1] are
extended m several dlmenslons m our framework

Our technique differs m three major aspects from the
two aforementioned approaches

l access support relations allow collection-valued at-
tributes wlthm the attribute chain

l access support relations may be mamtamed m four
different extensions The extension determines the
amount of (reference) mformatlon that IS kept m the
index structure

l access support relations may be decomposed mto ar-
bitrary partltlons This allows the database designer
to choose the best extension and partltlon according
to the apphcatlon characterlstlcs

Also the (separate) rephcatlon of object values as pro-
posed for the Extra object model [9] and for the PostGres
model [lo,81 are subsumed by our technique

The remainder of this paper 1s organized as follows
Section 2 introduces our Generic ObJect Model (GOM),
which serves as the research vehicle for this work, and
some slmphfied apphcatlon example to highlight the re-
quirements on obJect-oriented access support Then, m
section 3 the access support relations are formally de-
fined In section 4 we start the development of an analyt-
ical cost model for our mdexmg technique by estlmatmg
the cardmahtles of various representations of access sup-
port relations Section 5 describes the utlhzatlon of ac-
cess support relations m query evaluation and estimates
the performance enhancement on the basis of secondary
page accesses Section 6 1s dedicated to presentmg some
sample results of operation mix costs for a few selected
apphcatlon characterlstlcs Section 7 concludes this pa-
per

2 The Object Model GOM

This research 1s based on an object-oriented model that
unites the most salient features of many recently proposed
models m one coherent framework the Generic Object
Model GOM The interesting aspects of GOM concernmg
the access support relations are

object identity each object instance has an ldentlty
that remains invariant throughout Its lifetime The
obJect identifier (OID) IS mvlslble for the database
user, it 1s used by the system to reference obJects

This allows for shared subobJects because the Same
obJect may thus be associated with many database
components Here, OIDs are denoted #20, #21,

type constructors the most basic type constructor IS
the tuple constructor which aggregates differently
typed attributes to one object In addition, GOM
has the two built-m collection type constructors set,
denoted as {}, and hstl, denoted as <> GOM
also provides for subtypmg of tuple-structured types,
however this 1s irrelevant for the present dlscusslon

strong typing GOM 1s strongly typed, meaning that all
database components, e g , attributes, set elements,
etc, are constrained to a particular type This, m
particular means that all path expressions are typed
However, the constrained type constitutes only an
upper bound, the actually referenced instance may
be a subtype-instance thereof

object references assignment of an obJect to an at-
tnbute, a variable or msertlon of an object into a set
corresponds to mamtammg a reference to the respec-
tive object Thus, object references are stored umdl-
rectlonal, conformmg to almost all pubhshed object
models

2.1 Type Definitions

A hear path 1s an attribute chain that contams only at-
tributes referring to a single object Single-obJect-valued
attributes are only useful to model 1 1, or N 1 rela
tlonshlps In order to represent 1 M, or general N A4
relations one needs to mcorporate collection-valued at-
tributes, 1 e , attributes referring to a set or list instance
To illustrate this let us define a vastly slmphfied database
schema for modeling a Company composed of a set of Dz-

vwons Each Dtvwzon Manufactures a set of Products,
which themselves are composed of BaseParts

The schema 1s outlined below

type Company is {Dlvlslon},
type Dlvlslon is [Name STRING,

Manufactures ProdSET],
type ProdSET is {Product},
type Product is [Name STRING,

Composlt>on BasePartSET],
type BasePartSET is {BasePart},
type BasePart is [Name STRING,

Price DE@IMAL],

Addltlonally we assume the existence of a reference to a
given company

var Mercedes Company,

1 Lmts are not further consldered m this paper, though

365

Company #20 {#21,#22, #23r)

Division #21
Name “Auto”

I I
#22

Name “Truck”
Manufactures #24 Manufactures #26 I I

#b
Name “Space”
Manufactures NULL

I I I I I I

ProdSET #24 {#26, 1 #% {#26j #29)

,

Product #%I
Name “560 SEC”

