
,

.

n..

,, .
t

I

!
I

The Use of Program Profiling for Software Maint$nance
with Applications to the Year 2000 Problem

Thomas Reps,? Thomas Ball,* Manuvir Das,? and James Larust

Abstract. This paper describes new techniques to help with testing and debugging, using
information obtained from path profiling. A path profiler instruments a program so that the
number of times each different loop-free path executes is accumulated during an execution run,
With such an instrumented program, each run of the program generates a path spectrum for the
execution-a distribution of the paths that were executed during that run. A path spectrum is a
finite, easily obtainable characterization of a program’s execution on a dataset, and provides a
behavior signature for a run of the program.

Our techniques are based on the idea of comparing path spectra from different runs of the
program. When different runs produce different spectra, the spectral differences can be used to
identify paths in the program along which control diverges in the two runs. By choosing input
datasets to hold all factors constant except one, the divergence can be attributed to this factor.
The point of divergence itself may not be the cause of the underlying problem, but provides a
starting place for a programmer to begin his exploration.

One application of this technique is in the “Year 2000 Problem” (i.e., the problem of fixing
computer systems that use only 2-digit year fields in date-valued data). In this context, pnth-
spectrum comparison provides a heuristic for identifying paths in a progmm that are good can-
didates for being date-dependent computations. The application of path-spectrum Comparison
to a number of other software-maintenance issues is also discussed.

1. Introduction
The worldfaces cataclysmic breakdown at the turn of the millennium!

While this alarm may be old news to anyone who was present at the turn of the last millennium,
there are significant reasons for residents of the (first) world to be concerned this time around:
Because many computer programs use only two digits to record year values in date-valued data,
they may process a year value of 00 as 1900 in cases where 2000 was intended. If the intended
value is 2000-such as when 00 represents the value of the current year in a computation pcr-
formed after the calendar rolls over on January 1,2000-then a faulty computation may be cnr-
ried out. Because computations can involve dates in the future, the phenomenon can occur well
before the calendar rolls over on January 1, 2000. For example, if the (approximate) age of
someone born in 1956 were calculated for January 1, 2000, he would appear to be
00- 56 = -56 years old! If the program tries to use the value -56 to index into a life-
expectancy table, the program will either fetch a bogus life-expectancy value or quit with an
errOr (depending on whether the run-time system catches “index-out-of-bounds” errors). In
both cases, the system functions improperly. In general, such behavior can have serious-even
life-threatening-consequences. This problem and a variety of other date-related problems thnt
will show up with increasing frequency around January 1.2000 are known collectively as the
“Year 2000 Problem” (Y2K problem).

*This work was supported in part by NSF under grants CCR-9625667. MIP-9625558, and NY1 Award
CCR-9357779 (with support from HP and Sun), and by DARPA (monitored by ONR under contracts
NGOO14-92-J-1937 and NOOOM-97-1-0114, and by Wright Laboratory Avionics Directonto under gmnt
#F33615-94-1-1525).
The Wisconsin Alumni Research Foundation is in the process of seeking patent protection for the ldcns
described herein.
tC!omputer Sciences Department, University of Wisconsin, 1210 W. Dayton St., Madison, WI 53706.
E-mail: (reps, manuvir. lams)@cs.wisc.edu.
*Lucent Technologies, loo0 E. Warznville Road, P.O. Box 3013, Naperville, IL 60566-7013.
E-mail: tball@reseaxch.bell-labs.com.

In July 1996, the first author was asked by the Defense Advanced Research Projects Agency
(DARPA) to help them plan a project aimed at reducing the impact of the Y2K problem on the
Department of Defense. DARPA was particularly interested in whether there were “any tech-
niques in the research community that could be applied to the Y2K problem and have impact
beyond present commercial Y2K products and services”.

The most exciting of the ideas that turned up concerns a method for using path profiling as a
heuristic to locate some of the sites in a program where there are problematic date manipula-
tions. It works as follows:

In path profiling, a program is instrumented so that the number of times each different
loop-free path executes is accumulated during an execution run. With such an instru-
mented program, each run (or set of runs) of the program generates a path spectrum for
the execution-a distribution of the paths that were executed. Path spectra can be used to
identify paths in a program that are good candidates for being date-dependent computa-
tions by finding differences between path spectra from execution runs on pre-2000 data
and post-2000 data. By choosing input datasets to hold all factors constant except the
way dates are used in the program, any differences in the spectra obtained from different
execution runs can be attributed to date-dependent computations in the program. Differ-
ences in the spectra reveal paths along which the program performed a new sort of com-
putation during the post-2000 run, as well as paths-and hence computations-that were
no longer executed during the post-2000 run.

With some further analysis of the spectra, for each such path that shows up in the spectral
difference, it is possible to identify the shortest urefix that distinauishes it from all of the oaths
in the other pathset.

I

Of course, the path-spectrum-comparison technique is not guaranteed to uncover all sites of
date manipulations. No technique can do this: all one can hODe for are good heuristics. How-
ever, because path-spectrum co*mparison involves a different principle f&m the principles that
lie behind the heuristics used in commercial Y2K tools, it should be a good complement to
current techniques.

The path-spectrum-comparison technique is actually applicable to a much wider range of
software-maintenance problems than just the Y2K problem. In particular, the problem of how
to carry out adequate execution tests is a huge problem for software developers, and will still be
with us long past the year 2000. As discussed in Section 6, the path-spectrum-comparison tech-
nique~offers new perspectives on testing, on the task of creating test data, and on what tools can
be created to support program testing.

Note that the idea of comparing path spectra to identify possible execution errors is a com-
pletely different use of path profiling in program testing from another use that has been pro-
posed for path profiles in program testing, namely as a criterion for evaluating the coverage of a
test suite [2!,13,7,15].

The remamder of the paper is organized into six sections: Section 2 provides background on
the Y2K problem. Section 3 describes the use of run-time profiling to locate date-dependent
paths and their shortest distinguishing prefixes. Section 4 summarizes the key insights behind
recent work that makes it possible to carry out path profiling in an efficient manner, as well as
an alternative technique for locating shortest distinguishing prefixes of path-spectrum differ-
ences. Section 5 describes our implementation of a tool based on these ideas, as well as the
results of our preliminary experience with the tool. Section 6 discusses other applications of
the technique to a broader range of software-maintenance problems. Section 7 discusses
related work,

2. The Year 2000 Problem
In addition to the rollover problem with two-digit year fields, the phrase “Year 2000 Problem”
has come to mean a whole host of date-related problems that will eventually crop up, many of
which strike around the turn of the millennium. For example, leap years come every four years,
except for centuries, except for centuries divisible by 400. Thus, the year 2000 is, in fact, a
leap year. However, some programs implement the exception, but not the exception to the
exception. Such a bug could cause havoc in financial transactions (e.g., by causing failures in
computer-driven trading) and military maneuvers (e.g., by causing logistical planning failures).
UNIX systems are also subject to date-representation rollover problems, most of which occur

T
.!

