7 Contracts

This chapter provides a gentle introduction to Racket’s contract system. §7 “Contracts” in
The Racket
Reference provides
more on contracts.

7.1 Contracts and Boundaries

Like a contract between two business partners, a software contract is an agreement between
two parties. The agreement specifies obligations and guarantees for each “product” (or
value) that is handed from one party to the other.

A contract thus establishes a boundary between the two parties. Whenever a value crosses
this boundary, the contract monitoring system performs contract checks, making sure the
partners abide by the established contract.

In this spirit, Racket encourages contracts mainly at module boundaries. Specifically,
programmers may attach contracts to provide clauses and thus impose constraints and
promises on the use of exported values. For example, the export specification

#lang racket

(provide/contract
[amount positive?])
(define amount ...)

promises to all clients of the above module that the value of amount will always be a positive
number. The contract system monitors the module’s obligation carefully. Every time a client
refers to amount, the monitor checks that the value of amount is indeed a positive number.

The contracts library is built into the Racket language, but if you wish to use racket/base,
you can explicitly require the contracts library like this:

#lang racket/base
(require racket/contract) ; now we can write contracts

(provide/contract
[amount positive?])
(define amount ...)

7.1.1 Contract Violations

If we bind amount to a number that is not positive,

122

#lang racket

(provide/contract
[amount positive?])
(define amount 0)

then, when the module is required, the monitoring system signals a violation of the contract
and blames the module for breaking its promises.

An even bigger mistake would be to bind amount to a non-number value:

#lang racket

(provide/contract
[amount positive?])
(define amount ’amount)

In this case, the monitoring system will apply positive? to a symbol, but positive?
reports an error, because its domain is only numbers. To make the contract capture our
intentions for all Racket values, we can ensure that the value is both a number and is positive,
combining the two contracts with and/c:

(provide/contract
[amount (and/c number? positive?)])

7.1.2 Experimenting with Contracts and Modules

All of the contracts and modules in this chapter (excluding those just following) are writ-
ten using the standard #lang syntax for describing modules. Since modules serve as the
boundary between parties in a contract, examples involve multiple modules.

To experiment with multiple modules within a single module or within DrRacket’s defini-
tions area, use the racket/load language. The contents of such a module can be other
modules (and require statements), using the longhand parenthesized syntax for a module
(see §6.2.1 “The module Form”). For example, try the example earlier in this section as
follows:

#lang racket/load
(module m racket
(provide/contract [amount (and/c number? positive?)])

(define amount 150))

(module n racket

123

(require ’m)
(+ amount 10))

(require ’n)

Each of the modules and their contracts are wrapped in parentheses with the module key-
word at the front. The first form after module is the name of the module to be used in a
subsequent require statement (where each reference through a require prefixes the name
with a quote). The second form after module is the language, and the remaining forms are
the body of the module. After all of the modules, a require starts one of the modules plus
anything that is requires.

7.2 Simple Contracts on Functions

A mathematical function has a domain and a range. The domain indicates the kind of values
that the function can accept as arguments, and the range indicates the kind of values that it
produces. The conventional notation for a describing a function with its domain and range is

f:A->B

where A is the domain of the function and B is the range.

Functions in a programming language have domains and ranges, too, and a contract can en-
sure that a function receives only values in its range and produces only values in its domain.
A -> creates such a contract for a function. The forms after a -> specify contracts for the
domains and finally a contract for the range.

Here is a module that might represent a bank account:

#lang racket

(provide/contract
[deposit (-> number? any)]
[balance (-> number?)])

(define amount 0)
(define (deposit a) (set! amount (+ amount a)))
(define (balance) amount)

The module exports two functions:

* deposit, which accepts a number and returns some value that is not specified in the
contract, and

124

* balance, which returns a number indicating the current balance of the account.

When a module exports a function, it establishes two channels of communication between
itself as a “server” and the “client” module that imports the function. If the client module
calls the function, it sends a value into the server module. Conversely, if such a function
call ends and the function returns a value, the server module sends a value back to the client
module. This client—server distinction is important, because when something goes wrong,
one or the other of the parties is to blame.

If a client module were to apply deposit to millions, it would violate the contract. The
contract-monitoring system would catch this violation and blame client for breaking the
contract with the above module. In contrast, if the balance function were to return ’broke,
the contract-monitoring system would blame the server module.

A -> by itself is not a contract; it is a contract combinator, which combines other contracts
to form a contract.

7.2.1 Styles of ->

If you are used to mathematical function, you may prefer a contract arrow to appear between
the domain and the range of a function, not at the beginning. If you have read How to Design
Programs, you have seen this many times. Indeed, you may have seen contracts such as these
in other people’s code:

(provide/contract

[deposit (number? . -> . any)l)

If a Racket S-expression contains two dots with a symbol in the middle, the reader re-
arranges the S-expression and place the symbol at the front, as described in §2.4.3 “Lists
and Racket Syntax”. Thus,

(number? . -> . any)

is just another way of writing

(-> number? any)

7.2.2 anyand any/c

The any contract used for deposit matches any kind of result, and it can only be used in the
range position of a function contract. Instead of any above, we could use the more specific
contract void?, which says that the function will always return the (void) value. The

125

void? contract, however, would require the contract monitoring system to check the return
value every time the function is called, even though the “client” module can’t do much with
the value. In contrast, any tells the monitoring system not to check the return value, it tells a
potential client that the “server” module makes no promises at all about the function’s return
value, even whether it is a single value or multiple values.

The any/c contract is similar to any, in that it makes no demands on a value. Unlike any,
any/c indicates a single value, and it is suitable for use as an argument contract. Using
any/c as a range contract imposes a check that the function produces a single value. That
is,

(-> integer? any)

describes a function that accepts and integer and returns any number of values, while

(-> integer? any/c)
describes a function that accepts an integer and produces a single result (but does not say
anything more about the result). The function

(define (f x) (values (+ x 1) (- x 1)))

matches (-> integer? any), but not (-> integer? any/c).

Use any/c as a result contract when it is particularly important to promise a single result
from a function. Use any when you want to promise as little as possible (and incur as little
checking as possible) for a function’s result.

7.2.3 Rolling Your Own Contracts

The deposit function adds the given number to the value of amount. While the function’s
contract prevents clients from applying it to non-numbers, the contract still allows them
to apply the function to complex numbers, negative numbers, or inexact numbers, none of
which sensibly represent amounts of money.

The contract system allows programmers to define their own contracts as functions:

#lang racket

(define (amount? a)
(and (number? a) (integer? a) (exact? a) (>= a 0)))

(provide/contract
; an amount is a natural number of cents

126

; i1s the given number an amount?
[deposit (-> amount? any)]
[amount? (-> any/c boolean?)]
[balance (-> amount?)])

(define amount 0)
(define (deposit a) (set! amount (+ amount a)))
(define (balance) amount)

This module defines an amount? function and uses it as a contract within -> contracts.
When a client calls the deposit function as exported with the contract (-> amount? any),
it must supply an exact, nonnegative integer, otherwise the amount? function applied to
the argument will return #f, which will cause the contract-monitoring system to blame the
client. Similarly, the server module must provide an exact, nonnegative integer as the result
of balance to remain blameless.

Of course, it makes no sense to restrict a channel of communication to values that the client
doesn’t understand. Therefore the module also exports the amount? predicate itself, with a
contract saying that it accepts an arbitrary value and returns a boolean.

In this case, we could also have used natural-number/c in place of amount?, since it
implies exactly the same check:

(provide/contract
[deposit (-> natural-number/c any)]
[balance (-> natural-number/c)])

Every function that accepts one argument can be treated as a predicate and thus used as
a contract. For combining existing checks into a new one, however, contract combinators
such as and/c and or/c are often useful. For example, here is yet another way to write the
contracts above:

(define amount/c
(and/c number? integer? exact? (or/c positive? zero?)))

