
Optimizing Queries on Files

Mariano P. Consens

University of Waterloo

Waterloo, Canada N2L 3GI

consensfhwat erloo.ca

Abstract

We present a framework which allows the user to access

and manipulate data uniformly, regardless of whether it

resides in a database or in the file system (or in both). A

key issue is the performance of the system. We show that

text indexing, combined with newly developed optimization

techniques, can be used to provide an efficient high level

interface to information stored in files. Furthermore, using

these techniques, some queries can be evaluated significantly

faster than in standard database implementations. We also

study the tradeoff between efficiency and the amount of

indexing.

1 Introduction

Database systems provide powerful features for manip-

ulating large quantities of data. They do not, how-

ever, provide access to data stored in files outside the

database system. A large portion of the information in

a computerized environment resides in the file system,

and not in databases. This includes, in particular, semi-

structured textual information such as: electronic docu-

ments, programs, log files, online newspapers, patent in-

formation, literature citations, business profiles, and e-

mail. The tools available for manipulating such files do

not provide high level query and update facilities as ex-

ist in database systems, The purpose of this research is

to bridge the gap between databases and the surround-

ing environment, and to provide a uniform framework

where data can be accessed and manipulated, regard-

less of whether it resides in a database or in the file sys-

tem (or in both). Similar motivations are presented in

[SLS+93, ACM93, Sch93, GNOT92, BGMM93, Pae93,

BGH+92].

In order to allow data stored in files to benefit from

standard database technology, and in particular be

queried and updated using database languages, we need

to address two issues. First, we need to define a mapping

between files and databases. This mapping should

allow the effective translation of queries and updates

on databases to operations on files, and vice versa.

Permission to co without fee all or part of thk material k
grantecfprovid&\atthe mpiesareaot macieordistribtiedfor
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
anct/or specific permission.

Tova Milo

CSRI, University of Toronto

Toronto, Canada M5S lA1

milo@db.t oront o.edu

An example for such a mapping is given in [ACM93].

Second, we want to use this mapping to provide an

efficient high level database interface to files.

A key issue is the performance of the system. To

have feasible execution of queries and updates on files,

the query evaluation and optimization mechanisms used

in standard databases must be extended. In this paper

we concentrate on query evaluation. To answer queries

on files, one would like to avoid scanning the whole

file system. We show in the paper that this can

be achieved using advanced text indexing techniques.

The idea is to translate high level queries on files

into low level expressions that manipulate indices, and

then evaluate these expressions efficiently using the

engine of an indexing system. We do not address

the issues of building and maintaining the indices, we

assume that this is a service given by the underlying

text indexing system. In this work we use the PATl

text indexing system [Ope93], and translate database

queries on files to expressions in the PAT algebra

[Gon87, ST92]. Specifically, we show how word indexing

and region indexing can be combined with extended

database query optimization to provide efiicient access

to files. Using these techniques, some queries can be

evaluated significantly faster than in standard database

implementations.

Database queries may be expressed by several index

expressions, each affording different degree of efficiency.

Clearly, we want to evaluate a query using the most ef-

ficient expression. We therefore study optimization of

index expressions, and present a polynomial optimiza-

tion algorithm that finds the most efficient expression

that is equivalent to a given one,

As in standard database systems, it turns out that

there is a tradeoff between efficiency and the amount

of data being indexed. We study how the selection of

specific indices affects the amount of data needed to

be actually scanned when answering a query. We also

present guidelines for profitable choice of indices, We

show that there are cases where database queries can

be fully computed using the indexing engine. In other

cases, the indices are not sufficient for full computation,

but can be used to locate file regions that are potentially

1PAT is a registered trademark of Open Text Corporation.

SIGMOD 94- 5/94 Minneapolis, Minnesota, USA
@ 1994 ACM 0-89791 -639-519410005..@.5O 301

relevant for the query computation, and thus save in file

scanning, The potentially relevant regions must then

be further processed, in which case we describe how

extended database optimizations techniques can be used

to improve the performance.

The ideas presented in this paper can be used to build

a unified and efficient interface to databases and file

systems. The main advantage is that the system can be

implemented on top of any suitable DBMS, file system,

and indexing system, and can use any standard parser

for the mapping between the file and the database.

In particular, the Hy+ System [CM93] is an example

of a system that demonstrates how deductive database

technology can be combined with PAT to evaluate a

mixture of traditional and textual queries expressed in

the visual language GraphLog [Con89, CM90], One of

+ where textual queriesthe specific applications of Hy

were certainly useful was the querying and visualization

of software engineering data. A discussion of the

implementation approach taken to integrate PAT into

Hy+ can be found in [Yeu93]. In addition, the

optimization techniques presented here were tested on a

prototype system combining PAT with the 02 database

system [BCD89], and the Yacc parser [AJ74].

In Section 2 we present an example used in the rest of

the paper. Section 3 presents the indexing engine, and

the main properties of the index algebra used in the

optimization process. Section 4 introduces structuring

schemas – a tool for specifying how a file should

be interpreted in a database. The following sections

describe the optimization process. Section 5 considers

full indexing. Section 6 considers partial indexing, and

Section 7 provides guidelines for profitable choice of

indices. Finally, we conclude in Section 8.

2 Example

We are interested in files that have strong inner

structure (e.g., electronic documents, programs, SGML

files). Our goal is to use the inner structure of

files for providing high level and efficient interface

to the information they contain. Bibliography files

constitute an example of semi-structured data with

which all researchers are well acquainted. The text in

Figure 1 describes one bibliographic entry in the familiar

BIBTEX format [LamS5].

There is a multitude of bibliographic files that are

available on the Int ernet. Even at the local level, it is

common that each one of the members of a research

group keeps several such files on a variety of subjects,

and all of the members may share access to those

bibliographies. In this familiar scenario, there is a

strong motivation for being able to express queries

against the information in those files.