I I
#29

Name “MB Trak”
Composition #27 Composltlon NULL I I

#211
Name “Sausage”
Composition #213

1 I 1 I I J

BasePartSET

BasePart #Q
Name “Door”
Price 1205 50

Figure 1 Database Extension With Non-Linear Paths

A sample extension of this schema 1s presented m Fig-
ure 1 Note that an obJect IS represented as a triple
(#23 ,v, t) where #23 1s the obJect identifier, v the ob-
ject representation, and t the object’s type References,
e g , #21 Manufactures, are maintained umdlrectlonally
by storing the associated obJect’s identifier, #24, wlthm
the domain obJect (#21)

Now let us illustrate some typical queries m an SQL-
like syntax which access obJects along references (possibly
leading through sets)

Query 1. Which Dzvzszon uses a BasePart named
“Door”?

select d Name
from d m Mercedes,

b in d Manufactures Composltlon
where b Name = “Door”

“d Manufactures Composztzon” 1s a set-valued path ex-
pression with the followmg semantics

d Manufactures Composztaon = U 2-n Composztzon
me d Manufactures

Query 2 Retrieve the Name of all the BaseParts used
by the Dzvzs2on named “Auto”

select d Manufactures Composltlon Name
from d in Mercedes
where d Name = “Auto”

3 Access Support Relations

As mentioned earlier access paths are used to support
query evaluation More precisely, access paths allow the
fast selection of those members of an object collectlon
which fulfill a given selection criteria based on obJect ref-
erences along an attribute chain or path expression A
path expression or attribute cham IS defined as follows

Definition 3 1 Let to, ,t, be (not necessarzly dzs-
tznct) types A path expresszon on to 2s an expresszon
to AI A,, 28 for each 1 5 2 5 n one of the followzng
condrtzons holds

l Type t,-1 2s defined as type t,-1 IS [,A 4, I,
2 e , a tuple type contaznzng at least the attnbute A,
of type t,

l Type t,-1 2s defined as type t,-1 is [,A t:, I
and the type t: 2s defined as type t: is {t,} In thzs
case we speak of a set occurrence at A, 2n the path
to AI An

The type t,-1 2s called the domaan of A,, and t, 2s called
the range of A,

The second part of the definition 1s useful to support
access paths through sets2 If it does not apply to a given
path the path 1s called 12near

For slmphclty we require each path expression to ong-
mate m some type to, alternatlvely we could have chosen
a particular collection C of elements of type to as the an-
chor of a path (leading to more difficult defimtlons and
cost functions, though)

2Note, however, that we do not perrmt powersets

366

Since an access path can be seen as a relation we will
use relation extensions to represent access paths The
next defimtlon maps a given path expression to the un-
derlying access support relation declaration

Definition 3.2 Let to, ,t, be types, to AI A,, be
a path expressaon, and k the number of set occurren-
ces zn to Al A, Then the access support relataon

;gl
A, as of anty n + k + 1 and has the followang

Eto AI A, [SO, ,%+kl

The domaan of the attnbute So as the set of adentafiers
(OIDs) of obJects of type t 0 For(1 5 a 5 n) let k(a) be the
number of set occurrences before A,, a e , set occurrences
at A, for3 < a Then the domaan of the attnbute S,+k(,)
as the set of OIDs that adentafy ob3ects of type

l t,, af A, as a sangle-valued attnbute

l t:, af A, as a set-valued attnbute In thas case the
domaan of S,+k(,)+l as the set of OIDs of type t,

Ift,, as an atomac type then the domaan of S,,+k as t,, a e ,
values are darectly stored an the access support relataon
If the underlyang path expressaon as clear from context we
wall wrate E anstead of Et, A, A,

Let further m be defined as m = n + k
We dlstmgulsh several posslbdltles for the extension

of such relations To define them for a given path ex-
pression to Al A,, we need n temporary relations
Eo, , En-1

Definition 3 3 For each A, (1 5 3 5 n) we construct
the temporary relataon E,-1 Dependang on the domaan
of A, the relataon El-l as

banary, af A, as a sangle-valued attnbute In
thas case the relataon EJ-l contaans the tuples
(ad(03-1),ad(03)) for every oblect 4-1 of type t,-1
and o3 of type t, such that 0~~1 A3 = oJ If t, as

an atomac type then ad(o,) corresponds to the value
al-l A3

ternary, af the attnbute A, as a set-valued at-
tnbute Then the relataon E,-l contaans the tu-
ples (ad(o,-I), ad(oi), ad(o,)) for every obJect 0~~1 of
We t, -I, 0: of type ti, and o, of type t, such that
o,-~ A, = 0: and the set o(, contaans o, In the spe-
caal case that 0; as an empty set the relataon E3-l
contaans the tuple (ad(o,-I), ad(oi), NULL)