(provide/contract
[deposit (-> amount/c any)]
[balance (-> amount/c)])

Other values also serve double duty as contracts. For example, if a function accepts a number
or #f, (or/c number? #f) suffices. Similarly, the amount/c contract could have been
written with a O in place of zero?. If you use a regular expression as a contract, the contract
accepts strings and byte strings that match the regular expression.

Naturally, you can mix your own contract-implementing functions with combinators like
and/c. Here is a module for creating strings from banking records:

127

#lang racket

(define (has-decimal? str)
(define L (string-length str))
(and (>=L 3)
(char=7 #\. (string-ref str (- L 3)))))

(provide/contract
; convert a random number to a string
[format-number (-> number? string?)]

; convert an amount into a string with a decimal
; point, as in an amount of US currency
[format-nat (-> natural-number/c

(and/c string? has-decimal?))])

The contract of the exported function format-number specifies that the function consumes
a number and produces a string. The contract of the exported function format-nat is more
interesting than the one of format-number. It consumes only natural numbers. Its range
contract promises a string that has a . in the third position from the right.

If we want to strengthen the promise of the range contract for format-nat so that it admits
only strings with digits and a single dot, we could write it like this:

#lang racket

(define (digit-char? x)
(member x ’(#\1 #\2 #\3 #\4 #\5 #\6 #\7 #\8 #\9 #\0)))

(define (has-decimal? str)
(define L (string-length str))
(and (>= L 3)
(char=7 #\. (string-ref str (- L 3)))))

(define (is-decimal-string? str)
(define L (string-length str))
(and (has-decimal? str)
(andmap digit-char?
(string->1list (substring str O (- L 3))))
(andmap digit-char?
(string->list (substring str (- L 2) L)))))

(provide/contract

128

; convert an amount (natural number) of cents
; into a dollar based string
[format-nat (-> natural-number/c
(and/c string?
is-decimal-string?))])

Alternately, in this case, we could use a regular expression as a contract:

#lang racket
(provide/contract

; convert an amount (natural number) of cents
; into a dollar based string
[format-nat (-> natural-number/c
(and/c string? #rx"[0-91*\\.[0-91[0-91"))1)

7.2.4 Contracts on Higher-order Functions

Function contracts are not just restricted to having simple predicates on their domains or
ranges. Any of the contract combinators discussed here, including function contracts them-
selves, can be used as contracts on the arguments and results of a function.

For example,

(-> integer? (-> integer? integer?))

is a contract that describes a curried function. It matches functions that accept one argument
and then return another function accepting a second argument before finally returning an
integer. If a server exports a function make-adder with this contract, and if make-adder
returns a value other than a function, then the server is to blame. If make-adder does return
a function, but the resulting function is applied to a value other than an integer, then the
client is to blame.

Similarly, the contract

(-> (-> integer? integer?) integer?)
describes functions that accept other functions as its input. If a server exports a function
twice with this contract and the twice is applied to a value other than a function of one

argument, then the client is to blame. If twice is applied to a function of one argument and
twice calls the given function on a value other than an integer, then the server is to blame.

129

7.2.5 Contract Messages with “???”

You wrote your module. You added contracts. You put them into the interface so that client
programmers have all the information from interfaces. It’s a piece of art:

#lang racket

(provide/contract
[deposit (-> (lambda (x)
(and (number? x) (integer? x) (>= x 0)))
any)])

(define this 0)
(define (deposit a) ...)

Several clients used your module. Others used their modules in turn. And all of a sudden
one of them sees this error message:

bank-client broke the contract (-> ??? any) it had with myaccount on deposit;
expected <???>, given: -10

Clearly, bank-client is a module that uses myaccount but what is the 7?7 doing there?
Wouldn’t it be nice if we had a name for this class of data much like we have string, number,
and so on?

For this situation, Racket provides flat named contracts. The use of “contract” in this term
shows that contracts are first-class values. The “flat” means that the collection of data is a
subset of the built-in atomic classes of data; they are described by a predicate that consumes
all Racket values and produces a boolean. The “named” part says what we want to do, which
is to name the contract so that error messages become intelligible:

#lang racket

(define (amount? x) (and (number? x) (integer? x) (>= x 0)))
(define amount (flat-named-contract ’amount amount?))

(provide/contract
[deposit (amount . -> . any)])

(define this 0)
(define (deposit a) ...)

With this little change, the error message becomes all of the sudden quite readable:

130

bank-client broke the contract (-> amount any) it had with myaccount on de-
posit; expected <amount>, given: -10

7.3 Contracts on Functions in General

The -> contract constructor works for functions that take a fixed number of arguments and
where the result contract is independent of the input arguments. To support other kinds of
functions, Racket supplies additional contract constructors, notably ->* and ->i.

7.3.1 Optional Arguments

Take a look at this excerpt from a string-processing module, inspired by the Scheme cook-
book:

#lang racket

(provide/contract
; pad the given str left and right with
; the (optional) char so that it is centered
[string-pad-center (->* (string? natural-number/c)
(char?)
string?)])

(define (string-pad-center str width [pad #\spacel)
(define field-width (min width (string-length str)))
(define rmargin (ceiling (/ (- width field-width) 2)))
(define lmargin (floor (/ (- width field-width) 2)))
(string-append (build-string lmargin (A (x) pad))

str
(build-string rmargin (A (x) pad))))

The module exports string-pad-center, a function that creates a string of a given width
with the given string in the center. The default fill character is #\space; if the client module
wishes to use a different character, it may call string-pad-center with a third argument,
a char, overwriting the default.

The function definition uses optional arguments, which is appropriate for this kind of func-
tionality. The interesting point here is the formulation of the contract for the string-pad-
center.

The contract combinator ->*, demands several groups of contracts:

131

 The first one is a parenthesized group of contracts for all required arguments. In this
example, we see two: string? and natural-number/c.

e The second one is a parenthesized group of contracts for all optional arguments:
char?.

* The last one is a single contract: the result of the function.

Note if a default value does not satisfy a contract, you won’t get a contract error for this
interface. If you can’t trust yourself to get the initial value right, you need to communicate
the initial value across a boundary.

7.3.2 Rest Arguments

The max operator consumes at least one real number, but it accepts any number of additional
arguments. You can write other such functions using a “rest” argument, such as in max-abs:

(define (max-abs n . rst)
(foldr (lambda (n m) (max (abs n) m)) (abs n) rst))

Describing this function through a contract requires a further extension of ->*: a #:rest
keyword specifies a contract on a list of arguments after the required and optional arguments:

(provide/contract
[max-abs (->* (real?) () #:rest (listof real?) real?)])

As always for ->*, the contracts for the required arguments are enclosed in the first pair
of parentheses, which in this case is a single real number. The empty pair of parenthesis
indicates that there are no optional arguments (not counting the rest arguments). The contract
for the rest argument follows #: rest; since all additional arguments must be real numbers,
the list of rest arguments must satisfy the contract (1istof real?).

7.3.3 Keyword Arguments

It turns out that the -> contract constructor also contains support for keyword arguments. For
example, consider this function, which creates a simple GUI and asks the user a yes-or-no
question:

#lang racket/gui

(define (ask-yes-or-no-question question
#:default answer

132

See §4.4.1
“Declaring a Rest
Argument” for an
introduction to rest
arguments.

See §4.4.3
“Declaring
Keyword
Arguments” for an
introduction to
keyword arguments.