It is easy to see that bibliography files have a well

defined complex structure. We can find (i) atomic fields

@INCOLLECTION{ Cor182a,

AUTHOR =

TITLE =

BOOKTITLE =

YEAR =

EDITOR =

PUBLISHER =

ADDRESS =

PAGES =

REFERRED =

KEYWORDS =

ABSTRACT =

“G. F. Corliss and Y. F. Chang”,

“Solving Ordinary Differential

Equations Using Taylor Series”,

“Automatic Differentiation Algorithms”,

“ 1982”,

“A. Griewank and G. F. Corliss” ,

“SIAM” ,

“Philadelphia, Penn.”,

“114--144” ,

“ [Aber88a] ; [Cor188a] ; [Gupt85a] .”,

“point algorithm; Taylor series;

radius of convergence;”,

“A Fortran pre-processor uses automatic

differentiation to write a Fortran

program to solve the system.”>

Figure 1: A sample bibliographic reference in BIBTEX.

like YEAR, (ii) set valued fields like KEYWORDS, (iii) nested

structures like AUTHOR and EDITOR that are sets of names

of people, where each name consists of a first and last

name, (iv) references to other entries like each of the

elements in the set valued field REFERRED, and (v) chunks

of unstructured text, both long (e.g., ABSTRACT) and

short (e.g., TITLE and BOOKTITLE).

Viewing this information as a database provides

both modeling and processing benefits. We assume

in the following basic knowledge about object oriented

databases. We use below the data model and query

language of XSQL [KKS92]. With suitable variations we

could have used any other object oriented data model

and language. A bibliography database may contain

classes like: References, Authom, and Editors. Every

reference object may have atomic attributes like Year,

and set attributes like Authors, (where each Author

has a First-Name and Last_Name attributes). This

bibliography database can support complex queries like

“Select the names of editors who never wrote a paper

with any of the keywords occurring in a book that they

edited”.

Note that this query can be easily formulated in

XSQL, but can not be directly expressed by standard

text search tools (e.g. grep) that work directly on the

file, %nd nd even by most text retrieval systems, ginee

those systems do not support join-like operations. Our

research, thus, has two goals: (i) enabling users to view

files as databases, and (ii) using this database view for

manipulating the files.

It was shown in [ACM93] that structuring schemas

can be used to specify how data stored in a file should

be interpreted in a database. The main question is

how to avoid scanning the whole file system when

answering queries over such a database view. We show

below that this unnecessary effort can be avoided if

302

some information about the file content and structure

is indexed and maintained by the system. We start by

giving an intuition of the process with a very simple

query. We then present in the next sections the full

optimization algorithm.

Suppose that we want to find references where

“Chang” is one of the authors. This can be formulated

by an SQL query

Q = SELECT T FROM References T

WHERE T.AuthoTs.Name,Last.Name = “Chang”

Assume that we pre-process the file, and build two

kinds of indices. Word index, recording the location(s)

of all the words in the file, and region indices recording

the location of various regions in the file. Assume

that we built 3 region indices. The first records

the locations of RefeTence regions (i.e. where each

reference in the file starts, and where it ends). The

second records the locations of regions corresponding to

Authors (i.e regions starting with AUTHOR= and ending

with a comma). The third index records locations of

Last-Names.

This pre-processed information can be used to locate

the references required by the query without actually

accessing the BIBTEX file. The references required by

the query are exactly those corresponding to RefeTence

regions, that include some Authors region, that includes

a Last-Name region, that contains the word “Chang”.

Note that the PAT text indexing systems has facilities

for indexing words and regions, and it provides a

very efficient inclusion test. Thus, using a text

indexing system for the pre-processing stage, and for

the computation, results in a significant performance

advantage.

In the above example all the necessary information

(i.e. words, references, authors, and last-names) was

indexed in advance. In general we would like to index

as little as possible, to save in space and update cost.

Assume, for example, that we decide not to index the

authom regions. Note that a reference region cent ains

two kinds of last names. Last names of authors, and last

names of editors. If the authors regions are not indexed,

then it is impossible to distinguish between references

where Chang is an author and those where Chang is

only an editor, without actually accessing the file. Thus

the query can not be fully computed using the indexing

engine.

However, the indexed information can be still used

to improve performance. In particular, it can be used

locate the references that are “potentially relevant” for

the query computation, and thus save on file scanning.

The 12e&enee regions that include riom~ Last-iVame re-

gion that is the word “Chang”, are a superset of the

required references (in those references, Chang is either

an author or an editor). The number of these poten-

tially relevant references is significantly smaller than the

number of all the references in the file system. Thus

scanning those references, (in order to filter out the ir-

relevant references), instead of scanning the whole file

system, provides big performance improvement.’ Fur-

thermore, we show in the paper that these potential

regions can be processed efficiently using various opti-

mization techniques.

Another way to reduce the amount of indexed data is

to use selective indexing. Assume that users often query

names of authors, but never (or hardly ever) query

names of editors. In that case, instead of indexing all the

last-name regions it is better to index only last names of

authors. Selective indexing can also be done for words.

As in standard database systems, we show that there

is a tradeoff between efficiency and the amount of data

being indexed,

In the next sections we explain how queries on the

database view of files are transformed to expressions

manipulating word and region indices. Then we

show how these expressions can be optimized. We

consider full and partial indexing and the performance

acceleration gained by them.

3 Indexing and Optimization

In this section we provide a brief overview of the PAT

algebra [ST92], the language used by the PAT text

retrieval system [Ope93]. PAT combines traditional

text search capabilities (lexical, proximity, contextual,

boolean, see [SM83]) with some original powerful

features (position and frequency search). In particular,

we are interested in PAT’S ability to manipulate Tegions

of text (in the sense that we discussed informally in

the previous section). Regions are a generalization

of the concepts of document and jleld usually found

in conventional information retrieval systems. Similar

modelling capabilities are described in [Bur92].

The first subsection presents a subset of the PAT

algebra (with some extensions) that deals with regions.

In the second part of this section we deal with a powerful

optimization technique for expressions in this algebra.

3.1 The Region Algebra

PAT is a set-at-a-time algebra for text queries. There

are two types of sets in the algebra: sets of match points

(specific positions in the text) and sets of regions. The

match points correspond to the position in the text of

indexed strings (the entries of the word index referred

to earlier). Each region is a substring of the indexed

text, and is defined by a pair of positions in the text

corresponding to the beginning and end of the region,

We use the notation ~ > s, where ~,s are two regions,

to denote the fact that the region T includes the region

s (i% the endPoints ofs are Within those of r).
To simplify the presentation, (and highlight

aspects of the PAT algebra that are of interest to

the

us),

303

we describe below a subset of the algebra (with some

extentions), that concentrates on the manipulation of

sets of regions. We call this algebra the region algebra.

In particular, we assume that we are given a specific set

of named regions on the indexed text2.

A region index T is a set of region names R1,. . . . R~.