Example: Recall the Company database extension of
Figure 1 For the underlying schema we could de-
clare the access support relation on the path expression
Davasaon Manufactures Composataon Name This results
m 3 temporary relations Eo, El, and E2

EQ

El OIDproduct OIDBasepartSE~ OID~ase~ort

#all #113 #I14

#,6 #W #aa

Let us now introduce different possible extensaons of a
given access support relation E For a given path expres-
sion to Al A,, we dlstmgulsh four extensions

the canonacal extension, denoted E,,, contams only
mformatlon about complete paths, 1 e , paths ong-
mating m to and leading to t, Therefore, it can
only be used to evaluate queries that originate m
an obJect of type to and “go all the way” to t,

the left-complete extension El,ft contams all paths
orlgmatmg m to but not necessarily leading to t,,
but possibly endmg m a NULL

the right--complete extension E,.+, analogously,
contams paths leading to t,, but possibly originat-
mg m some object o, of type t, which IS not ref-
erenced by any obJect of type t,-1 via the A, at-
tribute

finally, the full extension Efull contains all partial
paths, even If they do not originate m to or do end
m a NULL

Definition 3.4 (Extensions) Let W (X,ZCU,W) de-
note the natural (outer, left outer, nght outer) loan on

the last column of the first relataon and the first column
of the second relataon Then the dafferent extensaons are
obtaaned as follows

E can = E,,W w &-I

EjUll = EoW ~&.-I

Elejt = ((EomEl)m mE,-1)

E rrght = (EoK(K(E,-zKE~-I))

Example: For our example apphcatlon the full exten-
sion contains also the mcompleke paths, 1 e , those that
lead to a NULL (e g , the first tuple m the extension
shown m Figure 2) or those not orlgmatmg m an object
00 of type to (the second tuple m Ej,,ll shown m Figure 2)
Even partial paths not orlgmatmg m to and leading to a
NULL are to be included The extension E,,, would only
contam the last tuple shown m Efurr Er,ght would not

361

Ejdl OID Dwwon OIDProdSET OIDProduct OIDB~~~P~V-~SET OIDB~~~P,M VALUEN,,,

#a2 #a5 #a9 NULL NULL NULL
NULL NULL #all #al3 #al4 “Pepper”

#al #a4 #a6 #a7 #Q “Door”

Figure 2 A Sample Extension of EfUll

contam the first tuple shown m Figure 2, whereas m El,ft
the second tuple would be ormtted

Aside from different extensions of the access support
relation also several decomposltlons are possible, which
are discussed now Since not all of them are meanmgful
we define a decomposltlon as follows (Remember m =
n+k)

Defimtlon 3 5 (Decomposition) Let E be an (m+l)-
ary access support relataon wath attrabutes So, , S,,,
Then the relataons

J+

F’
> S*l for 0 < 21 5 m

E”‘,‘2 11) 9 %I for 21 < 22 _< m

E’kF Pa, Y ,%I for zk < 773

are called a decomposataon of E The rndavadual relataons
E’JI’J+I, called partataons, are matenalazed by prolectang
the correspondang attrabutes of E If every partataon as a
banary relataon the decomposataon as called banary The
above decomposataon as denoted by (O,a1,22, ,zk,m)

Note that m and n are equal only m the case that there
1s no set occurrence along the path If there 1s any then
m > n Under the aasumptlon that there 1s no set sharmg,
the set identifiers may be dropped from the access support
relation This results m m = n To slmphfy the analysis
we will do so for the examples considered m the next
section Note, however, that the analytical cost model
captures the general case If one reads n as m

The last question discussed m this sectlon concerns the
usefulness of the above defined decomposltlons

Theorem 3 6 Every decomposataon of an access support
relalaon as lossless

The proof of this theorem 1s obvious since we decom-
pose along multi-valued dependencies

3.1 Sharing of Access Support Relations

Consider the followmg two path expressions

If to A1 A, and SO BI Bl are path expressions
both leadmg to obJects of type t, then part of the access
support predicates may be shared