(define
(define
(define
(define
(define

(define

(send d
answer)

#:title title
#:width w
#:height h)
d (new dialog), [label title] [width w] [height h]))
msg (new message), [label question] [parent dl))
(yes) (set! answer #t) (send d show #f))
(no) (set! answer #f) (send d show #f))
yes-b (new button,
[label "Yes"] [parent d]
[callback (A (x y) (yes))]
[style (if answer ’(border) >())1))
no-b (new buttony
[label "No"] [parent d]
[callback (A (x y) (no))l
[style (if answer ’() ’(border))]))
show #t)

(provide/contract

[ask-yes-

or-no-question

(-> string?
#:default boolean?
#:title string?
#:width exact-integer?
#:height exact-integer?
boolean?)])

The contract for ask-yes-or-no-question uses ->, and in the same way that lambda (or
define-based functions) allows a keyword to precede a functions formal argument, -> al-
lows a keyword to precede a function contract’s argument contract. In this case, the contract
says that ask-yes-or-no-question must receive four keyword arguments, one for each
of the keywords #:default, #:title, #:width, and #:height. As in a function defini-
tion, the order of the keywords in -> relative to each other does not matter for clients of the

function; only the relative order of argument contracts without keywords matters.

7.3.4 Optional Keyword Arguments

Of course, many of the parameters in ask-yes-or-no-question (from the previous ques-

tion) have reasonable defaults and should be made optional:

(define (ask-yes-or-no-question question

#:default answer
#:title [title "Yes or No?"]
#:width [w 400]

133

If you really want to
ask a yes-or-no
question via a

GUI, you should use
message-box/custom.
For that matter, it’s
usually better to
provide buttons
with more specific
answers than “yes”
and “no.”

#:height [h 200]1)

To specify this function’s contract, we need to use ->* again. It supports keywords just as
you might expect in both the optional and mandatory argument sections. In this case, we
have the mandatory keyword #:default and optional keywords #:title, #:width, and
#:height. So, we write the contract like this:

(provide/contract
[ask-yes-or-no-question
(->* (string?
#:default boolean?)

(#:title string?
#:width exact-integer?
#:height exact-integer?)

boolean?)])

That is, we put the mandatory keywords in the first section, and we put the optional ones in
the second section.

7.3.5 Contracts for case-lambda

A function defined with case-lambda might impose different constraints on its arguments
depending on how many are provided. For example, a report-cost function might convert
either a pair of numbers or a string into a new string:

(define report-cost
(case-lambda
[(1o hi) (format "between $~a and $~a" lo hi)]
[(desc) (format "~a of dollars'" desc)]))

> (report-cost 5 8)
"between $5 and $8"

> (report-cost "millions'")
"millions of dollars"

The contract for such a function is formed with the case-> combinator, which combines as
many functional contracts as needed:

(provide/contract

134

See §4.4.4
“Arity-Sensitive
Functions:
case-lambda” for
an introduction to
case-lambda.

[report-cost

(case->
(integer? integer? . -> . string?)
(string? . -> . string?))])

As you can see, the contract for report-cost combines two function contracts, which is
just as many clauses as the explanation of its functionality required.

7.3.6 Argument and Result Dependencies

The following is an excerpt from an imaginary numerics module:

(provide/contract
[real-sqrt (->i ([argument (>=/c 1)1)
[result (argument) (<=/c argument)])])

The contract for the exported function real-sqrt uses the ->i rather than ->* function
contract. The “i”” stands for an indy dependent contract, meaning the contract for the function
range depends on the value of the argument. The appearance of argument in the line for
result’s contract means that the result depends on the argument. In this particular case, the
argument of real-sqrt is greater or equal to 1, so a very basic correctness check is that the

result is smaller than the argument.

In general, a dependent function contract looks just like the more general ->* contract, but
with names added that can be used elsewhere in the contract.

Going back to the bank-account example, suppose that we generalize the module to support
multiple accounts and that we also include a withdrawal operation. The improved bank-
account module includes a account structure type and the following functions:

(provide/contract

[balance (-> account? amount/c)]

[withdraw (-> account? amount/c account?)]
[deposit (-> account? amount/c account?)])

Besides requiring that a client provide a valid amount for a withdrawal, however, the amount
should be less than the specified account’s balance, and the resulting account will have less
money than it started with. Similarly, the module might promise that a deposit produces
an account with money added to the account. The following implementation enforces those
constraints and guarantees through contracts:

#lang racket

; section 1: the contract definitions

135

(struct account (balance))
(define amount/c natural-number/c)

; section 2: the exports

(provide/contract
[create (amount/c . -> . account?)]
[balance (account? . -> . amount/c)]

[withdraw (->i ([acc account?]
[amt (acc) (and/c amount/c (<=/c (balance acc)))])
[result (acc amt)
(and/c account?
(lambda (res)
(>= (balance res)
(- (balance acc) amt))))1)]
[deposit (->i ([acc account?]
[amt amount/c])
[result (acc amt)
(and/c account?
(lambda (res)
(>= (balance res)
(+ (balance acc) amt))))1)])

; section 3: the function definitions
(define balance account-balance)

(define (create amt) (account amt))

(define (withdraw a amt)
(account (- (account-balance a) amt)))

(define (deposit a amt)
(account (+ (account-balance a) amt)))

The contracts in section 2 provide typical type-like guarantees for create and balance. For
withdraw and deposit, however, the contracts check and guarantee the more complicated
constraints on balance and deposit. The contract on the second argument to withdraw
uses (balance acc) to check whether the supplied withdrawal amount is small enough,
where acc is the name given within ->1 to the function’s first argument. The contract on
the result of withdraw uses both acc and amt to guarantee that no more than that requested
amount was withdrawn. The contract on deposit similarly uses acc and amount in the
result contract to guarantee that at least as much money as provided was deposited into the
account.

As written above, when a contract check fails, the error message is not great. The following
revision uses flat-named-contract within a helper function mk-account-contract to

136

provide better error messages.

#lang racket

; section 1: the contract definitions
(struct account (balance))
(define amount/c natural-number/c)

(define msg> "account a with balance larger than ~a expected")
(define msg< "account a with balance less than Na_expected")

(define (mk-account-contract acc amt op msg)
(define balanceO (balance acc))
(define (ctr a)
(and (account? a) (op balanceO (balance a))))
(flat-named-contract (format msg balance0) ctr))

; section 2: the exports

(provide/contract
[create (amount/c . -> . account?)]
[balance (account? . -> . amount/c)]

[withdraw (->i ([acc account?]
[amt (acc) (and/c amount/c (<=/c (balance acc)))])
[result (acc amt) (mk-account-
contract acc amt >= msg>)])]
[deposit (->i ([acc account?]
[amt amount/c])
[result (acc amt)
(mk-account-contract acc amt <= msg<)])])

; section 3: the function definitions
(define balance account-balance)

(define (create amt) (account amt))

(define (withdraw a amt)
(account (- (account-balance a) amt)))

(define (deposit a amt)
(account (+ (account-balance a) amt)))

7.3.7 Checking State Changes

The ->i contract combinator can also ensure that a function only modifies state according
to certain constraints. For example, consider this contract (it is a slightly simplified from the

137

function preferences:add-panel in the framework):

(->i ([parent (is-a?/c area-container-window<%>)])
[_ (parent)
(let ([old-children (send parent get-children)])
(A (child)
(andmap eq?
(append old-children (list child))
(send parent get-children))))])

It says that the function accepts a single argument, named parent, and that parent must be
an object matching the interface area-container-window<%>.