An instance of a region name Ri is a set of regions in

a file (with no restrictions on overlaps). An instance

I of a region index 1 is a mapping associating an

instance Ri (I) to each region name R,. As a notational

convenience when I is understood from the context, we

use R% for both the region name and the instance Ri (I).
Region expressions over ~ are expressions generated

by the grammar

e+ Rtle Ueleile \e-e\rW(e) l~(e)lw(e)l

e3ele Cele3dele Cde l(e)

where the terminals Ri are the region names in 1.

Given a region expression e and an instance 1, e(l)

denotes the result of evaluating e on I, where the

semantics are as follows. The operations U (union),

n (intersection), and – (difference), are the usual set

theoretic operations on sets of regions. The sezection

operation UW takes a set of regions R and returns the

regions r ● R containing (exactly) the word w. (The

selection is implemented by combined usage of the word

and region indices). The innermost L (resp. outermost

w) operation takes a set of regions R and returns the

T E R such that there is no r’ E R, r’ # T for which

r 3 r’ (resp. ~’ 3 ~).

The > (including) and C (included) operations take

two sets of regions R and S and return the sets of regions

RcS={TER:3SGS, SOT}

Finally, the Id (directly including) and Cd (directly
included) operations are a refinement of o and c resp.

The operation ~~ (cd) selects regions ~ c R that

directly include (are directly included in) a regions c S,

i.e. there is no other indexed region between T and s.

More formally,

We show below how Id can be computed using

the other algebra operators, by an algorithm that

additionally uses a while construct (Cd can be computed

similarly). The main objective of this presentation is to

give intuition about the cost of this operation, and in

2Note that the full PAT algebra is capable of constructing sets
of regions dynamically. From the point of view of this work we
can treat regions defined dynamically as if they were views.

particular to show that it is significantly more expensive

than the simple inclusion operation 3.

The program, which takes as input two regions R, S

and produces as output Rre~Utt = R ~d S, basically

iterates over nested layers of R regions, and for each

layer selects the R regions of the layer that directly

include an S region.

Ray.. := w(R); Rv.st := R – Rlaver; Rvesuzt:= 0;
while (RZ.Y.T > S) # 0 do

Rvesuit:= Rvesuztu
(Rtavemo (s - (UTcz_{.g}(s c T c Rzaver))));

RlaYer:= w(Rr.,t); Rpest:= Rve~t– Rtaye.;
end

return Rreswzt

Note that 0, ~~, C, Cd are not associative. For

brevity, we omit parentheses and assume that the

operations are grouped from the right. The following

is an example for a region expression. Consider the

region index T = { Reference, Key, Authors, Editors,

Name, First.Name, Last-Name }, that can be defined

for BIBTEX files. The expression

returns the set of Reference regions that either contain

an Authors region containing a Last_Name region

that is the word “Chang”, or contain an Editors

region containing a Last-Name region that is the word

“Corliss”.

3.2 Optimizing Region Expressions

We begin by describing some of the properties of

expressions in the region algebra that are the basis of

the optimization technique, and exploited throughout

the rest of the paper.

Our goal is to translate database queries to region

expressions, and evaluate them using the indexing

engine. Note that database queries may be expressed

by several different region expressions, some of which

are more efficient, and some less. Clearly, we want to

evaluate the query using the most efficient expression.

We therefore present below an optimization algorithm

that gi~en imch an expression, finds the most efficient

equivalent expression. In the rest of this section

we concentrate on region expressions where all the

operations are n and od. (As we show later, this type

of expressions are used for evaluating database queries

on text files). We call such expressions inclusion

expressions,

We first observe that files of a specific format have

specific inclusion relationships among regions. For

instance, in our BIBTEX file example, RefeTence

regions can include Editors region, but not vice versa.

304

To describe such relationships between region~ we

introduce a region inclusion graph (RIG, for short).

The nodes of the graph are region names, and the edges

state the possible inclusion relationships between the

corresponding region instances. An edge (Ri, Rj) is

in the graph, iff an Ri region can directly include an

Rj region. The graph is used to characterize a set of

inst antes that obey certain inclusion restrictions. In

general, the RIG may contain cycles (e.g., self-nested

regions).

Definition 3.1 An instance I of a region index Z =

{R,,..., R~} satisfies a RIG (region inclusion graph)

G = (Z, E) ifl fo~ every two regions r~ c R~(l), rj 6

Rj (I), if T~ directly includes Tj then (Ri, Rj) 6 E. The

set of all instances of Z that satisfy a RIG G is denoted

z~ .

We next consider equivalence of region expressions.

In the standard database approach, two queries over

a given schema are equivalent iff they have the same

result for every instance of the database. In the context

of queries in the region algebra, a RIG can be viewed as

schema. We therefore have the following definition.

Definition 3.2 Two region eqn-essions el, e2 are equiv-

alent with respect to a RIG G = (Z, E) ifl for every

inStUnCe ~ ~ &’, e](~) = e2(~).

For example, let Z = { Reference, Key, Authors, Z’ii!/e,

Editors, Name, l’irst.Name, Last.Name }, and consider

the following RIG.

Reference

Editors

= ../

First Name Last _Name

Every indexed BIBTEX file satisfies this graph. Con-

sider the two region expressions

= Reference Id Authors Id Name >d

cnc~j.n,~~ (Last.iVame)

e2 = Reference 2 Authors > ~<$chaq M(Last_Name)

These two expressions do not necessarily have the same

result for arbitrary instances of Z. But if only instances

satisfying the above RIG are considered, then the two

expressions do have the same result: they both retrieve

all the references where “Chang” is one of the authors.

This is because in BIBTEX files all the Authors regions

are directly included in some Reference region, and
all the Last-Name regions are included in some Name

region. Thus the direct inclusion can be replaced by
simple inclusion check, and the test for inclusion in the

Name region can be omitted. Note that we can not

omit the test for inclusion in Authors since we need to

filter out last names of editors.

The key observation is that the second expression can

be evaluated more efficiently than the first. It has fewer

operations, and uses 3 operators instead of the more

Computationally expensive ~d operator. In general, we

would like to use the knowledge about the structure of

files, provided by the RIG, to rewrite queries, so that

they can be evaluated more efficiently.

We first observe that knowledge about the possible

inclusion relationships among regions can be used to

identify trivial inclusion expressions, i.e. expression

whose result is always empty.