434

, .; .~
. (1

0 <, *:r

f
t

. . ‘1
. I . .

5 .I

; ;

later in the 215’ century.’
For both date-representation rollover problems and leap-year bugs, it is necessary to find the

code that declares and manipulates date-valued variables, rewrite it, and test the modifications,
Unfortunately, dates are hidden in programs. “Date” is not a data-type in most programming
languages, and so heuristics must be developed for identifying the locations where date-valued
data is manipulated. Even when a language does have a “date” data-type, there is nothing to
forbid programmers from creating or encoding “raw” dates that arc embedded in data of other
data types, such as character strings.

Much of the problem is in administrative computing: purchasing and billing records, maintc-
nance and inventory records, payrolls, and the like. However, all of the world-wide infrastruc-
ture that incorporates automated components could conceivably be affected, including tcle-
phone and electrical power systems, industrial plants, nuclear power plants, defcnsc carly-
warning systems, logistics and planning systems, and weapons systems. Cost estimates for
correcting the various date problems run as high as $600 billion world-wide [8], $300 billion in
the U.S., $30 billion for the Federal government, and $10 billion for the Department of
Defense-not to mention an estimated $1 trillion in legal fees in the aftermath.

The Y2K problem is in large part a management problem: There are enormous difficulties
that must be addressed by any organization that faces the Y2K problem, including battling for
adequate resources (e.g., financial, equipment, and staffing), inventorying an organization’s
custom programs and COTS (“commercial off-the-shelf’) programs, and coordinating the
deployment of “renovated” systems (which may have to interoperate with systems, including
those of other companies, that have not yet been renovated). However, there are serious technl-
cal problems as well, including program-analysis methods for determining the sites at which
date-manipulation code occurs, code- and data-transformation algorithms, post-renovation test-
ing, and the technical challenges of coping with interoperating renovated and unrcnovntcd sys-
tems.

The techniques described in this paper are relevant to two of these problems: (i) dctcrmining
the sites at which date-manipulation code occurs, and (ii) post-renovation testing.

Because the leverage that tools for the Y2K problem can provide is limited by their accurncy
for locating the places in a piece of code where dates are employed, the date-location issue is
crucial to the creation of effective tools for correcting date-manipulation problems. Two tcch-
niques for locating dates are used in present commercial products:

(1)

(2)

Some date-manipulation sites can be identified by the places where a program mnkcs cer-
tain calls to the operating system, for example, to retrieve the current date. This method 1s
accurate, but does not identify all the date-manipulation sites in the program. For instnncc,
the variable into which the current date has been placed can be manipulated elsewhere in
the program, or its contents can be assigned to another variable. In addition, other dntc
values can be read in from files, from across the network, or from interactive user input,
Other date-manipulation sites can be identified by exploiting any conventions thnt pro-
grammers may have used for naming the variables in the program. Automatic strlng-
searching tools are used to search the source code-or alternatively, just the identifiers in n
tokenized version of the source code-with respect to patterns that reflect such convcn-
tions, for example, “*date*“, “*gmt*“, “*yy*“, etc. (where “*” is a wild-card symbol thnt
means “match any substring”).

After these techniques have been used to identify candidate sites at which dates arc mnnipu-
lated, this information can be “‘amplified”, via searching and slicing [20,12,9,14] opcrntions, to
find other potential locations of problems.

3. Path Profiling and the Year 2000 Problem
In path profiling, a program is instrumented so that the number of times different paths of the
program execute is accumulated during an execution run. Typically, the paths of interest arc
loop-free intraprocedural paths. The distribution of paths from an execution of the program is
called a path projile or a par/r spectrum. We are sometimes just interested in Boolcnn informn-
tion (which paths were executed? which were not?), but other times we are interested in the frc-
quencies with which paths were executed. This corresponds to considering n path spectrum ns
either a set of paths or a multi-set of paths, respectively.

‘Overflow in the Urn time function occurs on Tuesday, January 19.2038 nt 03:14:08 UTC.

---‘\1 -. , : .: .

435

The observation underlying our technique for applying program profiling to the Y2K prob-
lcm is that differences between path spectra obtained from different runs of a program can be
used to identify paths that are good candidates for being date-dependent computations. By
choosing input datasets to hold all factors constant except the way dates are used in the pro-
gram, any differences in the path spectra from different execution runs can be attributed to
date-dependent computations in the program. In particular, one would obtain path spectra from
execution runs of the program in which the program is run on pre-2000 data and post-2000 data
(or data that is likely to bring to light whatever “date vulnerability” we are trying to test). By
comparing the two path spectra, paths along which the program performed a new sort of com-
putation during the post-2000 run can be identified, as well as paths-and hence
computations-that were no longer executed during the post-2000 run.

Our thesis is that this technique provides a good heuristic for identifying date-dependent
computations, The basis for this belief is that a path spectrum provides an approximate charac-
terization of the program’s behavior, in the following sense:

The program’s execution paths serve as representatives for a set of execution states: Con-
sider the set of all possible execution states of the form (pt. (i), where r~ is a store value
and pt is not an arbitrary program point, but one occurring at the beginning of a path p
that the profiler is prepared to tabulate. In terms of characterizing the program’s execu-
tion behavior, two execution states (pt. cl) and (pf, ~22) are “similar” if they both cause
the program to proceed from pt along execution path p. Path p serves as a representative
of this equivalence class of similar execution states.

Differences in the path spectra obtained during two runs of a program on different inputs indi-
cate differences in the (equivalence classes of) execution states encountered, and hence are a
reflection of differences in the program’s behavior due to the differences in the input. In the
case of runs using pre- and post-2000 data, differences in the path spectra must therefore reflect
changed behavior due to date-dependent computations.

Of course, this only holds in one direction: Not all differences in behavior due to date-
dependent computations will necessarily show up as differences in the (equivalence classes of)
execution states encountered.