The range contract ensures that the function only modifies the children of parent by adding
a new child to the front of the list. It accomplishes this by using the _ instead of a normal
identifier, which tells the contract library that the range contract does not depend on the
values of any of the results, and thus the contract library evaluates the expression follow-
ing the _ when the function is called, instead of when it returns. Therefore the call to the
get-children method happens before the function under the contract is called. When the
function under contract returns, its result is passed in as child, and the contract ensures that
the children after the function return are the same as the children before the function called,
but with one more child, at the front of the list.

To see the difference in a toy example that focuses on this point, consider this program

#lang racket

(define x ’())

(define (get-x) x)

(define (f) (set! x (cons ’f x)))

(provide/contract
[f (->1 OO [_ (begin (set! x (cons ’ctc x)) any/c)])]
[get-x (-> (listof symbol?))])

If you were to require this module, call £, then the result of get-x would be ’ (f ctc). In
contrast, if the contract for £ were

(->i () [res (begin (set! x (comns ’ctc x)) any/c)])

(only changing the underscore to res), then the result of get-x would be ’ (ctc f).

138

7.3.8 Multiple Result Values

The function split consumes a list of chars and delivers the string that occurs before the
first occurrence of #\newline (if any) and the rest of the list:

(define (split 1)
(define (split 1 w)
(cond

[(null? 1) (values (list->string (reverse w)) ’())]
[(char=? #\newline (car 1))
(values (list->string (reverse w)) (cdr 1))]
[else (split (cdr 1) (coms (car 1) w))]1))

(split 1 2 0O))

It is a typical multiple-value function, returning two values by traversing a single list.

The contract for such a function can use the ordinary function arrow ->, since -> treats
values specially when it appears as the last result:

(provide/contract
[split (-> (listof char?)
(values string? (listof char?)))l)

The contract for such a function can also be written using ->*:

(provide/contract
[split (->* ((listof char?))
O
(values string? (listof char?)))])

As before, the contract for the argument with ->* is wrapped in an extra pair of parentheses
(and must always be wrapped like that) and the empty pair of parentheses indicates that there
are no optional arguments. The contracts for the results are inside values: a string and a
list of characters.

Now, suppose that we also want to ensure that the first result of split is a prefix of the given

word in list format. In that case, we need to use the ->1 contract combinator:

(define (substring-of? s)
(flat-named-contract
(format "substring of ~s" s)

139

(lambda (s2)
(and (string? s2)
(<= (string-length s2) s)
(equal? (substring s O (string-length s2)) s2)))))

(provide/contract
[split (->i ([f1 (listof char?)])
(values [s (fl) (substring-of (list->string f1))]
[c (1istof char?)]1))])

Like ->*, the ->1 combinator uses a function over the argument to create the range contracts.
Yes, it doesn’t just return one contract but as many as the function produces values: one
contract per value. In this case, the second contract is the same as before, ensuring that the
second result is a list of chars. In contrast, the first contract strengthens the old one so that
the result is a prefix of the given word.

This contract is expensive to check, of course. Here is a slightly cheaper version:

(provide/contract
[split (->i ([fl (listof char?)])
(values [s (f1) (string-len/c (length £1))]
[c (listof char?)]))]1)

7.3.9 Fixed but Statically Unknown Arities

Imagine yourself writing a contract for a function that accepts some other function and a
list of numbers that eventually applies the former to the latter. Unless the arity of the given
function matches the length of the given list, your procedure is in trouble.

Consider this n-step function:

; (number ... -> (union #f number?)) (listof number) -> void
(define (n-step proc inits)
(let ([inc (apply proc inits)])
(when inc
(n-step proc (map (A (x) (+ x inc)) inits)))))

The argument of n-step is proc, a function proc whose results are either numbers or false,
and a list. It then applies proc to the list inits. As long as proc returns a number, n-step
treats that number as an increment for each of the numbers in inits and recurs. When proc
returns false, the loop stops.

Here are two uses:

140

; nat -> nat
(define (f x)
(printf "~s\n" x)
(if (= x 0) #f -1))
(n-step £ 7(2))

; nat nat -> nat

(define (g x y)
(define z (+ x y))
(printf "~s\n" (list x y 2))
(if (= z 0) #f -1))

(n-step g (1 1))

A contract for n-step must specify two aspects of proc’s behavior: its arity must include
the number of elements in inits, and it must return either a number or #f. The latter is
easy, the former is difficult. At first glance, this appears to suggest a contract that assigns a
variable-arity to proc:

(->* O
(listof any/c)
(or/c number? false/c))

This contract, however, says that the function must accept any number of arguments, not a
specific but undetermined number. Thus, applying n-step to (lambda (x) x) and (1list
1) breaks the contract because the given function accepts only one argument.

The correct contract uses the unconstrained-domain-> combinator, which specifies only
the range of a function, not its domain. It is then possible to combine this contract with an
arity test to specify the correct n-step’s contract:

(provide/contract
[n-step
(->i ([proc (inits)
(and/c (unconstrained-domain->
(or/c false/c number?))
(A (f) (procedure-arity-includes?
f
(length inits))))]
[inits (listof number?)])
O
any)])

141

7.4 Contracts: A Thorough Example

This section develops several different flavors of contracts for one and the same example:
Racket’s argmax function. According to its Racket documentation, the function consumes
a procedure proc and a non-empty list of values, 1st. It

returns the first element in the list 1st that maximizes the result of proc.

The emphasis on first is ours.

Examples:

(argmax addl (list 1 2 3))

.9
(argmax second ’((a 2) (b 3) (c 4) (4 1) (e 4)))

>
3
> (argmax sqrt (list 0.4 0.9 0.16))
0
>
’(c 4)

Here is the simplest possible contract for this function:

version 1

#lang racket
(define (argmax f lov) ...)

(provide/contract
[argmax (-> (-> any/c real?) (and/c pair? list?) any/c)])

This contract captures two essential conditions of the informal description of argmax:

* the given function must produce numbers that are comparable according to <. In
particular, the contract (-> any/c number?) would not do, because number? also
recognizes complex numbers in Racket.

« the given list must contain at least one item.

When combined with the name, the contract explains the behavior of argmax at the same
level as an ML function type in a module signature (except for the non-empty list aspect).

Contracts may communicate significantly more than a type signature, however. Take a look
at this second contract for argmax:

142

version 2

#lang racket
(define (argmax f lov) ...)

(provide/contract
[argmax
(->i ([f (-> any/c real?)] [lov (and/c pair? 1list?)]1) O
(r (f lov)
(lambda (r)
(define fer (f r))
(for/and ((v lov)) (>= fer (f v))))))1)

It is a dependent contract that names the two arguments and uses the names to impose a
predicate on the result. This predicate computes (f r) — where r is the result of argmax —
and then validates that this value is greater than or equal to all values of f on the items of
lov.

Is it possible that argmax could cheat by returning a random value that accidentally maxi-
mizes f over all elements of 1ov? With a contract, it is possible to rule out this possibility:

lversion 2 rev. a‘

#lang racket
(define (argmax f lov) ...)

(provide/contract
[argmax
(->i ([f (-> any/c real?)] [lov (and/c pair? list?)1) ()
(r (f lov)
(lambda (r)

(define fe@r (f r))

(and
(memq r lov)
(for/and ((v lov)) (>= fer (f v)))))))1D)

The memq function ensures that r is intensionally equal to one of the members of lov. Of
course, a moment’s worth of reflection shows that it is impossible to make up such a value.
Functions are opaque values in Racket and without applying a function, it is impossible
to determine whether some random input value produces an output value or triggers some
exception. So we ignore this possibility from here on.