Consider, the expression e3 = Reference o Title >

Last.Name. The result of e3 is empty for all the

instances satisfying the above inclusion graph. This is

because in all those instances, no Last_Name region is

included in a Title region. In general we have that

Proposition 3.3 Let Z = {Rl,... , R~} be a region

index, and let e be an inclusion expression over Z. Let

G = (Z, E) be a region inclusion graph.

e(~) = @ for every ~ 6 TG, ifl Ut least one of the

following holds:

(i) e has a subezpression Ri ~d Rj, and (Ri, Rj) @ E.

(ii) e has a subexpression R~ J Rj) and G does not

contain a path j%om Ri to Rj

The proof follows immediately from the properties of

the instances I c ~G that satisfy G.

We next show that knowledge about the structure

of files can be used to shorten inclusion expressions,

and to replace the ~d operation by 3. W.1.o.g we

consider in the following only non trivial expressions

(i.e. expressions whose result is not always empty).

Definition 3.4 Let G = (Y, E) be a RIG, and let el, ez

be two inclusion expressions over 1. We say that ez

is more efficient than el w.r. t. G, iff el and e2 are

equivalent w.r. t. G, and e2 was obtained from el by

replacing sub-expressions of the form Ril 01 Ri= . . . on–l

Ri~ (where o~ is > or Od), by Ril > Ri~. We say that

e2 is the most eflicient version of e] w.r. t. G, iff it is

more eficient than el, and there is no other expression

that is more eficient than ez w. r.t. G.

We show below that every inclusion expression el

has a unique most efficient version. Furthermore, we

present an algorithm that computes this expression in

time polynomial in the size of e]. The algorithm is based

on the following observations

Proposition 3.5 Let T = {RI,. . . , R-} be a region
index. Let G = (Z, E) be a RIG. Let e, el, ez be

inclusion expressions over Z, s, t. el is constructed

from e by replacing some subexpression Ri ~d Rj by

Ri B Rj, and e2 is constructed from e by replacing some

305

subexpression R~ B Rj z Rk by Ri 3 Rk.

(a)el is equivalent toe w.r.t. G, ifftheedge(Ri, Rj]

is the only path from Ri to Rj in G, or if Rj is the

rightmost region in e and every path in G from Ri to

Rj starts with the edge (Ri, Rj).

(b) e, is equivalent toe w.r.t. G, ifi every path from Ri

to Rk in G passes through Rj.

The proposition is proved by analyzing the cases that

can cause ambiguity in the interpretation of inclusion

relationship between regions (details are omitted for

lack of space).

The Optimization Algorithm

We present below an optimization algorithm, that given

an inclusion expression e computes the most efficient

version of e. The algorithm has two steps. The first

replaces ~d operations by 3, and the second shortens

the expression.

1.

2.

Each sub expression Ri ~d Rj, satisfying criteria (a)

of Proposition 3.5, is replaced by I& 3 Rj.

The resulting expression is repeatedly scanned, and

every subexpressions of the form Ri 2 Rj 3 Rk,

satisfying criteria (b) of Proposition 3.5, is replaced
by Ri > Rk, This step is repeated until no more

changes can be done.

When the algorithm is applied on the expression

Re~e?’ence ~d Authors ~d Name 3d Lastflame, the

first step replaces the three >~ operations by >. The

second step replaces Authors 1 Name o LastJVame

by Authors > Last.Name, obtaining Reference D

Authors ~ Last.Name. No more simplifications can

be done due to the multiple paths from Reference to

Last.Name. (The inclusion of Last_IVame in Authors

must be tested to filter out last-names of editors.)

Theorem 3.6 .

(i) Every inclusion expression e has a unique most

eficient version e’.

(ii) The optimization algorithm, on input e, computes

this e’, in time polynomial in the size of e.

ProoE (sketch) We prove the theorem by showing that

● only the kind of rewriting done by the algorithm

can yield a more efficient expression which is still

equivalent to the original one,

● the replacement system used by the algorithm

satisfies the finite Church-Rosser property (this is

shown using Sethi’s theorem [Set74]).

In the following sections we present a technique for

translating database queries on files, into inclusion

expressions. The expressions are then optimized using

the above algorithm and evaluated using the indexing

engine.

4 Mapping Files to Databases

In this section we consider mappings between files and

databases, and explain how to use such mappings for

deriving a RIG for regions in a file.

4.1 Structuring Schemas

Structuring schemas were introduced in [ACM93] as a

tool for specifying how the data stored in a file should be

interpreted in a database. Structuring schemas enable

users to view information stored in files as if it is stored

in a database, and to use database query and update

languages for accessing this information. We briefly

describe below the main concepts. For full discussion see

[ACM93]. In the sequel, we assume standard knowledge
on object-oriented databases, context-free grammars

and parsing.

A structuring schema consists of a database schema

and a grammar annotated with database programs. The

grammar describes some of the structure of the file.

The annotation specifies the relationship between the

grammar non-terminals and their database representa-

tion. In particular, it specifies how a word w deriv-

able from a nonterminal A should be represented in a

database. This is done by associating to each deriva-

tion rule A + Al,... , A. a statement describing how

the database representation of a word derived from this

rule is constructed using the database representations

of the subwords derived from Al, . . . , An.

In the sequel, we use a Yacc-like notation [AJ74].

In a rule A + Al,... , An, $i denotes the database

image of the string corresponding to Ai, and $$ the

one associated to A.

The next example provides a simplistic subset of the

structuring schema for BIBTEX files. Every BIBTEX

file is represented in the database as a set of reference

objects. Each such object has attributes containing the

key of the reference, the title, the set of authors, etc.

The first part of the specification defines the classes

and types used in the database representation. The

second part associates with each non-terminal in the

grammar the type/class used for representing words

derived from that non-terminal. The third part

describes how the words are mapped into their database

representation.

I+ class.s and types */

Class Reference =

tuple(Key : string, Authors : set(Name),

Title : string, EditoTs : set(Name), . . .)

Type Name =
tuple(Fir’stflame : string, Last.Name : string)

/* Non-terminals type definition */

Type (Rej.set) = set(Reference)

Type (Reference) = Reference

Type (Key) = string
Type (Authors) = set(Name)

306

Type (Title) = s!ring

Type (Editors) = Set(Name)

Type (Name) = Name

Type (FivstJVame) = string

Type (Last_Name) = string

/* Annotated grammar BibTeX3chema */g

(Ref .Set)

(Reference)

(Key)

(Authors)

(Title)

(Editors)

(Name)

(FirstJVarne)

(LastName)

(Reference)*

{$$:= IJ $i}

“@INCOLLECTION{” (Key)

“AUTHOR = “ (Authors)

“TITLE = “ (Title) . . .
“EDITOR = “ (Editors)...}

{$$:= new(Reference, tuple(Key :$1,

Authors :$2,

Title :$3,,..