Example. Consider the program fragment shown in Figure 1, which reads and processes
data from a database of customer information. (This fragment does not contain any cycles, but
might appear as part of a loop in a larger program. Path profiling in programs with loops is typ-
ically carried out by considering loop-free segments of the program. See Section 4.1 or refer-
ence [4] for more discussion of this issue.)

a: birrhyear := read0
has~college-degree := read0
purchases := read0

7 a
age := currentyear 0 - birthyear

if age < 15 then
b: . . .

else h
b c

c: . . .

fi

if has-college-degree = true then
d *..

else H
d e

e: . . .
fi
if purchases > 3 then

f: ..*
else

g: . . .
fi

Pigure 1. A program fragment that reads and processes data from a database of customer in-
formation, and its control-flow graph.

. . ..-

E

.I \
c

4

c . ,.

For purposes of this example, assume that years are represented with only two digits and that
no person recorded in the database who is younger than fifteen years old possesses a college
degree.
[aMI.

Because of the latter assumption, no path from a pre-2000 run can begin with the prcflx

Now consider a post-2000 run (e.g., a simulated post-2000 nm in which the system clock has
been set ahead so that currentyear returns a value representing a year in the future, sny 00,
representing the year 2000), and suppose that the program reads in data about someone born in
1956 who possesses a college degree: The initialization code in region a would set age to
00- 56 =-56; because the test -56 c 15 evaluates to true, region b would be cxecutcd;
because the person possesses a college degree, region d would be executed; finally, cithcr
region f or g would be executed. In either case, the program performs a faulty computation:
The path executed is a path that should only be executed when a record is encountered for a
person younger than fifteen who possesses a college degree. Because no such paths arc ever
executed during the pre-2000 run, the path-spectrum-comparison technique would detect the
fact that the program performed a new sort of computation during the post-2000 run.

In addition, other anomalies may be detected: The pre-2000 run could very well cxccute
paths with the prefix [a,~]. Because in the post-2000 run the value of age is always ncgativc,
the post-2000 run would nkver execute such paths.

The following table shows path spectra that might be accumulated during pre-2000 and
post-2000 execution runs (assuming that the fragment occurs in a loop, so that rt is executed
multiple times):

These spectra show clearly that the pre-2000 and post-2000 behavior of the program is not the
same: Paths [u.b,d,f] and [u,b,d,g] occur in the post-2000 nm, but do not occur in the prc-
2000 run; paths [u,c,d,f 1, [u,c,d,g J, [u,c,e,f 1. and [u,c,e,g] occur in the pre-2000 run, but do
not occur in the post-2000 run. Cl

Each path in a path spectrum represents a sequence of edges in the program’s control-flow
graph. From two path spectra, new-spectrum and old-spectntm, the path-spectrum-comparison
technique reveals paths of new-spectrum that are not found in old-spectrum, and vice versa.
Given a path of new-spectrum (resp., old-spectrum) that does not occur in old~spcclrW~l
(new-spectnun), we can detennine the shortest prefix of the path that distinguishes it from all
of the paths in old-specttm (new-spectrum). For the Y2K problem, such path prefixes furnish
a programmer with even more precise information about what contributes to the differcnccs in
behavior between the pre-2000 and post-2000 runs:

Let p be an execution path that was executed during the post-2000 run but not during the
pre-2000 run. By finding the shortest prefix of p that is not a prefix of any path executed
during the pre-2000 run, we identify the critical portion of p that represents a new sort of
computation (or state-transformation pattern) performed during the post-2000 run, The pro-
grammer can focus on this prefix of p to locate the date-dependent code, which very likely
needs to be rewritten.
Similarly, let q be an execution path that was executed during the pre-2000 run but not dur-
ing the post-2000 run. The shortest prefix of q that is not a prefix of any path executed dur-
ing the post-2000 run identifies the critical portion of q that represents a computation
(state-transformation pattern) no longer performed during the post-2000 run. Again, the
programmer can focus on this prefix of q to locate the date-dependent code.

Example. In the example program discussed earlier, paths [u,b,d,f] and [u,b,d,g] of the
post-2000 run do not occur in the pre-2000 run. For both paths, the shortest prefix that is not a
prefix of any path executed during the pre-2000 run is [u,b,d]. In asking the question “Why is
the path [u,b,d] executed during the post-2000 run?“, the programmer would bc led to ask the
question “How can it be that age is less than 15 and hus-college-degree is true?“, which would
in turn lead him to the statement that computes age as a function of cm-rentyeur 0.

Conversely, paths [u,c.d,f 1. [u,c,d,g], [u,c.e,f 1. and [u,c,e,g] of the pre-2000 run do not
occur in the post-2000 run. For all of these paths, the shortest prefix that is not a prelix of nny

437

path executed during the post-2000 run is [a,~]. In this case, the programmer would be led to
ask the question “Why is the path [a,~] never executed during the post-2000 run? That is, why
is the value of age always less than 15 during the post-2000 run?” Again, the programmer is led
to the statement that computes age as a function of current-yea-(). 17

One can find the shortest prefix of a pathp that is not a prefix of any executed path in a spec-
trum S using a trie structure on S [16]: The first edge ofp that “deviates from the trie” identifies
the edge at which p veers into “unknown territory”, and the prefix ofp, up to and including this
edge, is the shortest prefix ofp that distinguishesp from S.

Example. The solid arrows in the diagram below show the trie for the pre-2000 spectrum.

The dotted edges show path [u,b,d,g] (which occurs during the post-2000 run). Ti!e shortest
rtix of [u,b,d,g] that 1s not a prefix of any path executed during the pre-2000 run IS [u,b,d].

3.1. Thrcsholding
Rather than concentrating on paths p that are executed in new-specfnun but not in
old spectrttm (or vice versa), we may wish to gather information from a path p’ that is executed
a dzferent number of times in the two spectra. Usually, we would be interested in a pathp’ that
is executed frequently in new-spectnrm but not in old-spectrum, or vice versa. Perhaps some
threshold ratio, say 100 to 1, would be used to identify “interesting paths”. For instance, in the
example from Section 3, suppose the database did contain a few records for people younger
thnn fifteen years old in possession of a college degree. In this case, the differences between
the pre- nnd post-2000 runs would show up as the post-2000 run appearing to process a large
multiple of the number of such records processed by the pre-2000 run.