This, m general, 1s only possible when a full extension
of at least one of the access support relations 1s mam-
tamed Let Efull be the full extension for the path PI,
and ,!?j,,ll the full extension of the access support relation
for path P2 Then the decomposltlon (0, a, a+J, n) of Ej,,ll
and (O,l,l +J, r)3 of ,??jUll share a common partltlon, 1 e ,
E;$y = E;;;

Thus we obtain the followmg five partltlons

E;;f, [OIDt,, , OIDt,] E;;:, [OID,,, > OIDt,l

E;$ = E;$ PI&,, , OIDt,+,l

E;,::‘” [OIDt.+, , QIDtr.1 Y’ Wh,+, , , OIDJ

The five partltlons may then, mdlvldually, be further de-
composed

In general, this sharmg 1s only possible for full exten-
sions Exceptions are

l If both paths PI and Pz originate m to, 1 e , a = I= 0
and to = SO Then the sharing 1s also possible for
left-complete extensions

l If both paths lead to t,, 1 e , their right-most part
IS Identical, then the correspondmg partition of the
right-complete extensions may be shared

This should indicate that there may exist a higher level
of organization, 1 e , an access support relations manager
which controls (and constrains) the possible extensions
and decomposltlons

368

4 Analytical Cost Model: Cardi-
nality of Access Relations

In this section we develop the basrs of our analytical cost
model a model of the apphcatron profile and formulas
for the cardmahtres of access support relations under drf-
ferent extensions and decomposrtrons Later on, the cost
model 1s used to derrve the best physrcal database de-
sign, i e , to find the best extension and decomposrtron of
a given path expression accordmg to the predetermmed
operation rmx

4.1 Preliminaries

Before grvmg the sizes of the relatrons we introduce some
parameters that model the characterrstlcs of an apphca-
tlon These are listed m Figure 3 not hit 1s given as

application-specrfic parameters
1 semantics (and derlvatlon/default) parameter

n
Cl
d,

fan,

shar,

sue,

length of access path
total number of obJects of type 2,
the number of objects of type t, for which the
attribute A,+1 1s not NULL
the number of references emanatmg on the
average from the attnbute A,+1 of an obJect
0, of type t,
the average number of objects of type t, that
reference the same obJect m t,+l If no value
for shar, 1s determined by the user, It 1s de-
rived as shar, = man(1, (d, * fan,)/c,+l)

average size of objects of type t,
system-specific parameters
net size of pages, which 1s set to 4056

size of obJect identifiers, default IS 8

fan out of the Bt tree, which 1s derived as
[PageScze/(PPsrze + OIDscze)J

Figure 3 System and Apphcatron Parameters

4.1.1 Some Derived Quantities

The probablhty PH, that a particular object o, of type
2, 1s “hit” by a reference emanating from some object of
type t,-1 is

PH, = 5

Let us now derive the probabrhty that, for some object
o, of type t, none of the fan, references of the attrrbute
o, A,+1 hits a particular obJect o,+r E t,+l, which belongs
to the e,+r referenced obJects

This value IS deduced by using the number of fan,-
element subsets of the e,+r obJects of type tr+l Thrs
number 1s given as the bmomral coefficient

es+1

C>

e,+ll

an, = fan,‘(e,+l -fan,>’

Then, the probablhty that the particular object ot+l 1s

m=
c;2:,

es+1 -fan, = 1 _ fan,

es+1 eat1
The probabrhty that o,+r 1s not hit by any of the refer-

ences emanatmg from a subset { 0,’ , of, , of} of obJects
of type t,, all of whose A, attributes are defined, 1s

() 123 f k

e,+l

For 0 5 a < J 5 n we now define RefBy(a, 3, k), which
denotes the number of objects m t, which he on at least
one (partial) path emanating from a k-element subset of
4

RefBy(a,J, k) =

where the exponent E(a, J, k) = RefBy(a, J - 1, k) * PA,-~
Further the probablhty, denoted PRefBY(a,g), that a

path between anyone object m t, and a particular obJect
o3 m tJ exists for 0 5 2 < J 5 n, 1s derived as

1 a=]
pRejBy(hd = RefBy(a,J, d,) else

5
The number of objects m t, which are referenced by a6
least one object m t,-1 1s denoted as e,

Let Ref (a, 3, k) d enote the number of objects of type t,
whrch have a path leading to some element of a %-element
subset of obJects of type t, for 0 5 a < 3 5 n This value
can be approximated as

