
Indexing for Data Moclels with Constraints and Classes

(Extended Abstract)

Paris C. Kanellakis* Sridhar Ramaswamyt Darren E. Vengro@ Jeffrey S. Vitter~

Abstract

We examine I/O-efficient data structures that provide index-

ing support for new data models. The database languages

of these models include concepts from constraint program-

ming (e.g., relational tuples are generalized to conjunctions

of constraints) and from object-oriented programming (e.g.,

objects are organized in class hierarchies). Let n be the size

of the database, c the number of classes, B the secondary

storage page size, and t the size of the output of a query.

Indexing by one attribute in the constraint data model (for

a fairly general type of constraints) is equivalent to external

dynamic interval management, which is a special case of ex-

ternal dynamic 2-dimensional range searching. We present a

semi-dynamic data strncture for this problem which has op-

timal worst-case space O(n/B) pages and optimal query 1/0

time O(logB n+t/B) and has O(logB n+ (log% n)/B) amor-

tized insert 1/0 time. If the order of the insertions is random

then the expected number of 1/0 operations needed to per-

form insertions is reduced to O(log B n). Indexing by one at-

tribute and by class name in an object-oriented model, where

* Address: Dept. of Computer Science, Brown University, Box

1910, Providence, RI 02912. Email: pck@cs. brorrn. edu. Research

supported by ONR Contract NOOOI 4-91 -J-4o52, ARPA Order

8225.

f Contact AuthoT. Address: Dept. of Computer Sci-

ence, Brown (University, Box 1910, Providence, RI 02912.

Enmil: sr@cs. brown. edu. Tel: 401-863-7662. Fax: 401-863-7657.

Research supported by ONR Contract NOO014-91-.J-4O52, ARPA

Order 8225.
i Address: DePt. of Computer Science, Brown University, BOX

1910, Providence, RI 02912. Email: dev@cs. brown. edu. Support

was provided in part by National Science Foundation research

grant CCR–9007851 and by Air Force Office of Scientific Research

grant number F4’3620-92-J-0515.

~Address: Dept. of Computer Science, Brown tJniversity, BOX

1910, Providence, RI 02912. Email: jsv@cs. brown. edu. Support

was provided in part by Army Research Office grant DAAL03–

91 –G –0035 and by Air Force Office of Scientific Research grant

number F49620–92-J-0515.

Permission to copy without fee all or part of this matarial is

granted provided that tha copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and tha

title of the publication and its date appaar, and notice ia given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, raquires a fee
and/or specific permission.

ACM-PODS-5 /931Washington, D.C.
@ J 993 ACM O-8979 j.~93.3j93/000~ j0233...$~ .~o

objects are organized as a forest hierarchy of classes, is also a

special case of external dynamic 2-dimensional range search-

ing. Based on this observation we first identify a simple al-

gorithm with good worst-case performance for the class in-

dexing problem. Using the forest structure of the class hier-

archy and techniques from the constraint indexing problem,

we improve its query 1/0 time from 0(log2 c logB n + t/B)

to O(logB n + t/B + log2 B).

1 Introduction

Motivation and Background: The successful real-

ization of any data modlel in a large scale database

requires supporting its language features with efficient

secondary storage rnanipudation. For example, the rela-

tional data model, [Cod] includes declarative program-

ming (i.e., in the relational calculus and algebra) and

expresses low data complexity queries (i.e., every fixed

relational calculus query is evaluable in Logspace and

Ptime in the size of the input database). Most impor-

tantly, these language features can be supported by data

structures for searching and updating that make effec-

tive use of secondary storage (i.e., use 1/0 time loga-

rithmic or faster in the size of input relations). B-trees
and their variants B+-trees [BaM, Corn] are examples

of such data structures and have been an unqualified

success in supporting external dynamic l-dimensional

range searching in relational database systems.

The general data structure problem underlying ef-

ficient secondary storage manipulation for many data

models is external dynamic k-dimensional range search-

ing. This has been a well studied problem. (Mc-

Creight calls the 2-dimensional as opposed to the 1-

climensional case ‘(one of the persistent puzzles of com-

puter science” [McC].) In this paper we examine new
I/O-efficient data structures for special cases of this gen-

eral problem, which are important for supporting new

language features, such as constraint query languages

[KKR] and class hierarchies in object-oriented databases

[KiL, ZdM].

We make the standard assumption that each sec-
ondary memory access transmits one page or B units

233

of data, and we count this as one 1/0. (We will use the

words page and disk block interchangeably.) We also

assume that O(B2) words of main memory are avail-

able, This is not an assumption that is normally made,

but it is entirely reasonable given that B is typically on

the order of 102 to 103, and today’s machines have main

memories of many megabytes.

Let R be a relation with n tuples and let the output to

a query on R have t tuples. We also use n for the number

of objects in a class hierarchy (with c classes) and t for

the output size of a query on this hierarchy. Our 1/0

bounds will be expressed in terms of 71, c, t and B (i.e.,

all constants are independent of these four parameters);

for a survey of state of the art 1/0 complexity see [Vit].

We first review external dynamic k-dimensional range

searching, with B+-tree performance as our point of

reference whose performance we refer to as optimal.