In this situation, we would again be interested in understanding which prefix distinguishes
pnth p’ from the paths in old-spech-um. To do this, we merely remove p’ (temporarily) from
the old-spectrum path set, and then perform the normal path-comparison operation on p’ with
respect to old-spectntm (e.g., via a trie on o&spectrum or by the alternative technique
described in Section 4.2).

It is important that the over-threshold paths be removed from old-spectntm only one at a
time, The reason is that the over-threshold paths in old_spectrum may share prefixes in com-
mon, If all of the over-threshold paths were removed from old_specttzm simultaneously, and
the path comparison carried out against the r&king spectrum, an incorrect set of shortest dis-
tinguishing prefixes could be reported.

3.2. Other Uses of Path Profiling for the Year 2000 Problem
In addition to its utility for “date prospecting” in the Y2K problem, the path-spectrum-
comparison technique also has the potential to help out with two other important issues that are
part of the Y2K problem: (i) determining whether COTS components (Le., libraries) or COTS
tools have date problems, and (ii) testing renovated code:
(i) COTS software is usually distributed without source code, as an object-code file or as an

executable file. (Executables are usually distributed without symbol-table or relocation
information, as well.) Because it is possible to perform the instrumentation necessary for
obtaining path spectra on object-code files and executable files [10,19,11], the path-
spectrum-comparison technique is one of the few methods we are aware of that can be

L

.

.

438

2% i

I_ I
. .

c *

(ii)

used to identify date-manipulation problems in programs for which source code is not
available: Differences between pre-2000 and post-2000 spectra would be an indication that
a piece of COTS software may have a Y2K problem.

Of course, in this scenario the lack of access to the source code prevents one from actu-
ally fixing the Y2K problem. However, the manufacturer can presumably make USC of the
information that the path-spectrum-comparison technique brings to light about suspicious
paths through the obiect code.
k corm&-renovated system should have similar path spectra from execution runs on
pre-2000 data and post-2000 data. Remaining path-spectrum differences could indicate
that a Y2K probIem stil1 exists in the renovated system.

3.3. Prioritization of Spectral Differences
Not all path-spectrum differences necessarily deserve equal consideration by the user. For this
reason, it is useful to augment the path-spectrum-comparison technique with a prioritization
method for establishing an order in which the spectral differences should be brought to the
attention of the user. One method is to rank them by the order in which paths were executed (in
one of the two execution runs). For instance, suppose that p is a path in neru_specfnrrn that
does not occur in old-spectrum. Relative to all of the other paths in this category, p’s mnk
would be established according to the order in which an instance of p was executed for the first
time. The reasoninrr behind this heuristic is that the earlv instances of behavioral differences
between the two run< may be more likely to point to the cause of the underlying problem,

To track the order in which paths are first executed, the instrumented code could use a global
counter: Each time the end of a never-before-executed path is encountered (i.e., each time a
path count is set from 0 to l), the counter’s value would be recorded with the path, and the
counter incremented.

3.4. Why Not Node Profiling or Edge Profiling?
A comparison process similar to that described above could be carried out using pairs of spectra
created using node profiling or edge profiling. However, in general, these variations on the idea
are not likely to produce as good results as when spectra from path profiles are used.

By considering what happens during different post-2000 execution runs, the example from
Figure 1 can be used to illustrate that path-spectrum comparison is able to distinguish more
behavioral differences than either node-spectrum comparison or edge-spectrum comparison.
First, note that a pre-2000 run can exercise all edges of the example program’s control-floi
eraoh (Le.. reeions a. b. c. d. e. f. and ~9. This is not the case for some nest-2000 runs, For
%s$nce, for r&s durhrg &hich -&k syst& clock is set so that cwrent_yea;() returns a value in
the range 00 to 14 (representing a year in the range 2000 to 2014), the value of nge will always
be less than 15, and thus region c will never be executed. For these runs, node-spectrum com-
parison and edge-spectrum comparison would both detect a behavioral difference between the
pre- and post-2000 rnns (as would path-spectrum comparison).

In contrast, if the system clock is set so that crtrrentyeur() returns a value greater than or
equal to 15 (representing 2015 or later), we again have asituation in which all nodes and edges
are able to be executed. In uarticular. when a record for a nerson born in the year 2000 is uro-
cessed during a year-2015 rim, the initialization code in region a will set age to 15 - 00 215,
the test age < 15 will evaluate to false, and region c will be executed. Thus, prc-2000 and
post-2015 runs can exercise all edges of the example program’s control-flow graph, and hence
neither node-spectrum comparison nor edge-spectrum comparison would detect any differences
in behavior between these runs. However, as in the 2000 to 2014 runs, if the program reads in
data about someone born in 1956 who possesses a college degree, the program will follow a
path that should only be executed when a record is encountered for a person younger than
fifteen who possesses a college degree: The initialization code in region a would set uge to
15 - 56 =-41; because the test -41 < 15 evaluates to true, region b would be exccutcd;
because the person possesses a college degree, region d would-be executed: finally, cithcr
region f or g would be executed. Because no such paths are ever executed during the pre-2000
run, the path-spectrum-comparison technique would detect the fact that the program performed
a new sort of computation during the post-2015 run. This example shows that, in gcncral,
oath-snectmm comoarison is able to distinauish more behavioral differences than either nodc-
ipectim comparison or edge-spectrum comparison.

439

What is the significance of this for the Y2K problem, in general? For node-spectmm com-
parison and edge-spectrum comparison to detect behavioral differences between execution runs
on pre-2000 data and post-2000 data, the post-2000 run either has to exercise a completely new
part of the program, or completely fall to exercise some part of the nromam that was exercised
during the ire-2000 run. In-con@&, with the path-specdum-comp&is& technique, it is possi-
ble to detect behavioral differences even if exactlv the same nodes and edges are exercised dur-
ing the two runs (as long as different paths are exercised). Execution OF the same nodes and
edges can give rise to different sets of paths if the correlations between brunches are different
in the different runs. Consequently, of the three techniques, the path-spectrum-comparison
technique provides the highest-fidelity test for identifying date-dependent computations?

4. Efficient Path Profiling
The path-spectrum-comparison technique is not tied to any particular path-profiling method.
Furthermore, there are a wide variety of options in how one performs the instrumentation
required to gather information about what paths execute. Instrumentation can be performed at
any one of a number of levels:
l At the source-code level, as a source-to-source transformation.
l As part of compilation, by extending a compiler to use its intermediate representations for

the purpose of determining where to introduce instrumentation instructions.
l As an object-code-level transformation, by modifying object-code files (such as UNIX “.o”

l i!?post-loader transformation, by modifying executable files (such as UNIX “‘a.out” files)
[10,19,11].