Version 2 formulates the overall sentiment of argmax’s documentation, but it fails to bring
across that the result is the first element of the given list that maximizes the given function
f. Here is a version that communicates this second aspect of the informal documentation:

143

That is, "pointer
equality” for those
who prefer to think
at the hardware
level.

version 3

#lang racket
(define (argmax f lov) ...)

(provide/contract
[argmax
(->i ([f (-> any/c real?)] [lov (and/c pair? 1list?)]1) O
(r (f lov)
(lambda (r)
(define fer (f r))
(and (for/and ((v lov)) (>= fer (f v)))
(eq? (first (memf (lambda (v) (= (f v) f@r)) lov))

r))NI1)

That is, the memf function determines the first element of 1lov whose value under f is equal
to r’s value under £. If this element is intensionally equal to r, the result of argmax is
correct.

This second refinement step introduces two problems. First, both conditions recompute
the values of f for all elements of 1ov. Second, the contract is now quite difficult to read.
Contracts should have a concise formulation that a client can comprehend with a simple scan.
Let us eliminate the readability problem with two auxiliary functions that have reasonably
meaningful names:

version 3 rev. a

#lang racket

(define (argmax f lov) ...)
(provide/contract
[argmax
(->i ([f (-> any/c real?)] [lov (and/c pair? 1list?)1) ()
(r (f lov)
(lambda (r)

(define for (f r))
(and (is-first-max? r f@r f lov)
(dominates-all f@r f lov)))))])
; where
; f@r is greater or equal to all (f v) for v in lov
(define (dominates-all f@r f lov)
(for/and ((v lov)) (>= (f v) for)))

; T is eq? to the first element v of lov for which (pred? v)

144

(define (is-first-max? r f@r f lov)
(eq? (first (memf (lambda (v) (= (f v) f@r)) lov)) r))

The names of the two predicates express their functionality and, in principle, render it un-
necessary to read their definitions.

This step leaves us with the problem of the newly introduced inefficiency. To avoid the
recomputation of (f v) for all v on 1lov, we change the contract so that it computes these
values and reuses them as needed:

version 3 rev. b

#lang racket
(define (argmax f lov) ...)

(provide/contract
[argmax
(->i ([f (-> any/c real?)] [lov (and/c pair? 1list?)1) ()
(r (f lov)
(lambda (r)
(define for (f r))
(define flov (map f lov))
(and (is-first-max? r fOr (map list lov flov))
(dominates-all f@r flov)))))1)

; where

; fOr is greater or equal to all f@v in flov
(define (dominates-all fOr flov)
(for/and ((f@v flov)) (>= fer fev)))

; v is (second x) for the first x in flov+lov s.t. (= (first x)
fOr)
(define (is-first-max? r f@r lov+flov)
(define fst (first lov+flov))
(if (= (second fst) f@r)
(eq? (first fst) r)
(is-first-max? fO0r r (rest lov+flov))))

Now the predicate on the result once again computes all values of £ for elements of lov

once. The word "eager"
comes from the

Version 3 may still be too eager when it comes to calling £. While Racket’s argmax always literature on the
N linguistics of

calls £ no matter how many items lov contains, let us imagine for illustrative purposes that =

our own implementation first checks whether the list is a singleton. If so, the first element

145

would be the only element of lov and in that case there would be no need to compute (£
r). As a matter of fact, since £ may diverge or raise an exception for some inputs, argmax
should avoid calling £ when possible.

The following contract demonstrates how a higher-order dependent contract needs to be
adjusted so as to avoid being over-eager:

version 4

#lang racket

(define (argmax f lov)
(if (empty? (rest lov))
(first lov)
ced))

(provide/contract
[argmax
(->i ([f (-> any/c real?)] [lov (and/c pair? 1list?)]1) O
(r (f lov)
(lambda (r)
(cond
[(empty? (rest lov)) (eq? (first lov) r)]
[else
(define for (f r))
(define flov (map f lov))
(and (is-first-max? r fOr (map list lov flov))
(dominates-all f@r flov))1))))1)

; where

; fOr is greater or equal to all f@v in flov
(define (dominates-all fO@r lov) ...)

; v is (second x) for the first x in flov+lov s.t. (= (first x)
for)
(define (is-first-max? r fOr lov+flov) ...)

Note that such considerations don’t apply to the world of first-order contracts. Only a higher-
order (or lazy) language forces the programmer to express contracts with such precision.

The problem of diverging or exception-raising functions should alert the reader to the even
more general problem of functions with side-effects. If the given function f has visible
effects — say it logs its calls to a file — then the clients of argmax will be able to observe
two sets of logs for each call to argmax. To be precise, if the list of values contains more
than one element, the log will contain two calls of £ per value on lov. If f is expensive to
compute, doubling the calls imposes a high cost.

146

The argmax of
Racket implicitly
argues that it not
only promises the
first value that
maximizes £ over
lov but also that £
produces/produced
a value for the
result.

To avoid this cost and to signal problems with overly eager contracts, a contract system could
record the i/0 of contracted function arguments and use these hashtables in the dependency
specification. This is a topic of on-going research in PLT. Stay tuned.

7.5 Contracts on Structures

Modules deal with structures in two ways. First they export struct definitions, i.e., the
ability to create structs of a certain kind, to access their fields, to modify them, and to distin-
guish structs of this kind against every other kind of value in the world. Second, on occasion
a module exports a specific struct and wishes to promise that its fields contain values of a
certain kind. This section explains how to protect structs with contracts for both uses.

7.5.1 Guarantees for a Specific Value

If your module defines a variable to be a structure, then you can specify the structure’s shape
using struct/c:

#lang racket
(require lang/posn)

(define origin (make-posn 0 0))

(provide/contract
[origin (struct/c posn zero? zero?)])

In this example, the module imports a library for representing positions, which exports a
posn structure. One of the posns it creates and exports stands for the origin, i.e., (0,0), of
the grid.

7.5.2 Guarantees for All Values

The book How to Design Programs teaches that posns should contain only numbers in their
two fields. With contracts we would enforce this informal data definition as follows:

#lang racket
(struct posn (x y))

(provide/contract
[struct posn ((x number?) (y number?))]
[p-okay posn?]
[p-sick posn?])

147

See also vector/c
and similar contract
combinators for
(flat) compound
data.

(define p-okay (posn 10 20))
(define p-sick (posn ’a ’b))

This module exports the entire structure definition: posn, posn?, posn-x, posn-y, set-
posn-x!, and set-posn-y!. Each function enforces or promises that the two fields of a
posn structure are numbers — when the values flow across the module boundary. Thus, if a
client calls posn on 10 and ’a, the contract system signals a contract violation.

The creation of p-sick inside of the posn module, however, does not violate the contracts.
The function posn is used internally, so ’a and ’b don’t cross the module boundary. Simi-
larly, when p-sick crosses the boundary of posn, the contract promises a posn? and noth-
ing else. In particular, this check does not require that the fields of p-sick are numbers.

The association of contract checking with module boundaries implies that p-okay and p-
sick look alike from a client’s perspective until the client extracts the pieces:

#lang racket
(require lang/posn)

(posn-x p-sick)

Using posn-x is the only way the client can find out what a posn contains in the x field. The
application of posn-x sends p-sick back into the posn module and the result value — ’a
here — back to the client, again across the module boundary. At this very point, the contract
system discovers that a promise is broken. Specifically, posn-x doesn’t return a number but
a symbol and is therefore blamed.

This specific example shows that the explanation for a contract violation doesn’t always
pinpoint the source of the error. The good news is that the error is located in the posn
module. The bad news is that the explanation is misleading. Although it is true that posn-x
produced a symbol instead of a number, it is the fault of the programmer who created a posn
from symbols, i.e., the programmer who added

(define p-sick (posn ’a ’b))
to the module. So, when you are looking for bugs based on contract violations, keep this
example in mind.