I I

The probablhty PA, that an obJect o, of type 2, has a
defined A,+1 attrlbute value 1s

Ref(a,J, k) =

369

where the exponent E’(z,J, Ic) = Ref(z + 1,~~ h> * PH,+~

Let PR~J(z,J) be the probability that a given obJect m
t, has at least one path leading to any one object m t,
Then

The number of paths between the obJects m t, and the
objects m t, can be estimated by

4.3 Storage Representation of Access
Support Relations

Followmg the proposal by Valdurlez [ll] for Jam indices
an access support relation (partltlon) E$’ IS stored m two
redundant B+ trees, one being keyed (clustered) on the
first attribute, 1 e , OIDs of obJects of type t,, and the
second B+ tree being clustered on the last attribute, 1 e ,
OIDs of tl obJects In this way we can achieve a fast look-
up of all tuples (partial paths) originating m some obJect
o, of type t, and all (part&) paths leadmg to some object
oj of type t, Particularly, m this way the semi-Join of
access support relation partitions 1s efficiently performed
m both dlrectlons The right-to-left semi-Join, e g ,

4.2 Cardinalities of Access Support Re- (K(E;;“K(Efj’K~$)K))

lat ions
IS performed for evaluating a backward query, the left-to-

We can now deduce closed formulas for the number of right sent-Join to evaluate a forward query (cf sectlon 5)
tuples m the access support relations

Let us first introduce two more probablhstlc values Let
P~~(z,J) denote4 the probability that a particular ObJect

4.4 Storage Costs for Access Support

of type t, is not “hit” by any path emanating from some Relations
object in t, for 0 2 2 < J 2 n The size of a tuple m the access support relation E$’ m

Plb(2,3) =
1

1 - PRefBy(bJ) 2 < 3
1 else

bytes IS

ab”3 = OIDszze * (3 - z $ 1)

Analogously, let Prb(z,f) denote’ the probablhty that
a particular obJect of type t, contams no emanatmg path

The number of tuples m access relation E;i’ per page

to some obJect m t, for 0 5 a < J 5 n

2 < 3

else

Let #E>J denote the cardmahty of the access relation
The size of the access relation E;;’ m bytes

partltlon E;i3 for the general decomposltlon (r2,3,)
under the extension X, 1 e , X E {CUR, full, left, rzght}

as>’ = #E>’ * ats’J

The approximate number of pages needed to store the

#Et&, = pRejBy(%2) * @h(z,j) * pref(h n)

access relation E$’

j-r 3-k

#E;$ = c c Plb(ma2(2, / - l), I) * pdh(l, I+ Ic)
kc1 I=r

* Prb(i + k, mtn(J, 1 + k + 1))

3-r

#E:$ = c pRefBy(o, 2) * @h(t, 1 + k)
k=l

* Prb(z + k, mZn(j, 2 + k + 1))

3-s

= ~Plb(maC(E,J - k - l),~ - k)

Note that this value has to be multiplied by a factor of
2 due to the redundant maintenance of access support
relations

5 Query Processing and Update
costs

In this section we first evaluate the apphcablhty and the
costs of the different extensions and decomposltlons to
query processing

*lb left-bound
5 rb r&t-bound

370

5.1 Query Costs relations are slightly lower than for binary decomposed re-

To compare the query evaluation costs we consider ab-
lations For this apphcatlon profile the performance gain

stract, representative query examples of the followmg two
1s m the order of a factor of 100, for larger databases the

forms
performance gam IS even more drastic (the performance
gain grows proportional to the database size)

Backward Queries In this query expression the ob-
jects o E C are retrieved, where C 1s a collection of t,
instances The resultmg objects are selected based on
the membership of some other object o1 of type t, m the 1000

path expression o A,+1 A,
q nodec

QtJ(bw) 3 select o 100
from 0 in C /* set oft, instances */ a
where o, in o A,+1 A, 8