One could even use different instrumentation methods on different parts of the system.
Although any method for generating path profiles could be used, it is only recently that

methods have been devised for obtaining path profiles with acceptable overheads [4,21. In par-
ticular, Ball and Lams report that exe&&n-&e overheads on ihe order of only‘3a%can
be nchieved with their method for collectine oath orofiles r41. Their work relies on a particular
method for numbering the paths in the protim, t6e main pojnts of which are describ& in Sec-
tion 4.1. When the paths in path profiles are reported using this numbering scheme, an altema-
tive technique for interpreting path spectra can be used to identify the shortest prefix of a path
in nets spectntnt that is not a prefix of any executed path in old-spectnrm (or vice versa). This
is desczbed in Section 4.2.

4.1. The Ball-Larus Scheme for Numbering Paths
The Ball-Lams path-numbering scheme applies to an acyclic control-flow graph with a unique
source node Sfurr and a sink node Exit. Control-flow graphs that contain cycles are modified by
n preprocessing step to turn them into acyclic graphs:

Every cycle must contain one backedge, which can be identified using depth-first search.
For each backedge JY + v, add edges Start + v and w + Exir to the graph. Then remove
all of the backedges from the graph.

The resulting graph is acyclic. In terms of the ultimate effect of this transformation on
profiling, the result is that we go from having an infinite number of unbounded-length paths in
the control-flow graph to having a finite number of bounded-length paths. A pathp in the origi-
nal graph that proceeds several times around a loop will, in the profile, contribute “execution
counts” to several smaller acyclic paths whose concatenation makes up p. In particular, the
paths from Start to Exit in the modified graph correspond to acyclic paths in the original graph

lPath-spectrum comparison subsumes node-spectrum comparison and edge-spectrum comparison in the
sense thnt nil behavioral differences identified by node-spectrum comparison and edge-spectrum comparis-
on will nlso be identified by path-spectrum comparison, but not vice versa. Path-spectrum comparison sub-
sumes node-spectrum comparison and edge-spectrum comparison in a second sense, as well. Node
proliling and edge profiling can be considered to be degenerate cases of path profiling: edge profiling is the
cnse where the paths tabulakd are all of length 1; node profiling is the case where the paths tabulated anz all
of length 0,

c

b

;,;:
. 9

P

.
.z.

440

(where following the edge Start + v that was added to the modified graph corresponds to fol-
Iowing backedge w 3 v in the original graph and beginning a new path at v, and following the
edge w + Exit that was added to the modified graph corresponds to ending the path in the ori-
ginal graph at w).

In the discussion below, when we refer to the “control-flow nmnh” 1”~ Mann thn
transformed (i.e.. acvclic) version of the arauh.

TheBall-&& numb&ring scheme lab&Lthe control-flow graph with two quantities:
(1) Each node Vin the control-flow graph is labeled with a value, numgatlrs,from (V), which

indicates the number of paths from V to the controI4 ow graph’s Exit node.
(2) Each edge in the control-flow graph is labeled with a value derived from the

numgathsfrom quantities.
For expository convenience, we will describe these two aspects of the numbering schcmc as if
they are generated during two separate passes over the graph. In practice, the two labeling
passes can be combined into a single pass.

In the first labeling pass, nodes are considered in reverse topological order. The base COSC
involves the Exit node: It is labeled with 1, which accounts for the path of length 0 from &lrit to
itself. In general, a node W is labeled only after all of its successors WI, Wz, l * * , Wk arc
labeled. When W is considered, numjdzsJ?om(W) is set to the value
num-paths-f?om (WI) + . * * + numgathsj?om (W,), as indicated in the diagram below:

numqarhsfrom(W) = numgaff~sfrom(l~:l +
. . . + numgatfufroni(lV~)

The goal of the second labeling pass is to arrive at a numbering scheme for which, for cvcry
path from Sturt to Exit, the sum of the edge labels along the path corresponds to a rltn’qr~e
number in the range [0 . . numgaths-f?om (Start) - 11. That is, we want the following propcr-
ties to hold:
(1) Every path from Start to J&it is to correspond to a number in the range

[0 . . numgathsfrom (Start) - 11.
(2) Every number in the range [0 . . numgathsJ?om (Sturt) - l] is to correspond to some path

from Srurt to Exir.
Again, the graph is considered in reverse topological order. The genera1 situation is shown
below: *

. .

c *

67&&a . . 1 -1 1 1
At this stage, we may assume that all edges along paths from each successor of W, say WI, to

441

&r? have been labeled with values so that the sum of the edge labels along each path
corresponds to a unique number in the range [O . . num~atksfiom (WJ - 11. Therefore, our
goal is to attach a number vf on edge W +Wi that, when added to numbers in the range
[0 ,, num-.paths-t?om(WI) - I], distinguishes the paths of the form W + Wi + * - - + Exit
from all paths from W to &it that begin with a different edge out of W.

This goal can be achieved by generating numbers v,, v2, * * - , vk in the manner indicated in
the above diagram: The number vf is set to the sum of the number of paths to Exit from all suc-
cessors of W that are to the left of W,:

vi =~+J&s~om(uy.

This “reserves”=the range [vi . . vi +nUm>othS&m(Wi) - I] for the paths of the form
w+w,+ . * * -+ Exit. The sum of the edge labels along each path from W to Exit that
begins with an edge W + W,, where j c i, will be a number strictly less than vi. The sum of
the edge labels along each path from W to Exit that begins with an edge W + W,, where m > i,
will be a number strictly greater than vi + numgathsJ?om (Wt) - 1.

Example. Returning to the example used in Section 3, Figure 2 shows how the control-flow
graph of the program fragment that reads and processes data from a database of customer infor-
mation would be annotated. Each box is annotated with the number of paths from that node to
the final node of the fragment; each edge is annotated with the number that would be assigned
by the edge-numbering scheme described above.