Editors: $%.. .))}
string

~:a:e;l}

{$$:= ; $i}

string

;j~;e;l}

{$$:= ~ $i}

(First_Name) (Last-Name)

{$$:= tuple(First-Name :$1,

LastJVame : $2)}

string

{$$:= $1}

string

{$$:= $1)

Structuring schemas can be used to specify a virtual

database view over files [ACM93]. To answer a query

on the database view of a file, one may construct the

database image of the file (i.e. parse the file using the

structuring schema, construct the objects/tuples, and

load them into the database), and then evaluate the

query on the database. This technique will obviously

lead to scanning and parsing the whole file, and con-

structing many unnecessary objects and complex values.

This is time and space consuming and we want to avoid

it. The optimization technique presented in [ACM93]

reduces the amount of data loaded into the database

while answering a query. But the whole file still needs

to be scanned and parsed. We will show below that this

unnecessary effort can be avoided using text indexing

techniques. The key observation is that word and region

indices can be used to locate substrings that are poten-

tially relevant to the query computation, and thus save

on scanning the whole file when evaluating the query.

Moreover, we identify cases where database queries on

a file can be fully computed using the indexing engine,
and the scanning of the file can be completely avoided.

‘We use the notation A + B* {$$:= IJ $i}, to denote the
fact that A is a sequence (possibly empty) of B’s, and that the
database representation of A is a set containing the database
representation of all the B’s in the sequence.

4.2 Deriving a RIG fkom a Natural

Structuring Schema

Note that the database representation of the BIBTEX

file is rather “natural”, i.e. it is very close to the

actual structure of a file. We call such structuring

schemas natural schemas. The database representa-

tion using a natural schema is essentially the p-string

of [GT87]. In general, the database representation may

significantly differ from the file structure (for examples,

see [AcM93]).

To simplify the presentation we demonstrate the

optimization technique on queries over views defined

using natural structuring schemas. We assume below

that literals A defined using rules of the form A + B*

are represented in the database by sets or lists. Literals

A defined using rules of the form A + B1 . . . Bn are

represented by tuples or by objects whose attributes

correspond to B1 ,,, B~. We also assume that the names

of attributes are the same names of the non-terminals

they represent. Terminals are represented by atomic

types50

We first consider a simple case where all the words in

the file are being indexed, and where the region index

Z= {Al,.,, , An} contains all the non-terminal names

Ai in the grammar G, except the root of the grammar.

We defer the discussion of partial indexing to section

6). We also assume that each index Ai is instantiated

by the set of all regions corresponding to occurrences of

Ai in the parse tr;e of the file-j using the grammar G.

The inclusion relationship) between the indexed re-.
gions is determined by the grammar. In particular, a

region ai corresponding to a nonterminal A~ can directly

include a region aj corresponding to a non-terminal Aj

iff the grammar G has a rule where Ai appears of the

left side, and Aj on the right side. Thus, the region

inclusion graph of Z can be automatically derived from

the grammar G. The nodes are the non-terminals of the

grammar, and the graph has an edge (Ai, Aj) iff G has

a rule where AZ appears as the left side, and Ai as the

right side. For example, the graph in Section 3.2 is part

of the RIG defined by the BIBTEX grammar,

It is important to note that the optimization tech-

nique presented in the following sections is applicable

to other mappings between files and databases as well.

The technique depends only on the existence of a region

inclusion graph describing the relationships between the

indexed regions, and on the existence of a mapping be-

tween path expressions in queries and paths in the re-

4This requires that every non-terminal name appears at most
once in the right hand side of a rule. This is not a serious
limitation since every grammar can be easily adjusted to sati6fy
thb requirement.

5When considering general context-free grammar, disjunctive
types will naturally arise from non terminals defined disjunctively.
This may not be realized directly is some database systems, There
are of course a variety of means of simulating such types (in
particular using inheritance).

307

gion inclusion graph. In the case of natural structuring

schemas, the graph and the mapping can be automati-

cally derived from the grammar. In case of more general

mappings, the user may need to provide this informa-

tion as part of the database schema.

5 Querying Fully Indexed Files

This section describes how to translate database queries

into expressions in the region algebra, assuming that

all the needed regions are indexed. The last subsection

highlights a class of queries that are very expensive when

computed in traditional databases, but are significantly

cheaper using text indexing.

5.1 From Simple Queries to Region

Expressions

We first study optimization of simple queries of the form

“SELECT r FROM R WHERET.p = w“, where p is some path

expression, and R is a database view of a file f defined

using a natural structuring schema with a grammar G.

Let References be a view defined using the BIBTEX

structuring schema. Consider the query

~ = SELECT T FROM References r

WHERE r. Authors. Name. Last_Name = “Chang”

The references retrieved by this query, are exactly

those that match Refe~ence regions that directly

include an Authors region, that directly include a

Name region, that directly include a Last.Name

region, that contains exactly the string “Chang”. In

fact, the path expression in the query corresponds to a

path in the RIG of the fully indexed file, Part of the

RIG is presented below. The path is denoted by dashed

arrows.

Editors

- “~ .ameA--=
“A

First-Name Last-Name

Consider the parse tree of the BIBTEX file, shown in
Figure 5.1. The data used to answer the query resides

in regions reachable by paths that match the path in

the RIG.

It follows that the references retrieved by the query Q

can be selected using the expression el = Reference ~d

Authors >d Name >d @Ckmg>9 (Last_Name). AS

shown in section 3.2, this expression can be opti-

mized, obtaining e2 = Reference 2 Authors o

a~Chang (Last-ZVame). To compute the query, we: (i)

evaluate ez, (ii) parse the reference regions in the re-

sult using the BIBTEX structuring schema, obtaining

reference objects, and (iii) return these objects to the

user.