$ 10
Forward Queries Forward queries retrieve obJects of
type t, which can be reached via a path emanatmg from
some given object o of type i, 1

no sup canonical f u I I left right

Q’J(fw) E select o A,+1 A,
from 0 in C /* set oft, instances */
where

Figure 4 Query Costs for a Backward Query

Let us now mvestlgate the apphcablhty of var’~ous
extensions of an access support relation for the path
to AI An The full extension can be used to sup-
port the evaluation of all path expressions of the form
0 A, A3, 1 e , all sub-paths of the path expresslon
to Al A,, On the other hand, the canomcal extension
can only be used If 2 = 0 and J = n The left-complete
extension can support the evaluation If 2 = 0, the nght-
complete extension 1s only apphcable d J = n

Unfortunately, the space hmltatlons do not allow us to
derive the analytlcal formulas for estlmatmg the costs of
queries under different access support relations, see [4] for
a more detailed treatment

Query Costs for an Example Application Figure
4 vlsuahzes the cost of a backward query of the form
Q014(bw) for the apphcatlon-specific parameters shown
below (the path under conslderatlon 1s of length 4)

The access support relations were either decomposed
mto binary partitions (bz) or non-decomposed (no dec)
As expected, the query costs for non-decomposed access

5.2 Update Costs

For the different extension and decomposltlon posslblh-
ties we now consider the dynamic aspect of maintenance
Of course, updates m the obJect base have to be reflected
m the access relation extensions

We consider the msertlon and deletion of an object
Into/from a set-valued attrlbute (smgle-valued attributes
are a special case) Thus, we dlstmgulsh the followmg
two abstract operations

212s’ E insert o into o, A,+1

del’ 3 delete o from o, A,+,

We assume that the obJect o, 1s of type t,, and o IS of
type t,+l Note, that the costs for both update operations
are essentially the same The cost formulas are again
developed m [4] W e consider only “pure” update costs,
that is, the costs of the queries to locate the obJects o,
and o 1s not mcluded m our update costs Therefore, some
cost functions (cf Figure 5 and 6) may actually decrease
as the update probability Increases, this happens when
the pure update cost 1s lower than the query costs

6 Evaluation

In this chapter we demonstrate the cost estimates for a
few selected apphcatlon examples Before domg so, we
need a model of a database load profile, called an opera-
tzon ma2

371

o-4

9 canoncal
0 full
* left
+ right
+ nosupport

1:. , . , . , . , . 1 1 ‘, I I I I 1
0,o 0,2 0 4 0,6 0.8 1,0 0,O OS2 034 06 0.8 1 ,o

update probability update probafxllty

Figure 5 Cost of Operation Mix for two Decomposltlons (a) bmary decomposltlon, (b) the decomposltlon (0,3,4)

6.1 Modeling an Operation Mix

In our analytical cost model an operation mix M IS de-
scribed as a triple

M = (Qmz, Km,, Pup>

Here, Qmil 1s a set of weighted queries of the form

Q m12 = {(WAl), 7 (%t qtJ1

where for (1 5 z 5 p) the q, are queries and 20, are
weights, 1 e , w, constitutes the probability that among
the listed queries m Qmrr qt 1s performed It follows that

CL w, = 1 has to hold

Analogously, the update mix U,,,,, 1s described Fl-
nally, the value Pup determines the update probability,
1 e , the probablhty that a given database operation turns
out to be an update

6.2 Update Mix under Binary and Non-
Binary Decomposition

This example IS based on the same apphcatlon profile as
introduced m section 5 1 Let us derive the costs for a
pre-determined operation profile

u mlz = {(l/2, 2ns2), (l/2, gns3)l
This means that, when a query 1s performed, the first one
1s chosen with probablhty 0 5, and either of the remaining
1s selected with probablhty 0 25 The update operations
are selected with equal probability

Figure 5 a shows the (normalized) costs under bmary
decomposltlon for different update probablhtles P,,p rang-
mg between 0 0 1 0 It can be seen that for an update
probablhty less than 0 3 the left-complete extension and
the full extension mcur about the same cost The break
even point between no support and full extension 1s at an
update probablhty of 0 998 as shown m the upper left-
hand plot6

The experiment was run again for the (0,3,4) decompo-
sltlon of the access support relations The result IS shown
m Figure 5 b In this case the left-complete extension
1s generally superior to the other extensions Comparing
Figures 5 a and 5 b we conclude that the binary decompo-
sltlon for full extension 1s better than the decomposltlon
(0,3,4) (left-complete extension) for update probablhtles
exceeding 0 1