A B+-tree on attribute z of the n-tuple relation

R uses Cl(n/B) pages (of secondary storage). The

following operations define the problem of eztemal

dynamic l-dimensional range searching on relational

database attribute z, with the corresponding 1/0 time

performance bounds using the B+-tree on x: (1) Find all

tuples such that for their z attribute (al < z < a2). If

the output size is t tuples, then this range searching is in

worst-case O(logB n + t/B) secondary memory accesses.

If al = a2 and x is a key then this is key-based searching.

(2) Insert or delete a given tuple are in worst-case

O(logB n) secondary memory accesses. The problem

of external dynamic k-dimensional range searching on

relational database attributes Z1, xk generalizes 1-

dimensional range searching to k attributes, with range

searching on k-dimensional intervals. If there are no

deletes we say that the problem is senii-dynarnic. If

there are no inserts or deletes we say that the problem is

statzc. In this paper we will be concerned with external

2-dimensional range searching: dynamic (Section 2),

semi-dynamic and static (Sections 3 and 4).

A large literature exists for in-core algorithms for 2-

dimensional range searching. Basic ideas such as the

range-range tree data structure and the use of fractional

cascading lead to the best worst-case in-core bounds

achieved to date: O(n logz n) space, static query time

0(log2 n + t),dynamic query time 0(log2 n log2 log2 n +
t) and update time 0(log2 n logz log2 n) (due to space

limitations we refer the reader to [ChT] for a detailed

survey of the topic). The ideal worst-case 1/0 bounds
would involve making all the above logarithms base B

and compacting the output term to t/B; any other

improvements would of course imply improvements to

the in-core bounds. Unfortunately, the various in-

core algorithms do not map to secondary storage in

as smooth a fashion as balanced binary trees map to

B+-trees. For example, [OSB, SmO] examine mappings

which maintain the logarithmic overheads and make

the logarithms base B; however, their model does not

compact the t-sized output on t/B pages.

The practical need for good 1/0 support has led to

the development of a large number of external data

structures, which do not have good theoretical worst-

case bounds, but have good average-case behavior for

common spatial database problems. Examples are

the grid-file, various quad-trees, z-orders and other

space filling curves, k-d-B trees, hB-trees, cell-trees,

and various R-trees (due to space limitations we refer

the reader to [Sama, Samb] for a recent survey and

applications). For these external data structures there

has been a lot of experimentation but relatively little

algorithmic. analysis. Their average-case performance

(e.g., some achieve the desirable static query 1/0 time

of O(logB n + t/B) on average inputs) is heuristic and

usually validated through experimentation. Moreover,

their worst-case performance is much worse than the

optimal bounds achievable for dynamic external 1-

dimensional range searching using B+-trees.

In this paper we examine algorithms with provably

good worst-case 1/0 bounds for indexing problems in

data models with constraints and classes. In order

to put our contributions into perspective we point

out (from the literature by using standard mappings

of in-core to external data structures) that external

dynamic 2-dimensional range searching, and thus the

problems examined here, can be solved using worst-case

O((n/B) logz 71) pages, static query 1/0 time 0(log2 n+

t/B) using fractional cascading, dynamic query 1/0

time 0(log2 n logB n + t/B), and update 1/0 time

0(log2 n logB 71). (Note that, log2 n = (logz B)(logB 7t)

is 1/0 inefficient when compared to logB 71).

Based on the special structure of the indexing prob-

lems of interest we improve on the above bounds.

Indexing Constraints: Constraint programming para-

digms are inherently “declarative”, since they describe

computations by specifying how these computations are

constrained. A general constraint programming frame-

work for database query languages (called Constraint

Query Languages or CQLS) was presented in [KKR].

This framework adapts ideas of Constraint Logic Pro-

gramming or CLP, e.g., from [JaL], to databases, pro-
vides a calculus and algebra, guarantees low data com-

plexity, and is applicable to managing spatial data.

It is, of course, important to index constraints and,

thus, support these new language features with effi-

cient secondary storage manipulation (see Section 2.1

for a more detailed explanation of the problem). Fortu-

nately, it is possible to combine CQLS with existing 2-

dimensional range searching data structures [KKR]. The

basis of this observation is a reduction of indexing con-

straints (for a fairly general class of constraints) to dy-

234

namic interval management on secondary storage, which

is a special case of external dynamic 2-dimensional range

searching.

Dynamic interval management has been examined

in the literature (see [ChT]). The best in-core bounds

have been achieved using the przorzty search tree data

structure of [Mc(;], yielding O(n) space, dynamic query

time O(log2 n + t) and update time O(log2 n), which

are all optimal. It is open whether dynamic interval

management on secondary storage can be achieved

optimally in O(n/B) pages, dynamic query 1/0 time

O(logB n+t/B) and update time O(IogB n). Note that,

various sub optimal solutions are proposed in [IKO], for

a slightly more general problem, as well as a claimed

optimal static solution. Unfortunately, the [IKO] static

solution has static query time O(log2 n + t/B) instead
of o(logBn+ t/B) and the claimed oPtimal solution is

incorrect. In this paper we provide an optimal static

solution for external dynamic interval management.