Note that the sum of the edge labels along each path from the beginning to the end of the
graph falls in the range [0 . . 71, and that each number in the range [0 . . 71 corresponds to exactly
one such path. 0

The final step is to instrument the program, which involves introducing a counter variable
and appropriate increment statements to accumulate the sum of the edge labels as the program
executes along a path.

a: r:=O
birth-year := read0
has-college-degree := read0
purclrases := read0
age := current_year 0 - birth-year

if age < 15 then
6: . . .

else
c: r:=ri-4

fi ***

if Itas-college-degree = true then
d . . .

else

e: r:= r +2 H

4

0 2

d e

fl ***
if purchases > 3 then

f: . . .
else

g: r:=ri-I
0..

A
h: projife [r] :=projle [r] + 1

H 2

0 1

f 9

H I
Figure 2. The instrumented version of the program fragment that reads and processes data
from a database of customer information, and the program’s annotated control-flow graph.

;i;:
e

b
n

7
,

’ ,,.; :

‘ ,

L

,

E

.I
4

k

I

‘

5
,.

L

I

,

-.

‘>

?

1 i

442

Example. The instrumented version of the program’s source code is shown on the left in
Fiaure 2. Statements that increment counter r have been introduced so that at the end of the
fggment its value indicates which path through the fragment was executed. This value is then
used to increment the appropriate element of array profile, which maintains the frequency dis-
tribution of paths executed. (Alternatively, profile could maintain just a Boolean indicator of
whether the path is ever executed.) Cl

Several additional techniques are employed to reduce the runtime overheads incurred. Thcsc
exploit the fact that there is actually a certain amount of flexibility in the placement of the
increment statements [3,4].

Profiles obtained from the instrumented program can be displayed in the fashion shown
below, where paths are arranged on the x-axis according to the path number, and the y-axis is
used to indicate either the execution frequency or just a Boolean indicator of whether the path
was executed at all. The spectra discussed in Section 3 would be displayed as follows:

Pre-2000 spectrum Post-2000 spectrum

4.2. An Alternative Technique for Identifying Problematic Path Prefixes
Suppose that p is a path in new-spechzm that does not occur in old-spectrum. This section
describes how to exploit the Ball-Lams path-numbering scheme for the purpose of finding tho
shortest prefix of p that is not a prefix of any executed path in old-spectrum. (If p is a path in
old-spectrum that does not occur in new-spectrum, then flip the roles of old-spectrttrrr nnd
new-spectrum in what follows.) Instead of using a trie structure on old,spectrum, an index
structure that supports range queries is built on old-spectnrm, and a sequence of qucrks is
issued to determine whether certain ranges are empty or not. Let IsRangeEmpty (S&b) be nn
operation that returns true if S does not contain any values in the range [a . . b], inclusive
(Standard data structures can be used to implement IsRungeEmpty (S,a,b) efficiently, i.e., in
time logarithmic in the size of S. For instance, see [16], pp. 373-374.)

Now consider a path from Stati to tit that has prefix pre, where pre ends at node W, and
suppose that the sum of the labels on the edges ofpre is c, as shown below:

Start

i

C

pre d

lb numqathsfrom(W) = #

All such paths have numbers in the range [c . . c + numquthsJrom (W) - 11, and there arc prc-
cisely numgathsfrom (W) such paths. Consequently, by the unique-numberlng property of
uaths from Sturt to Exit, all paths from Sturt to Exit with numbers in the range
‘[c . . c + numquthsfrom (w> - l]have prefix pre.

The search for the shortest prefix of p that is not a prefix of any executed path in
old-spectrum is carried out as follows. As above, suppose that p is a path from Start to fi~‘t
that has prefix pre, where pre ends at node W, and that the sum of the labels on the edges of pre
is c. Suppose further Chat we have already searched from Sturt to node W and hnvc not yet
found the edge that distinguishesp from the paths of old-spectrum:

443

m(W) = #

I

(When the search is initiated, W = Sturt,pre is the empty path, and c = 0.)
Assume that path p continues from W along edge W + Wi, which is labeled with tbe value yi

(i.e., p has prefix pre 11 (W 3 WJ, where “Ij” denotes path concatenation). We need to know if
any of the paths in old-spectrum also have prefix pre II(W + Wi). Again, by the unique-
numbering property of paths from Start to Exit, the paths in the graph from Srczti to Exit that
have prefix pre jI(W + Wi) are exactly the paths with numbers in the range
[c + v, ,. c -t- vf +numgatltsfrom (W,) - 11. Thus, to determine if any of the paths in
old-spectrum have prefix pre 11 (W + W,), we need to perform the test

IsRungeEmpty (old-spectrum, c + Vi, c + Vi + numguthsJ?om (6) - 1).
If this test is true, then W is the branch statement at which p veers into “unknown territory’
(along the edge W + W,). Otherwise, we continue the search at node W, using the path prefix
pre 11 (W + WJ and path-prefix value c + Vi.

The running time for this method of identifying the shortest prefix of a path in new-spectrum
that does not occur in old-spectlrum is not strictly comparable to the time used by the trie
method discussed in Section 3. However, the asymptotic worst-case running time for building
the range-query structure is better than the worst-case running time needed to build the trie, and
the worst-case space usage of the range-query method is also better than the worst-case space
usage of the trie method. For both methods, suppose that we are given an unsorted list of the
paths executed in old-spectnun. Let I old-spectrum 1 denote the size of old-spectrum (i.e., the
number of paths in old-spectrum).
l The time required to build a trie structure for old-spectrum is proportional to the sum of the

number of edges in the paths in old-spectun. (Note that this is potentially much greater
than 1 old?spectnmt 1, which is simply the number of paths in old-spectrum.) In the worst
case, stormg the trie could require space proportional to the sum of the number of edges in
the paths in olQpectrum. The time needed to determine the shortest distinguishing prefix
pre of a path p 1s proportional to the number of edges in the answer: lpre 1.

l The time required to build a range-query structure for ofA-spectram is proportional to
1 old_spectrum I * log I old-spectrum I, and the space needed to hold the range-query struc-
ture IS proportional to I old-spectnun I. The time needed to determine the shortest distin-
guishing prefix pre of a path p is proportional to lpre I * log I old-spectrum 1.

5. Implementation and Preliminary Results
We built a prototype system, called DYNADIFF, that implements the path-spectrum-comparison
technique, and carried out several preliminary experiments with it. DYNADIR: runs under
Solaris on Sun SPARCstations. It uses Tclfl’k to implement a graphical user interface, and
Lams’s implementation of the Ball-Lams path-profiling algorithm as the underlying machinery
for generating path spectra. The path profiler instruments executable files, so programs can be

1

--.- -

.

;. , .