If we want to fix the contract for p-sick so that the error is caught when sick is exported,
a single change suffices:

(provide/contract

[p-sick (struct/c posn number? number?)])

148

That is, instead of exporting p-sick as a plain posn?, we use a struct/c contract to
enforce constraints on its components.

7.5.3 Checking Properties of Data Structures

Contracts written using struct/c immediately check the fields of the data structure, but
sometimes this can have disastrous effects on the performance of a program that does not,
itself, inspect the entire data structure.

As an example, consider the binary search tree search algorithm. A binary search tree is like
a binary tree, except that the numbers are organized in the tree to make searching the tree
fast. In particular, for each interior node in the tree, all of the numbers in the left subtree are
smaller than the number in the node, and all of the numbers in the right subtree are larger
than the number in the node.

We can implement a search function in? that takes advantage of the structure of the binary
search tree.

#lang racket
(struct node (val left right))

; determines if ‘n’ is in the binary search tree ‘b’,
; exploiting the binary search tree invariant
(define (in? n b)
(cond
[(null? b) #f]
[else (cond
[(= n (node-val b))
#t]
[(< n (node-val b))
(in? n (node-left b))]
[(> n (node-val b))
(in? n (node-right b))1)1))

; a predicate that identifies binary search trees
(define (bst-between? b low high)
(or (null? b)
(and (<= low (node-val b) high)
(bst-between? (node-left b) low (node-val b))
(bst-between? (node-right b) (node-val b) high))))

(define (bst? b) (bst-between? b -inf.0 +inf.0))

149

(provide (struct node (val left right)))

(provide/contract
[bst? (any/c . -> . boolean?)]
[in? (number? bst? . -> . boolean?)])

In a full binary search tree, this means that the in? function only has to explore a logarithmic
number of nodes.

The contract on in? guarantees that its input is a binary search tree. But a little careful
thought reveals that this contract defeats the purpose of the binary search tree algorithm. In
particular, consider the inner cond in the in? function. This is where the in? function gets
its speed: it avoids searching an entire subtree at each recursive call. Now compare that
to the bst-between? function. In the case that it returns #t, it traverses the entire tree,
meaning that the speedup of in? is lost.

In order to fix that, we can employ a new strategy for checking the binary search tree contract.
In particular, if we only checked the contract on the nodes that in? looks at, we can still
guarantee that the tree is at least partially well-formed, but without changing the complexity.

To do that, we need to use define-contract-struct in place of struct. Like struct
(and more like define-struct), define-contract-struct defines a maker, predicate,
and selectors for a new structure. Unlike define-struct, it also defines contract combi-
nators, in this case node/c and node/dc. Also unlike define-struct, it does not allow
mutators, making its structs always immutable.

The node/c function accepts a contract for each field of the struct and returns a contract
on the struct. More interestingly, the syntactic form node/dc allows us to write dependent
contracts, i.e., contracts where some of the contracts on the fields depend on the values of
other fields. We can use this to define the binary search tree contract:

#lang racket
(define-contract-struct node (val left right))

; determines if ‘n’ is in the binary search tree ‘b’
(define (in? n b) ... as before ...)

; bst-between : number number -> contract

; builds a contract for binary search trees

; whose values are between low and high

(define (bst-between/c low high)

(or/c null?
(node/dc [val (between/c low high)]

[left (val) (bst-between/c low val)l
[right (val) (bst-between/c val high)])))

150

(define bst/c (bst-between/c -inf.0 +inf.0))

(provide make-node node-left node-right node-val node?)
(provide/contract
[bst/c contract?]

[in? (number? bst/c . -> . boolean?)])

In general, each use of node/dc must name the fields and then specify contracts for each
field. In the above, the val field is a contract that accepts values between low and high.
The left and right fields are dependent on the value of the val field, indicated by their
second sub-expressions. Their contracts are built by recursive calls to the bst-between/c
function. Taken together, this contract ensures the same thing that the bst-between? func-
tion checked in the original example, but here the checking only happens as in? explores
the tree.

Although this contract improves the performance of in?, restoring it to the logarithmic be-
havior that the contract-less version had, it is still imposes a fairly large constant overhead.
So, the contract library also provides define-opt/c that brings down that constant factor
by optimizing its body. Its shape is just like the define above. It expects its body to be a
contract and then optimizes that contract.

(define-opt/c (bst-between/c low high)
(or/c null?
(node/dc [val (between/c low high)]
[left (val) (bst-between/c low val)l
[right (val) (bst-between/c val high)])))

7.6 Abstract Contracts using #:exists and #: 3

The contract system provides existential contracts that can protect abstractions, ensuring
that clients of your module cannot depend on the precise representation choices you make
for your data structures.

The provide/contract form allows you to write
#:4 name-of-a-new-contract

as one of its clauses. This declaration introduces the variable name-of-a-new-contract,
binding it to a new contract that hides information about the values it protects.

As an example, consider this (simple) implementation of a stack datastructure:

#lang racket

151

You can type
#:exists instead
of #:3if you
cannot easily type
unicode characters;
in DrRacket, typing
\exists followed
by either alt-\ or
control-\
(depending on your
platform) will
produce 3.

(define empty ’())

(define (enq top queue) (append queue (list top)))
(define (next queue) (car queue))

(define (deq queue) (cdr queue))

(define (empty? queue) (null? queue))

(provide/contract
[empty (listof integer?)]
[eng (-> integer? (listof integer?) (listof integer?))]
[next (-> (listof integer?) integer?)]
[deq (-> (listof integer?) (listof integer?))]
[empty? (-> (listof integer?) boolean?)])

This code implements a queue purely in terms of lists, meaning that clients of this data
structure might use car and cdr directly on the data structure (perhaps accidentally) and
thus any change in the representation (say to a more efficient representation that supports
amortized constant time enqueue and dequeue operations) might break client code.

To ensure that the stack representation is abstract, we can use #:3J in the pro-
vide/contract expression, like this:

(provide/contract
#:d stack
[empty stack]
[eng (-> integer? stack stack)]
[next (-> stack integer?)]
[deq (-> stack (listof integer?))]
[empty? (-> stack boolean?)])

Now, if clients of the data structure try to use car and cdr, they receive an error, rather than
mucking about with the internals of the queues.

See also §7.8.2 “Exists Contracts and Predicates”.

7.7 Additional Examples

This section illustrates the current state of Racket’s contract implementation with a series of
examples from Design by Contract, by Example [Mitchell02].

Mitchell and McKim’s principles for design by contract DbC are derived from the 1970s
style algebraic specifications. The overall goal of DbC is to specify the constructors of an
algebra in terms of its observers. While we reformulate Mitchell and McKim’s terminology
and we use a mostly applicative approach, we retain their terminology of “classes” and
“objects”:

152

* Separate queries from commands.

A query returns a result but does not change the observable properties of an object.
A command changes the visible properties of an object, but does not return a result.
In applicative implementation a command typically returns an new object of the same
class.

* Separate basic queries from derived queries.

A derived query returns a result that is computable in terms of basic queries.

¢ For each derived query, write a post-condition contract that specifies the result
in terms of the basic queries.

¢ For each command, write a post-condition contract that specifies the changes to
the observable properties in terms of the basic queries.

* For each query and command, decide on a suitable pre-condition contract.

Each of the following sections corresponds to a chapter in Mitchell and McKim’s book (but
not all chapters show up here). We recommend that you read the contracts first (near the end
of the first modules), then the implementation (in the first modules), and then the test module
(at the end of each section).