This static solution is quite involved, but it achieves

the optimal space and query time bounds with small

constants. We also semi-dynamize this solution with

very good amortized insert time. More specifically:

In Section 2.1, we reduce indexing constraints to a

special case of external dynamic 2-dimensional range

searching that involves diagonal corner queries and

updates. A diagonal corner query is a two sided range

query whose corner must lie on the line z = y and

whose query region is the quarter plane above and

to the left of the corner. In Section 3, we propose

a new data structure for this problem. Our data

structure has optimal worst-case space O(n/B) pages

and optimal query 1/0 time O(logB n + t/B) and has

O(logB n + (log~ 71)/13) amortized insert 1/0 time. If

the order of the insertions is random then the expected

number of 1/0 operations needed to perform insertions

is reduced to O(logB n).

Indexing Classes: Indexing by one attribute and by

class name in an object-oriented model, where objects

are organized as a static forest hierarchy of classes, is

also a special case of external dynamic 2-dimensional

range searching. Together with the different problem

of indexing nested objects, as in [MaS], it constitutes

the basis for indexing in object-oriented databases.
Indexing classes has been examined in [KKD] and more

recently in [LO L], but the solutions offered there are

largely heuristic with poor worst-case performance.

In Section 2.2, we reduce indexing classes to a special

case of external dynamic 2-dimensional range searching.

We also assume that the class-subclass relationship

is static, although objects can be inserted or deleted
from classes. Under this reasonable assumption for

c-class hierarchies of 72 objects we identify a simple

algorithm with worst-case space 0((71/l?) logz c) pages,

query 1/0 time 0(log2 ,clog~ n + t/B), and update

1/0 time 0(log2 c logB n). Even with the additional

assumption of a static class-subclass relationship, the

problem is a nontrivial case of 2-dimensional range

searching. We show in Section 2.2 that it is impossible

to achieve optimal query time with only one copy

of each object in secondary storage. In Section 4,

analyzing the hierarchy and using techniques from the

constraint indexing problem, we improve query 1/0

time to O(logB 71 + t/B + log2 B) using space

0((71/B) logz c) pages. Amortized update 1/0 time

for the semi-dynamic problem (with inserts only) is

0(log2 c((log~ n)/B + logB n + logz B)).

We close in Section 5 with open problems and a
discussion of how to dynarnize deletions in addition to

insertions.

2 The Problems and Base Algorithms

2.1 Indexing Ccmst raints

To illustrate indexing constraints in CQLS consider the

domain of rational numbers and the language whose

syntax consists of the theory of rational order with

constants + the relational calculus. The semantics of
a program in this language is based on the theory of

rational order with constants, by interpreting relational

atoms as shorthands for formulas of the theory. An

input generalized database (e.g., a generalized relation

of arity k) is a quantifier-free DNF formula, over k

variables, of the theory. For each input generalized

database, the queries can be evaluated in closed form,
bottom-up, and efficiently in the input size.

For example, let the database contain a set of planar

rectangles with rational coordinates. We wish to

compute all pairs of distinct intersecting rectangles.

Let R(z, z, y) be a ternary generalized relation; we

interpret R(z, z, y) to mean that (x, y) is a point in the

rectangle with name z. A rectangle can be stored as

the generalized tuple (z = 7~)A (a < z < c) A (b < y <

d), The set of all intersecting rectangles can now be

expressed aa {(711, nz) I nl # 712A (~~, y)(R(nl, x, y) A

R(71z, z, y) }. The simplicity of this program is due to

the ability in CQL to describe and name point-sets

using constraints. The same program can be used for

intersecting triangles etc. This simplicity of expression

can be combined with eff[cient evaluation techniques,

even if quantification is over the infinite domain of

rationals.

In the above example the domain of database at-

tribute z is infinite. How can we index on it’? For

(!QLs we can define indexing constraints as the prob-

lem of external dynamic l-dimensional range searching

on generalized database attribute x using the following

operations: (i) Find a generalized database that repre-

235

sents all tuples of the input generalized database such

that their z attribute satisfies al < x < a2. (ii) Insert

or delete a given generalized tuple.

In many cases, the projection of any generalized tuple

on x is one interval a < x < a’. This is true for the

above example, for CQLS with any dense linear order,

for relational calculus with linear inequalities over the

reals, and in general when a generalized tuple represents

a convex set. Under such assumptions, which we call

convex CQLS, there is a good solution for our indexing

problem.

(1) A generalized l-dimensional index is a set of

intervals, where each interval is associated with a

generalized tuple. Each interval (a < z < a’) in the

index is the projection on x of its associated generalized

tuple. The two endpoint a, a’ representation of an

interval is a fixed length gener-ahzed key.

(2) Finding a generalized database, that represents all
tuples of the input generalized database such that their

x attribute satisfies al < x < az, can be performed
by adding constraint al < x < a2 to only those

generalized tuples whose generalized keys have a non-

empty intersection with it.

(3) Inserting or deleting a given generalized tuple is
performed by c.ornputing its projection and inserting or

deleting intervals from a set of intervals.

We have reduced the problem to dynamic interval

management. This is a well-known problem with many

elegant in-core solutions from computational geometry.