444

: i

1.

.i
I

written in any language (as long as the compiler for the language obeys certain calling conven-
tions) or even in a mixture of languages.

The goal of DYNADIFF’S user interface is to allow one to collect up, and perform difference
operations on, collections of path profiles. The DYNADIFF user can display path profiles as
spectra (as shown in Section 4.1 and Figure 4). (At present, we are not using the thresholding
technique described in Section 3.1, and the system treats each path profile as merely n set of
paths; that is, the frequency counts of the number of times each path executed is ignored, Thus,
an executed path in a spectrum is displayed as a stick of height 1.) Spectra have links back to
the source code: Clicking on the stick that represents a path brings up an emacs window with
the elements of the path displayed in a special color.

DYNADIFF is organized around the notions of profiles and workspaces: Collections of
profiles can be selected and placed in named workspaces. Because we are interested in path-
spectrum differences, when path profiles from a workspace are displayed as spectra, each spcc-
trum shows only paths that were executed in at least one of the profiles of the workspace but
not in all of the profiles.

As part of calling up spectrum differences, the user forms sub-partitions of the profiles in a
workspace. The profiles in a workspace are partitioned into three groups, which we will call A,
B, and Other. (That is, A, B, and Other are each sets of profiles.) Spectrum differences are
displayed by showing path sticks for paths that are executed by all profiles in A, but not by
some profile in B, and vice versa. Clicking on one of the path sticks brings up an eNrucs win-
dow with the statements of the last edge of the shortest distinguishing prefix of the path
displayed in one special color, the rest of the shortest distinguishing prefix displayed in n
second special color, and the rest of the elements of the path displayed in a third special color.

cd(m, y. P, w)
char *p;
i

register d, i;
register char *s;
inf foo = 0;

s ‘4;
d =~anl(y);
mon[2] = 29;
mo?[9] =30;
sw;z;(l(lanl (y+l)+7-d)%7) {

: I* non-leap year *I
mon[2] = 28;
break;

default: I* 1752 *I
mon[9] = 19;
break;

case2: I* leap year *I
foo = foo + 1; I* Statement added so that something in the leap-year cnse */
break; I* could be highlighted *I

I
for&l; km; i++)

d += mon[i];
d%=7;
s += 3*d,
. . .

Figure 3. The code displayed in Times-BokiZtuZic, Helvetica-Bold, and Times-Bold indi-
cates a path that was executed during a run with input “cul2 1992”, but not during a rtm with
input “c&2 1997”. The code shown in Times-BoZdZtuZic and Helvetica-Bold indicates the
shortest prefix of the path that distinguishes it from all paths of the “cul2 1997” run. The code
shown in Helvetica-Bold indicates the last edge of the shortest distinguishing prefix (i,e.,
switch((janl(y+l)+7-d)%7) + foo = foo + I;).

f3

,

445

One experiment that we carried out with DYNADIFF was aimed at testing the ability of path-
spectrum comparison to identify leap-year calculations. This experiment involved the UNIX cal
utility, which, given a month and a year as input, prints the calendar for that month. The cal
program does not actually have a leap-year problem: It calculates correctly that the year 2000 is
n leap year, However, because our goal was merely to determine whether path-spectrum com-
parison would be able to identify leap-year calculations, this did not matter-we tested the
method’s sensitivity to leap-year calculations by comparing spectra from leap years and non-
leap years. Path spectra obtained from runs that we expected would involve leap-year calcula-
tions (e.g., from inputs like ‘%a/2 1992 , ” ‘%a1 2 1996”, etc.) were compared against spectra
obtained from runs that we expected not to involve leap-year calculations (e.g., ‘%a12 1997”,
‘%a12 1998”, etc.),

For example, in a trial with workspace-partition A consisting of the profile from a run with
input “~a12 1992” and B consisting of the profile from a run with input ‘%a12 1997”, there was
l One path that was executed during the run with input “cuZ2 1992”. but not during the run

with input ‘%ul2 1997”.
l One path that was executed during the run with input ‘%a12 1997”, but not during the run

with input “~a12 1992”.
Figure 3 shows the path that was executed during the run with input ‘%a12 1992”, but not dur-
ing the run with input ‘%a12 1997”. as well as the shortest prefix of the path that distinguishes
it from all paths of the “cul2 1997” run. To understand the code shown in Figure 3, it helps to
know that the routine “janl” receives a year value as its parameter, and returns a number in the
range [0 ., 61 that represents the day of the week on which January 1 falls that year. The values
0 through 6 correspond to Sunday through Saturday, respectively. The switch statement
chooses one of three cases, depending on the difference (in terms of number of days of the
week) between janl(y) and janl(y+l). The switch value is 1 in the case of an ordinary, non-
leap year; 2 in the case of a leap year; and 5, represented by the default case, in 1752, the year
that England and the Colonies shifted from the Julian to the Gregorian calendar. The default
case is used to make a minor adjustment to one of the program’s internal tables, which has an
effect elsewhere on how the calendar for September 1752 is created.

Figure 3 also illustrates a small glitch due to the fact that the path profiler we used instru-
ments executable files. The program shown in Figure 3 has an additional statement,
“foe = foo -I- 1;” that we added in “case 2” of the switch statement. With the original program,
in which “case 2” was empty, we were initially confused by the path that DYNADIFF
highlighted, No part of “case 2” was highlighted, and we did not at first recognize that the path
actually did go into that branch of the switch statement The reason for this was that the current
version of DYNADIFF uses information generated by the compiler to map from addresses in exe-
cutable files to lines in the source code. Our confusion was caused by the fact that the compiler
had not generated any instructions for the empty case, and so DYNADIFF did not have the infor-
mation it needed to highlight “case 2”. In Figure 3, the statement “foo = foo + 1;” was added
so that something existed in the body of “case 2” that could be highlighted. (if DYNADIFF were
to perform path profiling via source-code instrumentation, it would not have this problem.)

A second experiment that we carried out with DYNADIFF was aimed at testing the ability of
path-spectrum comparison to identify date-rollover problems. The test involved a version of
ncffp, a file-transfer utility. As in the first experiment, the standard version of the program does
not, in fact, have a Y2K problem-so we introduced one, by arranging for all year values that
the program manipulates to be in the range [00 . . 99]! The results are presented in Figure 4,
which shows the path spectra obtained from six runs of the date-sensitive version of the pro-
gram, The six runs processed input data associated with different years. Note how the path
spectra change as we cross the year 2000 boundary, but are almost completely stable on either
side of it.