6.3 Comparison: Left-Complete vs Full
Extension

Let us now consider the followmg, larger database profile
with a path expression of length 5

number of co Cl c4 c5

objects 1000 1000 Zoo EiP lo5 10”

#obJ with do dl dz d3 dr ds
def A.L~ 100 1000 3000 8000 10’ - I 1 I I I I

fan-out f0 fl A f3 f4 I t-5

2 I2 13 I 4 I10 I-

I size of sue0 sue1 sue2 stze3 scze4 sue5
ob lects 600 1 500 1 400 1 300 1 300 1 100

6Note, that some cost functions decrease as the update probabd-
lty mcreases because the query costs that may be needed to perform
an update IS not Included m the update costs

372

For this apphcatlon characterization the normalized lowing queries and updates was computed
costs for a database operation mix conslstmg of the fol-
lowing queries and updates was computed Q maz = {(l/2, Qop5(W), (l/4,Q’*5(b~)), (l/4,Q2*5(bu+))

Q,,,={(1/3, QoT5(bw>>, (l/3, Qop4(W), (l/3, Q”~“(f~>))
u mrz={(1/3, 2ns3), (l/3, 2nso, (l/3, 2ns4)}

In Figure 6 the costs for the operation n-~x under
left-complete and full extension of the access relations
are plotted for two different decomposltlons (1) binary
decomposltlon (0, 1,2,3,4,5) and (2) the decomposltlon
(0,3,4,5) It turns out that up to an update probablhty

25
1

+ full-blnafy
0 left-bmary
* full (0,3,4,5)
0 left (0,3,4,5)

I 1 1
OS4 09’3 098 1 ,o
update probablllty

Figure 6 Operation Mix for Full and Left-Complete Ac-
cess Relations

u vat2 = ((1, 2ns3))}
Figure 7 vlsuahzes the costs for the operation mix under
the followmg decomposltlons of the right-complete and
full extension

1 the binary decomposltlon (0, 1,2,3,4,5)

2 the decomposltlon (0,3,5)

It turns out that the latter decomposltlon IS always su-
perior For very low update probablhtles less than 0 005
the right-complete extension 1s better than the full ex-
tension under this particular decomposltlon This break-
even point 1s shown m the upper plot of Figure 7

1~ 0,000 0,004 OjO8 f

* full (0,3,5)
9 right (0,3,5)

1 full-binary

of 0 4 the left-complete, decomposltlon (0,3,4,5) 0,oo 0,05 0 to optl- 0,15 0,2' 1s
update probability

mal Then, for an update probability 0 4 5 P,,,, 5 0 6 the
left-complete, binary decomposltlon 1s superior Finally, Figure 7 Isolatmg Right-Complete and Full Extension

for Pup 2 0 6 the full extension under binary decompoa-
tlon 1s the optimal choice

6.4 Comparison: Right-Complete vs
7 Conclusion and Future Work

Full Extension In this work we have tackled a maJor problem m optl-

In this experiment the followmg apphcatlon profile 1s be-
mlzmg object-oriented DBMS the evaluation of path ex-

mg used
presslons We have described the framework for a whole
class of optlmlzatlon methods, which we call access szlp-
port reldton The primary idea 1s to materlahze such
path expressions and store them separate from the object
(data) representation The access support relation con-
cept subsumes and extends several previously published
proposals for access support m obJect-oriented database
processing

me of stzeo 91281 32ze2 sue3 srte4 s2ze5

objects 600 1 500 1 400 1 300 1 200 1 700

Access support relations provide the physical database
designer with design choices m two dlmenslons

1 one can choose among four extensions of the access
support relation (canomcal, full, left-, and nght-
complete extension)

For this apphcatlon characterlzatlon the normalized
costs for a database operation nux conslstmg of the fol-

373

2 for a fixed extension one can choose among all pos-
sible decomposltlons of an access support relation

It 1s not possible, to provide a generally valid forecast
for the optimal design choice this 1s highly apphcatlon
dependent Therefore, It 1s essential that a complete an-
alytlcal cost model has been developed which takes as
input the apphcatlon-specific parameters, such as num-
ber of obJects, obJect size, fan-out, number of not-NULL
attributes, etc Based on the apphcatlon characterlstlcs
the analytical model can be used to compute for all (feasl-
ble) design choices the expected costs (based on secondary
page accesses) of pre-determmed database usage profiles,
1 e , envisaged operation rmxes From this, the best suited
access support relation extension and decomposltlon can
be selected