Recall that we consider here only natural structuring

schemas. This implies that every path expression p

in the query, matches a derivation sequence(s) in the

grammar (p may match several derivation paths due to

conjunctive rules). This also implies that the attributes

used in the path p match regions that correspond to the

nonterminals in this derivation. In general, every path

pin a query “SELECT T FROM R WHERE ~.p = W“, matches

path(s) Al + A2 + . . . --i Am in the RIG. The path(s)

can be easily determined by syntactically analyzing the

grammar, The regions matching the objects retrieved

by Q are exactly those regions selected by the inclusion

expressions Al ~d AZ ~d . . . ~d aW(Am)

Thus to compute the query efficiently we (i) transform

the query to an inclusion expression, (ii) optimize

the inclusion expression, (iii) evaluate the inclusion

expression, (iv) parse the resulting regions, and return

the required objects.

5.2 Select–Project–Join Queries

The queries considered above have only one selection

criterion comparing an attribute to a constant. We next

consider queries with more complex selection criteria.

Consider first selections that compare the values of two

attributes. The query

Q = SELECT T FROM References r

WHERE ?’.Editors.Name. = r. Authors.Name

selects references that appeared in books edited by

one of the authors. Unlike the queries discussed in

the previous subsections, this query can not be fully

evaluated using the region algebra. The problem is

that the region algebra does not support operations

comparing contents of regions. This limitation is typical

to text indexing systems. It signals out the difference

between database systems and traditional text indexing

systems, and the benefits one gains from having a full

database interface to files. -

It turns out, however, that indices can still be used

to accelerate the computation. The region index can

be used to locate the regions corresponding to the

attributes specified by the two paths. The content of the
regions is then loaded into the database, and a database

join operator is used to select regions with matching

content. Then, the region index is used again to locate

the references containing those matching strings,

Queries may select elements based on several selec-

tion criteria composed using and, or and not operators,

These operations can be simulated in the region alge-

bra using union, intersection and subtraction of the

corresponding index expressions. Note that different

selection criteria may access common attributes. As in

classical query optimization, the goal is to find common

308

4----’- ‘:: \
-+.ci ~

Key Authors

&~\\

Title Editors Key Authors Title Editors

\
Name Name Name Name

/\.A /\ /\

Nay~:A

First-Name Last-Name First-Name Las;~Name First-Name Last-N”&e First-Name Last-Name

Figure 2: The parse tree for BIBTEX files (full indexing).

subexpressions in the region expressions and evaluate

them once.

Projection is handled similarly to selection. Instead

of using the > and >d operators, we use the C and Cd,

resp. For example, the query

Q = SELECTr. Authors. iVame.Last_Name

FROM References r

is translated to el = Last.Name cd Name cd

Autho7s cd Refe7ence.

The optimization technique presented in section 3.2

works for expression containing C and Cd operations

as well. In particular, el above is optimized getting

ez = Last-Name C Autho7s C Reference.

Complex queries involving several view definitions

(e.g. the BIEITEX authors that are cited in a LaTex

file) or several occurrences of the same view (e.g. nested

queries), use join. Text indexing systems are inadequate

for performing join like computation. This must be done

at the database level. However, we can use the indexing

system to reduce the amount of information loaded to

the databases for performing the join. The idea is to use

rewriting rules to push selection and projection down

as much as possible, and then use indexes to locate

the elements needed for the join computation. We will

not address in details the problems raised because they

are similar to that of complex queries in any rewriting

system.

5.3 Extended Pat h Expressions

Information stored in files often has complex structure

because it represents objects that are inherently com-

plex. It has been observed [KKS92, MBW80] that sim-

ple path expressions are not always suitable for manip-

ulating objects with complex structure. One way to

overcome this problem is to use path expressions with

variables,

Assume that one wants to find all references where
“Chang” is an author or an editor. This can be

expressed by the XSQL query

Q = SELECTT FROM References T

WHERE r. *X. Last-Name = “Chang”

The notation *X means that we are interested in

the attribute Last-Name, no matter what is the path

leading to this attribute. A similar facility for querying

text databases with partial knowledge of the schema is

described in [KM93].

A naive way to evaluate such a query is to analyze

the path expression, find all the possible assignments

to the variables, and then evaluate the query separately

for each specific path. There are cases, however, where

a better evaluation strategy exists. In particular, if a

variable name *X appears in the path expression only

once, then any path from the attribute left of *X to

the attribute on the right is an acceptable assignment.

Recall that the database representation of files naturally

matches their structure, and that attributes correspond

to regions in the file, The attribute Aj specified by

the path expression Ai. $ X.Aj resides in a region of

type Aj that is included in some region of type Ai.

Thus, Ai. x X.Aj (where X appears in p only once)

is translated to Ai ~ Aj. Variables that appear

more than once need to be instantiated by appropriate

attribute sequences, and are translated as before (using

the ~d operator), Thus, the query Q above can be

mapped into the region algebra expression Reference o

cmc~a~,~! (Last_Name), which can be evaluated much

more efficiently than in the standard approach.

XSQL also supports path expressions of the form

Ai.X1.Xz . . . Xn.Aj (i.e variables without the star no-
tation). This is used to access Aj attributes that are

reachable from Ai by an arbitrary path of length n. (In

contrast, the star notation denotes paths of arbitrary

length). This can be simulated in the region algebra

by looklng for regions al of type Al that cent ain some

region a2 of type A2, provided that there are exactly i

nested regions contained in al and containing a2.

It is important to emphasize that in traditional

OODBMS, path expressions with variables are compu-
tationally more expensive than those with no variables

(since the system has to actually traverse all possible

paths). In contrast, for text files, path expressions with

variables may be cheaper. This is due to the fact that

simple inclusion (II) may be applicable instead of direct

309

inclusion (>d).

One could also go beyond first order queries, and use

a notation borrowed from GraphLog [Con89, CM90]:

path regular expressions. These extend path expressions

with the traditional regular expression operators (in

particular, the transitive closure operator). Within the

framework we describe here it is possible to evaluate

paths with a regular expression involving a transitive

closure, with just an inclusion expression. This shows,

once more, that in some cases a traditionally expensive

query (a closure) can be implemented much more

efficiently with the techniques we describe here.

6 Partial Indexing

In the previous sections we assumed that all the non-

terminals in the grammar are indexed. In practice, we

may want to create a smaller number of region indexes

to reduce the space and update costs. We show below

that performance improvements can be obtained even

when only a selected subset of regions is indexed.