In this paper we examine solutions for this problem with

good 1/0 performance. IJsing simple techniques from

computational geometry (we reduce external interval

intersection to external stabbing queries and we map

intervals into points in 2d space) and diagonal range

queries (whose corner must lie on the line z = y and

whose query region is the quarter plane above and to

the left of the corner) we can show the following.

Lenuna 2.1 Indezmg constraints for convex CQLS re-

duces to external dynamic 2-dimensional range search-

ing with diagonal corner queries and updates. This

reduction can be done using O(n/B) pages, dynamic

query I/O time O(logB n + t/B) and update 1/0 time

o(logB n).

2.2 Indexing Classes

To illustrate the problem of indexing classes, consider an

object-oriented database (e.g., containing information

about people such as names and incomes). The objects

in the database (e.g., the people) are classified in a

forest ciass hierarchy. Each object is in exactly one of

the classes of this hierarchy. This partitions the set of

objects and the block of the partition corresponding to

a class C is called C’s extent. The union of the extent

of a class C with all the extents of all its descendants in

this hierarchy is called the full extent of C.

Let this class hierarchy be a tree with root Person,

two children of Person called Professor, Student, and a

child of Professor called Assistant-Professor. One can

read this as follows: Assistant-Professor isa Professor,

Professor isa Person, Student isa Person. People get
partitioned in these classes. For example, the full extent

of Person are all people, where as, the extent of Person

are people who are not in the Professor, Assistant-

Professor, and Student extents.

The problem of indexing classes means being able

to do external dynamic l-dimensional range searching

on some attribute of the objects, but for the full extent

of each class m the hierarchy. For example, find all

people in (the full extent of) class Assistant-Professor

with income between $50K and $60K, or find all people

in (the full extent of) class Person with income between

$1OOK and $200K, or insert a new person with income

$1OK in the Student class.

Let c be the number of classes, n the number of

objects, and B the page size. We use the term index

a collection when we build a B+-tree on a collection

of objects. One way of indexing classes is to create a

single B+-tree for all objects (i.e., index the collection

of all objects) and then filter out the objects in the

class of interest. This solution cannot compact a t-sized

output into t/B pages. Another way is to keep a B+-

tree per class (i.e., index the full extent of each class),

but this uses O((n/B)c) pages, dynamic query 1/0 time

O(logB n + t/B) and update 1/0 time O(c logB n).

The indexing classes problem has the following special

structure: (1) The class hierarchy is a forest and thus

it can be mapped in one dimension where subtrees

correspond to intervals. (2) The class hierarchy is static,

unlike the objects in it which are dynamic.

Based on this structure it is easy to see that

indexing classes is a special case of external dynamic

2-dimensional range searching on some attribute of the

objects. One can use the range-range idea with classes

as the primary dimension and the object attribute as a

secondary dimension and show the following:

Lemma 2.2 Indexing classes reduces to external dy-

namic 2-dimensional range searching with one dimen-

sion being static. This reduction can be done using

0(71/B) pages, dynamic query I/O time O(logB n+t/B)

and update time O(logB 7t).

Lemma 2.3 Indexing classes can be. solved in dynamic

query I\O time 0(log2 c logB 71 + t/B) and update 1/0

time O(log2 c logB n), using O((n/B) log2 c) pages.

The problem of indexing classes, despite its structure,

is nontrivial. First, observe that if the class hierarchy

236

is a path then the range queries involved are 3-

sided. Priority search trees were developed for in-core

processing of such queries. Second, if the class hierarchy

is a balanced tree of depth logz c one can show that the

solution cannot be as good as the l-dimensional B+-tree

solution.

Theorem 2.4 Consider the fully static problem of

zndexing classes, where the hierarchy is a balanced

binary tree. of depth logz c. It M not possible to achieve

static query I\O time O(log~ n + t/B) wzth only one

copy of each object on secondary storage.

3 An Algorithm for External Dynamic

Interval Management

By Lemma 2.1, if we want to solve the external dynamic

interval maintenance problem it suffices to consider

external dynamic 2-D range searching with diagonal

corner queries.

3.1 An 1/0 Optimal Static Data Structure for

Diagonal Corner Queries

For conceptual simplicity, we first consider the static

case, in which we must answer queries, but data points

will neither be inserted nor deleted. The semi-dynamic

case will be considered in Section 3.’2. The data

structure we will use is called a metablock tree.

At the outermost level, a metablock tree is a B-ary

tree of metablocks, each of which represents B2 data

points. The root represents the B2 data points with the

B2 largest y values. The remaining n – B2 data points

are divided into B groups of (n- B2)/B data points each

based on their x coordinates. The first group contains

the (n - B2)/B data points with the smallest z values,

the second contains those with the next (n – B2)/B

smallest z values, and so on. A recursive tree of the

exact same type is constructed for each such group of

data points. This process continues until a group has at

most B2 data points and can fit into a single metablock.

This is illustrated in Figure 1.

Now let us consider how we can store a set of k

data points in blocks of size B. One very simple

scheme would be to put the data points into horizontally

orzented blocks by putting the B data points with the

largest y values into the first block, the B data points

with the next largest y values into the next block, and

so on. Similarly, we could put the data points into

vertically oriented blocks by discriminating on the x

coordinates. These techniques are illustrated in Figure

2. Each metablock in our tree is divided into both

horizontally and vertically oriented blocks. This means
that each data point is represented more than once,

but our the overall size of our data structure remains

0(71/B).