Mitchell and McKim use Eiffel as the underlying programming language and employ a con-
ventional imperative programming style. Our long-term goal is to transliterate their exam-
ples into applicative Racket, structure-oriented imperative Racket, and Racket’s class sys-
tem.

Note: To mimic Mitchell and McKim’s informal notion of parametericity (parametric poly-
morphism), we use first-class contracts. At several places, this use of first-class contracts
improves on Mitchell and McKim’s design (see comments in interfaces).

7.7.1 A Customer-Manager Component

This first module contains some struct definitions in a separate module in order to better
track bugs.

#lang racket
; data definitions

(define id? symbol?)
(define id-equal? eq?)

(define-struct basic-customer (id name address) #:mutable)

; interface
(provide/contract

153

[id? (-> any/c boolean?)]
[id-equal? (-> id? id? boolean?)]
[struct basic-customer ((id id?)
(name string?)
(address string?))])
; end of interface

This module contains the program that uses the above.

#lang racket
(require "1.rkt") ; the module just above

; implementation
; [listof (list basic-customer? secret-info)]
(define all ’())

(define (find c)
(define (has-c-as-key p)
(id-equal? (basic-customer-id (car p)) c))
(define x (filter has-c-as-key all))
(if (pair? x) (car x) x))

(define (active? c)
(define f (find c))
(pair? (find ¢)))

(define not-active? (compose not active? basic-customer-id))
(define count 0)

(define (add c)
(set! all (cons (list c¢ ’secret) all))
(set! count (+ count 1)))

(define (name id)
(define bc-with-id (find id))
(basic-customer-name (car bc-with-id)))

(define (set-name id name)
(define bc-with-id (find id))

(set-basic-customer-name! (car bc-with-id) name))

(define c0O 0)
; end of implementation

154

(provide/contract
; how many customers are in the db?
[count natural-number/c]
; is the customer with this id active?
[active? (-> id? boolean?)]
; what is the name of the customer with this id?
[name (-> (and/c id? active?) string?)]
; change the name of the customer with this id
[set-name (->d ([id id?] [nn string?])
O
[result any/c] ; result contract
#:post-cond
(string=7 (name id) nn))]

[add (->d ([bc (and/c basic-customer? not-active?)])
O
; A pre-post condition contract must use
; a side-effect to express this contract
; via post-conditions
#:pre-cond (set! cO count)
[result any/c] ; result contract
#:post-cond (> count c0))]1)

The tests:

#lang racket
(require rackunit rackunit/text-ui "1.rkt" "1b.rkt")

(add (make-basic-customer ’mf "matthias" "brookstone'))

(add (make-basic-customer ’rf "robby" "beverly hills park"))
(add (make-basic-customer ’fl "matthew" "pepper clouds town"))
(add (make-basic-customer ’sk "shriram" "i city"))

(run-tests
(test-suite
"manager"
(test-equal? "id lookup" "matthias" (name ’mf))
(test-equal? "count" 4 count)
(test-true "active?" (active? ’mf))
(test-false "active? 2" (active? ’kk))
(test-true "set name" (void? (set-name ’mf "matt")))))

7.7.2 A Parameteric (Simple) Stack

#lang racket

155

; a contract utility
(define (eq/c x) (lambda (y) (eq? x y)))

(define-struct stack (list p? eq))

(define (initialize p? eq) (make-stack () p? eq))
(define (push s x)

(make-stack (cons x (stack-list s)) (stack-p? s) (stack-eq s)))
(define (item-at s i) (list-ref (reverse (stack-list s)) (- i 1)))
(define (count s) (length (stack-list s)))

(define (is-empty? s) (null? (stack-list s)))
(define not-empty? (compose not is-empty?))
(define (pop s) (make-stack (cdr (stack-list s))
(stack-p? s)
(stack-eq s)))
(define (top s) (car (stack-list s)))

(provide/contract
; predicate
[stack? (-> any/c boolean?)]

; primitive queries
; how many items are on the stack?
[count (-> stack? natural-number/c)]

; which item is at the given position?

[item-at

(->d ([s stack?] [i (and/c positive? (<=/c (count s)))])
O
[result (stack-p? s)1)]

; derived queries
; is the stack empty?

[is-empty?
(->d ([s stack?])
0)

[result (eq/c (= (count s) 0))]1)]

; which item is at the top of the stack

[top
(->d ([s (and/c stack? not-empty?)])
0O
[t (stack-p? s)] ; a stack item, t is its name

#:post-cond
([stack-eq s] t (item-at s (count s))))]

156

; creation

[initialize

(->d ([p contract?] [s (p p . -> . boolean?)])
O
; Mitchell and McKim use (= (count s) 0) here to express
; the post-condition in terms of a primitive query
[result (and/c stack? is-empty?)]1)]

; commands
; add an item to the top of the stack

[push

(->d ([s stack?] [x (stack-p? s)])
O
[sn stack?] ; result kind

#:post-cond
(and (= (+ (count s) 1) (count sn))
([stack-eq s] x (top sn))))]

; remove the item at the top of the stack

[pop
(->d ([s (and/c stack? not-empty?)])
O
[sn stack?] ; result kind
#:post-cond
(= (- (count s) 1) (count sn)))])
The tests:

#lang racket
(require rackunit rackunit/text-ui "2.rkt")

(define sO (initialize (flat-contract integer?) =))
(define s2 (push (push s0 2) 1))

(run-tests
(test-suite
"stack"
(test-true
"empty"
(is-empty? (initialize (flat-contract integer?) =)))
(test-true "push" (stack? s2))
(test-true
"push exn"
(with-handlers ([exn:fail:contract? (lambda _ #t)])
(push (initialize (flat-contract integer?)) ’a)

157

#£))
(test-true "pop" (stack? (pop s2)))
(test-equal? "top" (top s2) 1)
(test-equal? "toppop" (top (pop s2)) 2)))

7.7.3 A Dictionary

#lang racket

; a shorthand for use below
(define-syntax =
(syntax-rules ()
[(= antecedent consequent) (if antecedent consequent #t)]))

; implementation
(define-struct dictionary (1 value? eq?))
; the keys should probably be another parameter (exercise)

(define (initialize p eq) (make-dictionary ’() p eq))
(define (put d k v)
(make-dictionary (cons (cons k v) (dictionary-1 d))
(dictionary-value? d)
(dictionary-eq? d4)))
(define (rem d k)
(make-dictionary
(let loop ([1 (dictiomary-1 d)1)
(cond
[(null? 1) 1]
[(eq? (caar 1) k) (loop (cdr 1))]
[else (cons (car 1) (loop (cdr 1)))1))
(dictionary-value? d)
(dictionary-eq? d4)))
(define (count d) (length (dictionary-1 d)))
(define (value-for d k) (cdr (assq k (dictionary-1 d4))))
(define (has? d k) (pair? (assq k (dictiomary-1 d))))
(define (not-has? d) (lambda (k) (not (has? d k))))
; end of implementation

; interface
(provide/contract
; predicates
[dictionary? (-> any/c boolean?)]
; basic queries
; how many items are in the dictionary?

158

[count (-> dictionary? natural-number/c)]
; does the dictionary define key k7
[has? (->d ([d dictionary?] [k symbol?])

O

[result boolean?]

#:post-cond

((zero? (count d)) . = . (not result)))]
; what is the value of key k in this dictionary?
[value-for (->d ([d dictionary?]

[k (and/c symbol? (lambda (k) (has? d k)))1)

O

[result (dictionary-value? d)]1)]
; initialization
; post condition: for all k in symbol, (has? d k) is false.
[initialize (->d ([p contract?] [eq (p p . -> . boolean?)])