Partial indexing may not be sufficient for fully

evaluating queries using the region algebra. It can

be used, however, to significantly reduce the search

space. In the presence of partial indexing, a query is

computed in two phases: (i) The query is compiled into

an inclusion expression that computes a super set of the

required result - a set of candidate regions, and (ii) the

candidate regions are further processed to obtain the

exact result.

6.1 Obtaining the Candidate Regions

In this subsection we describe the first phase – trans-

forming the query to an inclusion expression computing

a set of candidate regions. The second phase - the re-

gions processing – is discussed next,

Let ZP= {Ail,... , Aib }, be a region index containing

part of the non-terminal names in the grammar G.

Assume that each index Aij is instantiated by the set

of all regions corresponding to occurrences of Aij in the

parse tree of the file f using the grammar G.

As in the case of full indexing, the inclusion relation-

ship between the indexed regions is determined by the

grammar. In particular, the region inclusion graph of ZP

can be automatically derived from the grammar G, The

nodes are the indexed non-terminal in lP. The graph
has an edge (At, Aj) iff in the RIG of the full grammar

(i.e. where all the non-terminals are indexed) there is

a path from Ai to Aj where all the non-terminals on

the path other than Ai,Aj are not indexed (i.e. do not

belong to lP).
For example consider the BIBTEX grammar, and let

1P = {RefeTence, Key, Last.Name}. The correspond-

ing RIG is presented below. As before, a path p in a

database query matches a path in the RIG. The dashed

arrows in the following diagram correspond to the path

in the query

Q = SELECT r FROM References r

WHERET.Authors. Name. Last-Name = “Chang”

Reference

/“”\
Key Last-Name

Once more, consider the parse tree of the BIBTEX file.

The data used to answer the query, resides in regions

reachable by paths that match the path in the RIG.

In the case of full indexing, the indexed information

was sufficient for exactly locating the regions needed

for the query processing. In the case of partial indexing

only an approximation of the required regions can be

achieved. Below is a part of the parse tree of a bibtex

file. The dashed lines in Figure 6.1 correspond to paths

that match the path in the above RIG.

Note that due to the partial indexing, one can not dis-

tinguish between last names of authors and last-names

of editors. Thus, the inclusion expression Reference ~d

cmChan,~~ (Last..Name) identifies a superset of the re-

quired references, (references where “Chang” is either

an author or an editor).

In general, a path p in a query

Q = SELECT r FROM References r WHEREr.p = w

matches a path Al + A2 + . . . + Am in the RIG

of the indexed non-terminals. The inclusion expression

A12dAz3d... ~d aW(Am) retrieves a set of candidate

regions, that is a superset of the regions required by the

query. (This expression can be further optimized using

the optimization algorithm of Section 3.2).

Note that there are cases where the set of candidate

regions coincide with the query’s answer. The condi-

tions under which this happens are discussed in Sec-

tion 6.3.

6.2 Parsing the Candidate Regions

We next filter out irrelevant the regions. To this end,

we parse the regions in the superset, building for each

region a corresponding database representation, and

then select the required elements by applying the query

on the resulting database objects.

It was observed in [ACM93] that the structuring

schema can be optimized by “pushing” the query

into the parsing process, so that only objects that

meet the query selection criteria are built. Parsing

using an optimized schema reduces the construction of

unnecessary database objects.

6.3 Exact Answer wit h Partial Indexing

There are cases where partial indexing is sufficient

for fully computing the query, without additional

parsing. This happens when the indexed non-terminals
provide enough information to avoid ambiguities in path

interpretation. The conditions are sketched below.

310

Figure 3: The parse tree for BIBTEX files (partial indexing).

Let 1 be a region index containing all the names

of non-terminals in the grammar G, and let ZP ~ Z

be a partial index. Let RIG(T) and MG(ZP) be

the corresponding region inclusion graphs. The key

observation is that every edge (Ai, Aj) in RIG(TP)

matches path(s) from Ai to Aj in RIG(T), where all

the nodes on the path(s), other than Ai and Aj, are not

in ZP.

Consider a query “SELECT ~ FROM R r WHERE r.p = w“.

Let A1 +A2 + . . . + An be the path in RIG(TP)

corresponding to the path p in the query Q. The

inclusion expression Al ~~ AZ ~d . . . od aw (An) fully

computes Q if each of the edges (Ai, Aj) on this path

matches a unique path in RIG(Z). If the edges match

several paths, then the inclusion expression computes a

superset of the required regions.

7 Choosing What to Index

The efficiency of query evaluation depends on the

choice of region indices. There is a tradeoff between

performance and the number of regions being indexed.

As in standard database systems, knowledge about

the access patterns to files can be used to select

indices. In fact, many aspects of this issue should be

considered in the broader context of indexing techniques

for 00DBMS’S (see [Ber94] for a survey). A key

observation in our context is that in many cases partial

indexing is sufficient for full computation of queries.

Consider a query “SELECT r FROM R ~ WHERE ?’.p = w“,

where R is a view defined by a structuring schema with

grammar G. Assume first that all the non-terminals in

the grammar are indexed, and let e = Al 01A202. . .on_l

An be the optimized inclusion expression that computes

Q (e is constructed and optimized as explained in

Section 5).

Note that not all the indexed non-terminals are

act ually needed for evaluating e. One can distinguish
two kinds of region indices used in the computation.

Regions that are explicitly mentioned in e (i.e. the

A~’s), and those that are implicitly mentioned. The

implicit usage is due to the ~d operation. To compute

Ai ~d Ai+l, one has to rule out all non direct

inclusions. This requires checking that none of the other

indexed regions resides between the two regions, Note

however that not all the indexed regions must indeed be

checked. The grammar G enforces certain relationships

between regions. In fact, only regions corresponding

to non-terminals derivable from Ai and deriving Aj

can violate the direct inclusion. Thus only region

indices corresponding to those non-terminals need to be

checked. Moreover, if Ai derives some Ail that derives

some Ail, that derives Ai+l, it is not necessary to check

both Ail and Ail,, one suffices.

In summary, to fully compute Q, it is sufficient to (i)

index the nonterminals mentioned in e, and (ii) for every

subexpression Ai >d Ai+l in e, index one non-terminal

(other than Ai,Ai+l) on each path from A, to Ai+l in

the RIG of the grammar G.

Indexing can be either performed globally (i.e., for

the whole file) or only in specific regions. For example,

assume that users often query names of authors, but

never (or hardly ever) query names of editors. In that

case, instead of indexing all the Name regions it is

better to index only those that reside in some Authors

region.