L.!L
Figure 1: A metablock tree for B = 3 and 71 = 70.

All data points lie above the line y = x. Each region

represents a metablock. The root is at the top. Note

that each non-leaf metablock contains B2 = 9 data

points.

—
●

6

●

●

●

—
●

●

●

●

●
�

Vertically Oriented

L-=--=4w● O ●

● ●

● ● ●

● ●

● ●

● ● *

Horizontally Oriented

Figure 2: Vertically and horizontally oriented blockings

of data points. In this illustration, B = 5. Each thin

rectangle represents a block.

In addition to the horizontally and vertically oriented

blocks, each metablock contains pointers to each of its

B children, as well as a location of each child’s bounding

box. Next, each metablock A4 contains pointers to B

blocks that represent, in lhorizontal orientation, the set

T,S’(Al). Z’S(M) is the set obtained by taking the B2

data points with the largest y coordinates from among

the up to B3 – B2 data points represented by siblings

of Lf that lie to its left. This is illustrated in Figure

3. Note that each metablock already requires O(B)

blocks of storage space, so storing TS(ikf) for each

metablock does nothing to asymptotic space usage of

the metablock tree.

The final bit of organization left is used only for

those metablocks that can possibly contain the corner

of a query. These are the leaf metablocks, the root

metablocks, and all metablocks that lie along the path

from the root to the rightmost leaf. These blocks will

be organized as prescribed by the following lemma:

Lemma 3.1 A set S of k < B2 data points can be

represented using O(k/B) blocks of size B so that a

237

I ● ● ● ● * ● O
● ●

. ..** ● I

[
TS(M)

● *O* ● ● * ● 9*
● *** ● ● ● * ● *

● * ● *9 ● *
● ●

● * ● * ● ● M
● . ● O

● O

Figure 3: A metablock M and the set T,5’(A4). Note

that T5’(A4) spans all of M‘s left siblings in the

metablock tree. Though it is not explicitly shown here,

T,S(M) will be represented as a set of lit horizontally

oriented blocks. In this illustration, B = 4.

diagonal corner query on S can be answered using

O(t/B+ 1) 1/0 operations where t is the number of

data potnts in,~ that lie within the query region.

Proofi (sketch) Wedivide t5’into a vertically oriented

blocking of k/B blocks. Let us first restrict ourselves

to queries whose corners are in the set C of points at

which right boundaries of the block regions intersect the

line y = x. We choose a subset C“ C C of these points

and use one or more blocks to explicitly represent the

answer to each query that happens to have a corner

c ~ C’*. This is illustrated in Figure 4.

We handle a query whose corner c is in C“ by

simply reporting the explicit result that we stored for

it. For a query whose corner c is in the set C~\ C*,

we iteratively examine blocks in the vertically oriented

blocking of S’, starting at the block just to the left

of c and moving to the left until we reach a vertical

block bounded on the right by a point c“ E C*. We

then simply examine the blocks that explicitly store the

answer to the query cornered at c*.

The trick that makes the data structure work
is that C* is chosen so as to satisfy the following

conditions:

●

●

The total number of blocks needed to store the

outputs of all the queries cornered at points in C* is

O(k/B), so the space usage is optimal.

For any point c G C \ C“, the number t of Points

in the output to the query cornered at c is at least

half the number of points retrieved in the blocks, up

to an additive term of O(B). This means that the

query time is O(t/B + 1).

The details of the construction and the full proof are

deferred to the full paper, as is the remainder of the

proof, which consists of showing that we can make

a minor modification to our data structure to handle

238

Figure 4: Illustration of Lemma 3.1. The marked points

lying along the diagonal line y = z are the points in

the set C. Those that are small and dark are points

in C\ C*. The larger open points are in the set C*.

The dark lines represent the boundaries of queries whose

corners are at points c E C*. One such query is shaded

to demonstrate what they look like.

queries whose corners are on the line y = x but not in

the set C. ❑

We can now prove the following theorem:

Theorem 3.2 If a set of n data points (z, y) in the

half plane y > x is organwed into a metablock tree

with blocks of size B, then a diagonal corner query with

t data points in its query region can be performed in

O(logB n + t/B) I/O operations, which is optimal. The

size of the data structure is O(n/B) blocks of size B

each.

Proof: (sketch) The space usage is O(n/B) from

Lemma 3.1 and the construction of the tree given above.

To prove the bound on the query time, we consider the

fact that once we know the query region, each block

that haa a non-empty intersection with it falls into one

of four categories based on how it interacts with the

boundary of the query. The four types are illustrated

in Figure 5.