O

[result (and/c dictionary? (compose zero? count))])]
; commands
; Mitchell and McKim say that put shouldn’t consume Void (null ptr)

; for v. We allow the client to specify a contract for all values
; via initialize. We could do the same via a key? parameter
; (exercise). add key k with value v to this dictionary
[put (->d ([d dictionary?]
[k (and symbol? (not-has? d))]
[v (dictionary-value? d)])
O
[result dictionary?]
#:post-cond
(and (has? result k)
(= (count d) (- (count result) 1))
([dictionary-eq? d] (value-
for result k) v)))]
; remove key k from this dictionary
[rem (->d ([d dictionary?]
[k (and/c symbol? (lambda (k) (has? d k)))]1)
O
[result (and/c dictionary? not-has?)]
#:post-cond
(= (count d) (+ (count result) 1)))1)
; end of interface

The tests:

#lang racket
(require rackunit rackunit/text-ui "3.rkt")

159

(define dO (initialize (flat-contract integer?) =))
(define d (put (put (put 40 ’a 2) ’b 2) ’c 1))

(run-tests

(test-suite
"dictionaries"
(test-equal? "value for" 2 (value-for d ’b))
(test-false "has?" (has? (rem d ’b) ’b))
(test-equal? "count" 3 (count d))))

774 A Queue

#lang racket

; Note: this queue doesn’t implement the capacity restriction
; of Mitchell and McKim’s queue but this is easy to add.

; a contract utility
(define (all-but-last 1) (reverse (cdr (reverse 1))))
(define (eq/c x) (lambda (y) (eq? x y)))

; implementation
(define-struct queue (list p? eq))

(define (initialize p? eq) (make-queue ’() p? eq))
(define items queue-list)
(define (put q x)
(make-queue (append (queue-list q) (list x))
(queue-p? q)
(queue-eq q)))
(define (count s) (length (queue-list s)))
(define (is-empty? s) (null? (queue-list s)))
(define not-empty? (compose not is-empty?))
(define (rem s)
(make-queue (cdr (queue-list s))
(queue-p? s)
(queue-eq s)))
(define (head s) (car (queue-list s)))

; interface
(provide/contract
; predicate
[queue? (-> any/c boolean?)]

160

; primitive queries
; Imagine providing this ’query’ for the interface of the module
; only. Then in Racket there is no reason to have count or is-

empty?

; around (other than providing it to clients). After all items is
; exactly as cheap as count.

[items

(->d ([q queue?]) () [result (listof (queue-p? q))1)]

; derived queries

[count

tribute"

the

[is-empty?

[head

; creation

(->d ([q queue?])
; We could express this second part of the post
; condition even if count were a module "at-

; in the language of Eiffel; indeed it would use

; exact same syntax (minus the arrow and domain).
O
[result (and/c natural-number/c

(=/c (length (items q))))1)]

(->d ([q queue?])
O
[result (and/c boolean?
(eq/c (null? (items q))))1)]

(->d ([q (and/c queue? (compose not is-empty?))])
O
[result (and/c (queue-p? q)
(eq/c (car (items q))))1)]

[initialize (-> contract?

; commands
[put

(contract? contract? . -> . boolean?)
(and/c queue? (compose null? items)))]

(->d ([oldq queue?] [i (queue-p? oldq)l)
0O
[result
(and/c
queue?
(lambda (q)
(define old-items (items oldq))
(equal? (items q) (append old-

items (list 1)))))1)]

161

[rem (->d ([oldq (and/c queue? (compose not is-empty?))])
O
[result
(and/c queue?
(lambda (q)
(equal? (cdr (items oldq)) (items q))))1)1)
; end of interface

The tests:

#lang racket
(require rackunit rackunit/text-ui "5.rkt")

(define s (put (put (initialize (flat-contract integer?) =) 2) 1))

(run-tests
(test-suite
"queue"
(test-true
"empty"
(is-empty? (initialize (flat-contract integer?) =)))
(test-true "put" (queue? s))
(test-equal? "count" 2 (count s))
(test-true "put exn"
(with-handlers ([exn:fail:contract? (lambda _ #t)])
(put (initialize (flat-contract integer?)) ’a)
#£))
(test-true "remove" (queue? (rem s)))
(test-equal? "head" 2 (head s))))

7.8 Gotchas
7.8.1 Contracts and eq?

As a general rule, adding a contract to a program should either leave the behavior of the
program unchanged, or should signal a contract violation. And this is almost true for Racket
contracts, with one exception: eq?.

The eq? procedure is designed to be fast and does not provide much in the way of guarantees,
except that if it returns true, it means that the two values behave identically in all respects.
Internally, this is implemented as pointer equality at a low-level so it exposes information
about how Racket is implemented (and how contracts are implemented).

Contracts interact poorly with eq? because function contract checking is implemented inter-

162

nally as wrapper functions. For example, consider this module:

#lang racket

(define (make-adder x)
(if (= 1 x)
add1
(lambda (y) (+ x y))))
(provide/contract [make-adder (-> number? (-> number? number?))])

It exports the make-adder function that is the usual curried addition function, except that it
returns Racket’s add1 when its input is 1.
You might expect that

(eq? (make-adder 1)
(make-adder 1))

would return #t, but it does not. If the contract were changed to any/c (or even (->
number? any/c)), then the eq? call would return #t.

Moral: Do not use eq? on values that have contracts.

7.8.2 Exists Contracts and Predicates

Much like the eq? example above, #: 3 contracts can change the behavior of a program.

Specifically, the null? predicate (and many other predicates) return #£ for #: 3 contracts,
and changing one of those contracts to any/c means that nul1? might now return #t instead,
resulting in arbitrarily different behavior depending on this boolean might flow around in the
program.

#lang racket/exists

To work around the above problem, the racket/exists library behaves just like the
racket, but where predicates signal errors when given #: 3 contracts.

Moral: Do not use predicates on #: 3 contracts, but if you’re not sure, use racket/exists
to be safe.

163

7.8.3 Defining Recursive Contracts

When defining a self-referential contract, it is natural to use def ine. For example, one might
try to write a contract on streams like this:

> (define stream/c
(promise/c
(or/c
null?
(cons/c number? stream/c))))
reference to undefined identifier: stream/c

Unfortunately, this does not work because the value of stream/c is needed before it is
defined. Put another way, all of the combinators evaluate their arguments eagerly, even
thought the values that they accept do not.

Instead, use

(define stream/c
(promise/c
(or/c
null?
(cons/c 1
(recursive-contract stream/c)))))

The use of recursive-contract delays the evaluation of the identifier stream/c until
after the contract is first checked, long enough to ensure that stream/c is defined.

See also §7.5.3 “Checking Properties of Data Structures”.

7.8.4 Mixing set! and provide/contract

The contract library assumes that variables exported via provide/contract are not as-
signed to, but does not enforce it. Accordingly, if you try to set! those variables, you may
be surprised. Consider the following example:

> (module server racket
(define (inc-x!) (set! x (+ x 1)))
(define x 0)
(provide/contract [inc-x! (-> void?)]
[x integer?]))
> (module client racket
(require ’server)

164

(define (print-latest) (printf "x is ~s\n" x))

(print-latest)
(inc-x1)
(print-latest))
> (require ’client)
x is O
x is O

Both calls to print-latest print 0, even though the value of x has been incremented (and
the change is visible inside the module x).

To work around this, export accessor functions, rather than exporting the variable directly,
like this:

#lang racket

(define (get-x) x)

(define (inc-x!) (set! x (+ x 1)))

(define x 0)

(provide/contract [inc-x! (-> void?)]
[get-x (-> integer?)])

Moral: This is a bug that we will address in a future release.

165