As explained in Section 6, one can trade indexing

for accuracy of computation. The parameters taken

into consideration are the number of regions needed to

be indexed for full computation, and the number and

expected size of the regions needed to be parsed due to

non indexed data.

8 Conclusions

In this paper we discussed how to provide efficient ac-

cess to semi-structured data residing in files. The ap-

proach combines the convenience of using an extended

SQL to query the more structured components of the

information in files with the ei%ciency afforded by text

indexing.
An original contribution of the paper consists of

an optimization technique that is applicable when

advanced text indexing technology is available to the

database query evaluator. The concept of a region

inclusion graph is introduced to provide the information

311

needed to perform the above optimization. We also

discuss how to automatically derive a RIG when

structuring schemas are used to specify the mapping

from files to databases.

Preliminary experimental results show that signifi-

cant performance improvements can be obtained by us-

ing optimized PAT inclusion expressions (instead of rely-

ing on a traditional database engine) for the evaluation

of queries.

Acknowledgments: We would like to thank Vassos

Hadzilacos for his fruitful suggestions, and Frank Tompa and

Pekka Kilpelainen for detailed comments on a preliminary

version of thk paper. The first author would like to

acknowledge Gast on Gonnet for several discussions on PAT.

This work was done at University of Toronto and the second

author was supported by the Institute for Robotics and

Intelligent Systems.

References

[ACM93]

[AJ74]

[BCD89]

[Ber94]

[BGH+92]

[BGMM93]

[Bur92]

[CM90]

[CM93]

S. Abiteboul, S. Cluet, and T. Mile. Querying

and updating the file. In PTOC. of the 19th Int.

Conf. on Very Large Databases, VLDB93, pages
73-84, 1993.

A. V. Aho and S. C. Johnson. Programming

utilities and libraries LR parsing. Computing

Suweys, June 1974.

F. Bancilhon, S. Cluet, and C. Delobel. Query

languages for object-oriented database systems:

the 02 proposal. In Proc. DBPL, Salishan

Lodge, Oregon, June 1989.

E. Bertino. A Survey of Indexing Techniques for
Object-Oriented Database Management Sys-
tems. In Freytag, J. and Maier, D. and
Vossen, G., editor, Query Processing foT Ad-

vanced Database Systems, pages 383-418, San

Mateo, CA, 1994. Morgan Kaufmann.

T. F. Bowen, G. Gopal, G. Herman, T. Hickey,

K. C. Lee, W. H. Mansfield, J. Raitz, and

A. Weinrib. The Dat acycle architecture. Com-

munications of the A GM, 35(12):71–81, Decem-

ber 1992.

D. Barbara, H. Garcia-Molia, and S. Mehrota.

The gold mailer. In L%?l?l Data Eng., pages 92-

99, 1993.

F. J. Burkowski. Retrieval activities in a

database consisting of heterogeneous collections

of structured text. In PTOC. of the 15th. SIGIR

Conference, pages 112–125, 1992.

M. Consens and A. Mendelzon, GraphLog: a

visual formalism for real life recursion. In .PTo-

ceedings of the Ninth ACM SIGA CT- SIGMOD

Symposium on Principles of Database Systems,

pages 404–416, 1990.

M. Consens and A. Mendelzon. Hy: A hygraph-

based query and visualization system. In

[Con89]

[GNOT92]

[Gon87]

[GT87]

[KKS92]

[KM93]

[Larn85]

[MBW80]

[Ope93]

[Pae93]

[Sch93]

[Set74]

[SLS+93]

[SM83]

[ST92]

[Yeu93]

Proceedings of the A CM- SIGMOD 1993 Annual

Conference on Management of Data, pages 511–

516, 1993.

Mariano P. Consens. Graphlog: “real life”

recursive queries using graphs. Master’s thesis,

Department of Computer Science, University of

Toronto, January 1989.

D. Goldberg, D. Nichols, B. M. Oki, and

D. Terry. Using collaborative filtering to

weave an information tapestry. CA CM, 35(12),

December 1992.

G. Gonnet. Examples of PAT applied to the

Oxford English Dictionary. Technical Report

OED-87-02, University of Waterloo, 1987.

G. Gonnet and F. Tompa. Mind your grammar:

a new approach to modelling text. In Proc. of

the 1$’th Int. Conf. on VeTy Large Databases,

pages 339–346, 1987.

M. Kifer, W. Kim, and Y. Sagiv. Querying

object-orient ed databases. In PTOC. SIGMOD,

San-Diego, 1992.

P. Kilpelainen and H. Mannila. Retrieval from

hierarchical texts by partial patterns. In PTOC.

of the 15th. SIGIR Conference, 1993,

L. Lamport. LaTeX: A Document PTepaTation

System. Addison-Wesley, Reading, MA, 1985.

J. Mylopoulos, P. A. Bernstein, and H. K. T

Wong. A language facility for designing

database-intensive applications. ACM Transac-

tions on Database Systems, 5(2), 1980.

Open Text Corporation. PAT Reference Manual

and Tuto?’ia[, 1993.

A. Paepcke. An object oriented view onto public

heterogeneous text databases. In IEEE Data

Eng., page 484, 1993.

M. F. Schwartz. Internet Resource Discovery

at the University of Colorado. IEEE ComputeT

IVetwo%ng, 26(9), September 1993.

R. Sethi. Testing for Church-Rosser Property.

.IA CM, 21(4), October 1974.

K. Sheens, A. Luniewski, P. Schwartz, J. St a-

mos, and J. Thomas. The Rofus system: Infor-

mation organization for semi-structured data.

In Proc. of the 19th Int. conf. on VeTy Large

Databases, VLDB 93, pages 97-1o7, 1993.

G Salton and M. J. McGill. Introduction to

modem information ret Tieval. McGraw-Hill,

1983.

A. Salminen and F. W. Tompa. PAT expres-
sions: an algebra for text search. In Papem in

Computational Lexicography: COMPLEX ’92,

pages 309–332, 1992.

A. Yeung, Text Searching in the Hy + Visual-

ization System. Master’s thesis, Department of

Computer Science, University of Toronto, Oc-

tober 1993.

312

	Abstract
	Introduction
	Example
	Indexing and Optimization
	Mapping Files to Databases
	Querying Fully Indexed Files
	Partial Indexing
	Choosing What to Index
	Conclusions
	References