To complete the proof we simply look at the

contributions of each type of metablock to 1/0 efficiency

and to t.A type I metablock returns B2 data points and
uses O(B) 1/0 operations. There are at most O(logB 71)

type 11 nodes, each of which can be queried, using its
vertically oriented blocks, so as to visit at most one

block that is not completely full. Only one type IV

node can exist, and if it contains k data points within

the query region then by Lemma 3.1 they can be found

using only O(t/B) 1/0 operations. The set of all type

III children of a type I node can be queried, using their

horizontally oriented blocks, so as to examine at most

O(B) blocks that are not entirely full. Since we used

O(B) 1/0 operations for the output from the type I
block, the extra type III 1/0 operations can be absorbed

into the type I 1/0. Finally, a large number of type 111

nodes can be children of a singe type 11 node A4. These

can be efficiently queried by examining TS(Nf). Filling

in the details, we get the desired optimal time bound of

O(logB n + t/B) 1/0 operations. ❑

3.2 D ynamization of Insertions

The data structure described in the previous section can

be made semi-dynamic in the sense that it will support

the insertion of points and remain efficient. The bounds

and methodology are given by the following theorem:

Theorem 3.3 An O(n/B) block metablock tree of 71

data points can be made semi- dynamzc, so that inser-

tton of a data point can be performed in O(log* n +

(log~ IL)/B) amortized 1/0 operations and diagonal cor-

ner queries can be performed in optimal O(logB n+t/B)

I/O operations.

Proof: (sketch) Because the details are quite complex,

we defer a complete proof of this theorem to the full

version of the paper. The arguments center on the

following four ideas:

1.

2.

3

We allow horizontally and vertically oriented blocks

of data points to fill to twice their capacity before we

take any action. Because it takes B insertions for a

block that ordinarily holds B data points to get this

full, we know that once it does we can perform O(B)

1/0 operations and have their cost amortized over

the insertions.

For the corner structures described in Lemma 3.1

we maintain an additional block recording points

that have been added to the metablock but not yet

incorporated into the corner structure. This block is

called an update list for the corner structure. Once

the update list becomes full (after B insertions), we

have done enough insertions to amortize the cost of

reading in the corner structure, reorganizing it, and

writing it back to secondary memory. When queries

are performed on a corner structure that has pending

updates, we can afford to examine the one additional

block in which contains the update list.

Points inserted into the metablock tree may have to

be inserted into up to B – 1 TS structures. Because

we cannot possibly afford the cost of doing this, we

cache all updates made to the children of a given

metablock into an additional corner structure, which
we call the parent update list, which itself handles

insertions through an update list as described in 2.

We allow this structure to contain up to B2 points

4.

before we update the TS’ structures of all of the

children of the metablock with which it is associated.

Whenever a query requires us to examine a TS

structure, we also examine the parent update list

associated with that TS structure, which, by Lemma

3.1 can be done efficiently,

Whenever a subtree of the metablock tree becomes

imbalance we can split one of the children of its

root to restore balance. This is allowed to continue

until a metablock M has 2B children instead of the

normal B, at which point enough insertions have

been performed to pay for rebalancing the subtree

rooted at M.

•1

If we make the additional assumption, which is

popular in the analysis of randomized algorithms in

computational geometry, that the n data points to be

inserted in the data structure are arbitrary, and can

be picked by an adversary, but that the order in which

they are inserted is equally likely to be any of the n!

possible orderings, we can eliminate the extra logB 71

factor associated with rebalancing. This gives us the

following result:

Theorem 3.4 If n data points are inserted into a

metablock tree in randonl order, the total expected time

to process the insertions is O(n logB n).

4 A Class Indexing Algorithm Using

Hierarchy Decomposition

In Section 2 we showed how to solve the class index-

ing problem such that the worst case query time is

O(logz c log~n + t/B), the worst case update time is

O(log2 c logB7~), and the algorithm used O(n/B (logz c))

storage. Here c is the size of the class hierarchy, n is the

size of the problem and B is the disk block size.

We now consider two extremes of the problem and

show that they both have efficient solutions. We

call a class hierarchy degenerate when it consists of a

tree where every node has only one child. We give

efficient solutions to the class indexing problem when

the hierarchy is degenerate and when the hierarchy has

constant depth. Combining these techniques, we give

an efficient solution to the whole problem.

Lemma 4.1 Consider an Instance of the class indexing

problem where k is the rnazimurn depth of the class

hierarchy and It as the size of the problem instance. We

can andex the class hierarchy so that the worst case query

time is O(logBn + t/B), the worst case update time is

O(k log~n), and the scheme uses O((n/B) k) storage.

This is optimal when k is constant.

239

Type I Type II Type 111 Type IV Type V

Figure 5: The five types of metablocks. The shaded rectangles represent metablock boundaries and the thick lines

are the boundaries of queries. The first four types appear in processin~ two sided queries as described in Section 13.

In addition to these four types, type V meta~iocks ‘can occu~ when w; process th~ee

Section 4.

Proofi We simply keep the full-extent of a class in a

collection associated with that class and build an index

for this collection. This might entail copying an item

at most k times, since k is the maximum depth of the

hierarchy. The bounds for the query and update times,

and the storage space follow. And clearly, this is optimal

when k is a constant, ❑

Lemma 4.2 When the hierarchy is degenerate, the

class indexing problem reduces to answering 3-sided

queries in secondary memory and can bc solved using

a varaant of the metabloek tree such that the worst case

query time is O(logB n + logz B + t/B), the amortized

insert time is O((log~ n)/B + logB n + logz B) per

operation, and the storage space required is O(n/B).