From our cost evaluations for a few (sometimes con-
trived) apphcatlon profiles it follows that an obJect ori-
ented database system that allows assoclatlve access
should provide the full range of options along both dl-
menslons extensions and decomposltlons

The cost model 1s fully implemented Presently, It 1s
being used to vahdate the access support relation con-
cept So far, we have used the cost model to deter-
mine operation costs for some apphcatlon characterlstlcs
that we deemed typlcal as non-standard database apph-
cations However, m a “real” database apphcatlon one
should perlodlcally verify that the once envlsloned usage
profile actually remams valid under operation There-
fore, the cost model IS intended to be integrated mto our
object-onented DBMS m order to verify a given physlcal
database design, or even to automate the task of phya-
cal database design Thus, for a recorded database usage
pattern the system could (semi-) automatically adJust the
physical database design

So far, the access support relation manager has been
Implemented, we are currently working on the query op-
tmuzer that transforms queries with path expressions m
order to take full advantage of any exlstmg access sup-
port relations As much of the query evaluation should be
performed using the access support relations, rather than
searching m the stored obJect representation For this
purpose we are currently developing a rule-based query
optimizer [5]

Acknowledgements

Peter Lockemann and Klaus Radermacher read a prehm-
mary draft of this paper and gave valuable comments
Matthlas Zunmermann helped to create the graphics m
this paper

References

PI

PI

PI

PI

PI

PI

PI

PI

PI

PO1

WI

WI

WI

E Bertmo and W Kim Indexing techniques for
queries on nested objects IEEE Trans Knowledge
and Data Engzneerzng, l(2) 196-214, Jun 1989

M J Carey, D J Dewitt, and S L Vandenberg
A data model and query language for EXODUS In
Proc of the ACM SIGMOD Conf on Management
of Data, pages 413423, Chicago, 11 , Jun 1988

G Copeland and S Khosha.f?an A decomposltlon
storage model In Proc of the ACM SIGMOD Conf
on Management of Data, pages 268-279, Austin, TX,
May 1985

A Kemper and G Moerkotte Access Support m Ob-
Ject Bases Internal Report 17/89, Fakultat fur In-
formatlk, Umversltat Karlsruhe, D-7500 Karlsruhe,
Ott 1989

A Kemper and G Moerkotte Advanced query op-
tmuzation in obJect bases using access support rela-
tions Manuscript (submltted for pubhcatlon), 1990

W Kim, K C Kim, and A Dale Indexing tech-
niques for obJect-oriented databases In W Kim and
F H Lochovsky, editors, Oblect-Orzented Concepts,
Databases, and Appbcatzons, pages 371-394, Addl-
son Wesley, Reading, MA, 1989

D Maler and J Stem Indexing m an obJect-
oriented DBMS In K R Dlttrlch and U Dayal, edl-
tors, Proc IEEE Intl Workshop on ObJect-Ortented
Database Systems, Aszlomar, Paczfic Grove, CA,
pages 171-182, IEEE Computer Society Press, Sep
1986

T K Selhs Intelligent cachmg and mdexmg tech-
niques for relational database systems Informatzon
Systems, 13(2) 175-186, 1988

E J Sheklta and M J Carey Performance en-
hancement through rephcatlon m an obJect-oriented
DBMS In Proc of the ACM SIGMOD Conf on
Management of Data, pages 325-336, Portland, OR,
May 1989

M Stonebraker, J Anton, and E Hanson Extend-
mg a database system with procedures ACM Trans
Database Systems, 12(3) 350-376, Sep 1987

P Valdurlez Jom mdlces ACM Trans Database
Syst , 12(2) 218-246, Jun 87

P Valdurlez, S Khoshafian, and G Copeland Im-
plementation techmques of complex obJects In Proc
of The Conf on Very Large Data Bases (VLDB),
pages 101-110, Kyoto, Japan, Aug 1986

S B Yao Approxlmatmg block accesses m database
orgamzatlons Communtcataons of the ACM, 20(4),
Apr 77

374