Proofi (sketch) In Section 2, we reduced the class

indexing problem to 2D range searching in secondary

memory. When the hierarchy is degenerate, the fourth

side is always y = O and we only have to deal with

3-sided range queries.

The metablock tree solves 2-sided range queries in

secondary memory where the corner always lies on the

diagonal. j3-sided queries are different for the following

reasons: (1) the corners need not lie on the diagonal

of a metablock; (2) both corners may lie on the same

metablock for this problem, forcing us to answer a

3-sided query on a metablock; and (3) both corners

may lie on metablocks which are children of the same

metablock.

Unfortunately, we do not know of any algorithm
with a performance bound like that of Theorem 3.2. The
method of [IKO] solves an instance of this problem of

size m with a worst case query time of O(log2 m+ t/B).

Their scheme uses O(n~/B) storage. We use their

scheme to deal with type IV and type V metablocks

and build auxiliary structures for each metablock. Since

their scheme uses optimal storage, our asymptotic

storage complexity does not change. Their structure

can be amortized in the

tree. The bounds in the

analysis of the metablock

sided queries as described in

same way as the metablock

lemma then follow from our

tree in Section 3. •1

We now show how to combine the two lemmas above

so that we can deal with any class hierarchy. We

restrict our attention to hierarchies that are trees. The

procedure trivially extends to forest hierarchies. Before

that, we need an algorithm that enables us to decide

which of the two lemmas to apply on which part of

the hierarchy. The idea for the hierarchy tree labeling

algorithm is from [SIT]. The following lemma is easily

proved using induction.

Lemma 4.3 Let Algorithm 1 be applied to an arbitrary

hierarchy tree of size c. The number of thin edges from

a leaf of this hierarchy tree to the root is no more than

log~ c.

We are now ready to prove the key lemma. Algo-

rithm 2 takes as input a hierarchy processed by Algo-

rithm 1 and applies procedures outlined in the proofs of

Lemmas 4.1 and 4.2 appropriately to parts of the hier-

archy. Initially, we associate a unique collection to each

class. This collection will contain the extent of the class.

Lemma 4.4 Let an instance of the class indexing

problem have class hierarchy size c, problem size n. Let

the disk block size be B. Let us index the collections as

per Algorithm 2. Then we have

(1) No extent of any class is duplicated more than

logz c times; and

(2) Every class in the znput class hierarchy gets

mdezed in the sense that either an ezpltctt tndex is built

for its full-extent or a search structure is built for it as

per Lemma 4.2.

Proofi We copy the extent of a class as many times as

there are thin edges from it to the root of the hierarchy.

Part (1) follows immediately follows from Lemma 4.3.

240

(1) procedure label-edges (mot);

(2) S := { children of mot };

(3) it4az := element of S with the maximum number of descendants; /* Break ties arbitrarily */

(4) Label edge between Max and root as thick

(5) Label edges between other children and root as thin;

(6) Apply procedure label- edges recursively to each child of root;

Algorithm 1: An algorithm for labeling a tree with thick and thin edges.

(1) procedure rake-and-contract (root);

(2) repeat

(3) for each leaf L connected by means of a thin edge to the tree do

(4) index collection associated with L;

(5) copy iterns in L’s collection to its parent’s collection;

(6) delete L from the tree and mark L as indexed;

(7) endfor

(8) for each path in the hierarchy tree composed entirely of thzck edges whose sole connection

to the rest of the tree is by means of a thin edge (or ends in the root) do

(9) build a 3-sided structure for the path (as described in Lemma 4.2);

(lo) copy all the collections associated with the nodes of the path into the collection

of the parent of the topmost node in the path;

(11) mark all the nodes in the path as indexed;

(12) delete all the nodes in the path from the hierarchy tree;

(13) endfor

(14) until hierarchy tree is made up of one node only;

Algorithm 2: The rake and contract algorithm for reducing an arbitrary hierarchy tree.

It is easy to see one of the two for loops in

Algorithm 2 runs at least once unless the hierarchy has

size one. This implies that every iteration of the repeat

loop reduces the size of the hierarchy, which implies that

the algorithm will terminate.

Part (2) follows easily. Notice that a node gets

deleted from the hierarchy only when an explicit index

is built for the items belonging to it or when a structure

is built for it according to Lemma 4.2. This implies that

every class in the input hierarchy is indexed in one of

the two ways. See Figure 6 for an example of how a

hierarchy is processed. ❑

We put everything together in the following theorem:

Theorem 4.5 An instance of the class indexing prob-

lem, where c is the size of the input class hierarchy,

n is the size of the problem, and B is the disk block

size can be solved such that the worst case query time is

O(logB n + t/B + logz B), the amortized insertion time

w O(logz c((log~ n)/ B+logB n+logz B)) per operation,

and the storage space required is O((n/B) logz c).

5 Conclusions and Open Problems

We have examined I/O-ef6cient data structures, which

provide indexing support for data models with con-

straint programming and object-oriented programming

features. Our algorithms for indexing constraints have

optimal storage and query time, and log-suboptimal

insert performance. Our algorithms for indexing con-

straints have improved space and query performance,

and polylog-suboptirnal insert performance.

Our new data structures have provably good perfor-
mance, but are complex. Whether simpler solutions ex-

ist, even for the static case, is open. From the point of

view of implementation the data structures in Sections

3 and 4 should be viewed as existence proofs that: for
these practical cases of 2-dimensional range searching

close to optimal 1/0 performance is achievable.

In addition, we believe that it is possible, using stan-

241

% ~

Figure 6: An example class hierarchy decomposition

dard data structure techniques, to transform our inser-

tion bounds from amortized to worst-case (although we

have not checked all the details yet). Whether they can

be asymptotically improved is an open question.

The performance for the case of deletes is open. We

should note that, using the techniques in this paper

to dynamize the static structure of [IKO] it is possible

to achieve the following dynamic bounds: (1) indexing

constraints in O(n/l?) pages, dynamic query 1/0 time

0(log2 n + t/13) and amortized update time 0(log2 n +

(log; n)/.B), and (2) indexing classes in O(log, c(n/B))

pages, dynamic query 1/0 time O(log2 n + t/13) and
amortized time 0(log2 c((log~ n)/13 + logz n)).

We close with the most elegant open question: can

dynamic interval management on secondary storage be

achieved optimally in O(n/B) pages, dynamic query

1/0 time O(logB n + t/B) and worst case update time

o(logB n)’?

References

[BaM] R. Bayer and E. McCreight, “Organization of

Large Ordered Indexes,” Acts lT#orrnatzcu 1

(1972), 173-189.

[ChT] Y.-J, Chiang and R. Tamassia, “Dynamic Al-

gorithms in Computational Cieometry,” Pro-

[Cod]

[Corn]

[IKO]

[JaL]

medings of IEEE, Special Issue on Computa-

tional Geometry 80(9) (1992), 362-381.

E. F. Codd, “A Relational Model for Large

Shared Data Banks,” CACM 13(6) (1970),

377-387.

D. Comer, “The Ubiquitous B-tree,” Comput-

ing ,$urveys 11(2) (1979), 121–137.

C. Icking, R. Klein, and T. Ottmann, Prz’ority

Search Trees in Secondary Memory (Extended

A hstract), Lecture Notes In Computer Science

#314, Springer-Verlag, 1988.

J. Jaffar and J. L. Lassez, “Constraint Logic
Programming,” Proc. l~th A CM POPL (1987),

111-119.

[KKR]

[KKD]

[KiL]

[LOL]

[MaS]

[McC]

[OSB]

[Sama]

[Samb]

[SIT]

[SmO]

[Vit]

P. C. Kanellakis, G. M. Kuper, and P. Z.

Revesz, “Constraint Query Languages,” Proc.

9th ACM PODS (1990), 299-313.

W. Kim, K. C. Kim, and A. Dale, “Indexing

Techniques for Object-Oriented Databases,”

in Ob~ect-Oriented Concepts, Databases, and

Applications, W. Kim and F. H. Lochovsky,

eds., Addison-Wesley, 1989, 371–394.

W. Kim and F. H. Lochovsky, eds., Objeci-

Oriented Concepts, Databases, and Applica-

tions, Addison-Wesley, 1989.

C. C. Low, B. C. Ooi, and H. Lu, “H-trees: A

Dynamic Associative Search Index for 00DB,”

Proc. ACM SIGMOD (1992), 134-143.

D. Maier and J. Stein, “Indexing in an Object-

Oriented DBMS,” IEEE Proc. International

Workshop on Object-Oriented Database Sys-

tems (1986), 171-182.

E. M. McCreight, “Priority Search Trees,”

SIAM Journal of Computing 14(2) (May 1985),

257-276.

M. H. Overmars, M. H. M. Smid, M. T.

de Berg, and M. J. van Kreveld, “Maintaining

Range Trees in Secondary Memory: Part I:

Partitions,” Acts Informatica 27 (1990), 423-

452.

Hanan Samet, Applications of Spatial Data

Structures: Computer Graphics, Image Pro-

cessing, and GIS, Addison-Wesley, 1989.

Hanan Samet, The Design and Analyszs of Spa-

tial Data Structures, Addison-Wesley, 1989.

D. D. Sleator and R. E. Tarjan, “A Data

Structure for Dynamic Trees,” J. computer

and System Sctences 24 (1983), 362–381.

M. H. M. Smid and M. H. Overmars, “Main-
taining Range Trees in Secondary Memory:

part 11: Lower Bounds,” Acts Informatica 27

(1990), 453-480.

J. S. Vitter, “Efficient Memory Access in
Large-Scale Computation,” 1991 symposiu~rt

242

on Theoretical Aspects of Computer Science

(STA CS), Lecture Notes in Computer Science,

(February 1991), invited paper.

[ZdM] S. Zdonik and D. Maier, Readings in Objeci-

Oriented Database Systems, Morgan Kauf-

mann, 1990.

243

	Abstract
	Introduction
	The Problems and Base Algorithms
	An Algorithm for External Dynamic Interval Management
	A Class Indexing Algorithm Using Hierarchy Decomposition
	Conclusions and Open Problems
	References