Similar results were obtained in two other experiments that we carried out: As we would
expect, the path spectra for the UNIX cup and rcs utilities change as we cross the transition
point when the UNIX rime function overflows (Le., 03:14:08 UTC. Tuesday, January 19.2038).

‘When cal is invoked with no arguments, it prints the calendar of the current month. The current month is
determined via a call on the UNIX lime function. Just after rime overflows, cal prints the calendar for De-
cember 1901.

446

I

0
0 5 10 15 20 25 30 35 40

Data from 1997

1

1 0
0 5 10 15 20 25 30 35 40

Data from 1998

I ’ I

0 1 0 5 to (5 20 25 30 35 40

Data from 2001

I - ’ - * - I 1 1
0 0 1 0 5 10 15 20 25 30 35 40 0 5 10 (5 29 25 30 35 40

Data from 1999 Data from 2002

1 .

0
0 5 10 (5 20 25 30 35 40

Data from 2000

Figure 4. Path spectra from six runs of a date-sensitive version of ncfrp.

6. Other Applications in Software Maintenance
The path-spectrum-comparison technique is actually applicable to a much wider range of prob-
lems that arise in software maintenance than just the Y2K problem. A number of other ways to
enlist path-spectrum comparison in the cause of providing better help for softwarc-maintcnancc
problems are described below.

The application of path-spectrum comparison to the Y2K problem involves comparing path
spectra from different execution runs. The principle is that “information about possible date-
dependent computations can be obtained by comparing path spectra from executton runs on
pre-2000 data and post-2000 data”. This is essentially a testing strategy, although one of
novel kind. The Y2K problem is also just one example of a problem to which this kind of test-
ing strategy can be applied.

In broadest terms, the general principle can be stated as follows:
A path spectrum is a finite, easily obtainable characterization of a program’s execution on
a dataset, and provides a behavior signature for a run of the program. When different runs
of a program produce different path spectra, the spectral differences can be used to idcnti-
fy paths in the program along which control diverges in the two runs. By choosing input
datasets to hold all factors constant except one, any such divergence can be attributed to
this factor. The point of divergence itself may not be the cause of the underlying prob-
lem, but provides a starting place for a programmer to begin his exploration.

This principle offers new perspectives on testing, on the task of creating test data, and on whnt
tools can be created to support program testing.

This approach to testing is a new variant of white-box testing, which we propose to call “I/B
testing”, for “Input/Behavior” testing, by analogy with I/O testing. In contrast to I/O testing,
I/B testing can reveal possible problems-by finding path-spectrum differences-even when
the output of an execution run is correct.

The effectiveness of path-spectrum comparison for uncovering errors depends on how good
the two input datasets are at eliciting different behaviors during the different runs. For instance,
the results in the Y2K problem depend on how well the input data stimulates different
behaviors during the pre-2000 and post-2000 runs. This raises a number of questions. TWO of
them-analogs of well-known issues that arise with conventional testing methods, and left open
here for future research-are: “How does one design pairs of input sets that are likely to cause
errors to be revealed via spectral differences?” and “How does one evaluate the quality of
suite of input-set pairs?”

Testing is a huge problem for software developers, and will be with us long past the year
2000. We believe that the path-spectrum-comparison technique holds the promise of providing
a useful adjunct to conventional methods for testing whether programs are functioning properly
(and debugging them when they are malfunctioning).

Systems that Warn of Possible Errors Within Themselves
As described thus far, the spectra that are compared come from different runs of a program.
However, the underlying principle is simply that “information about possible execution prob-
lems can be obtained by comparing two spectra”. The spectra do not necessarily have to be
from different runs of the program. All we care about is that there are two spectra to be com-
pared (and that the spectra provide some sort of behavior signature). The spectra could be
obtained from two or more runs (as in the application of the technique to the Y2K problem);
however, there are situations in which it would be meaningful to compare spectra obtained dur-
ing a single run.

Two situations in which this would be useful are: (i) when a system is being tested, and
(ii) in a system that warns of possible errors within itself. In both cases, the idea is to have the
system compare each path executed by the program with the paths executed so far. When a
new path is discovered (i.e., when the path is executed for the first time) the program would
signal that a possibly erroneous computation has just occurred-Le., to warn theuser or system
tester that the nrouram has iust none down a uossiblv bad Dath. (The svstem could issue the
warning directly tothe user,10 a dialog box, toihe console whrdow; or to’s log file.)

Such information (e.g., perhaps the last few such paths reported) could provide important
clues that would help in tracking down a bug once a symptom comes to the attention,of the
user, Of course, one would want to wait until the program had run for a while before starting to
issue such warnings! but after a break-in or warm-up period it would begin to be useful to
gather such informanon.

Testing Which Parts of a System are AfYected by a Modification
Another variation on path-spectrum comparison could be used to support the testing of bug
fixes and other small changes to a system. The goal here would be to understand whether the
only behavioral changes introduced by the modification were to the intended parts of the sys-
tem, The idea is to use path-spectrum comparison as a heuristic method for understanding the
magnitude of behavioral changes between two versions of a program.

In this context, the comparison that needs to be carried out is somewhat different from what
has been discussed earlier: Instead of comparing spectra from two runs of the same program on
&J&-ear data, one would compare spectra from two runs of a (slightly) &Brent program on the
sujfre data. As before, the premise that “states are similar if they proceed down tbe same path’
provides the justification for why it makes sense to be comparing path spectra (even though
they now come from execution runs of different programs).

Of course, one expects there to be differences between the two spectra obtained from the two
versions of the program. For example, one would expect to see differences on the input that
elicits the bug in the original program. The purpose of comparing the path spectra would be to
obtain information about the extent of actual chances in behavior. One wants to make sure that
n~small change in the program text does not leid to radical changes in the behavior. The
behavior of most of the unmodified parts of tbe system should be unaffected by a modification.
The programmer can use the information obtained from path-spectrum comparison to develop
an understanding of the actual magnitude of behavioral differences that a bug fix introduces.

In order to carry out comparisons between paths from two different programs, a concordance
between paths in the old program and paths in the new program would be needed. The instru-
mentation strategy used affects how difficult it is to provide such a concordance: It would not
be too hard to establish a correspondence between paths in the old and new programs when
source-code instrumentation is used, but would be much more difficult when instrumentation is
carried out on object-code files or executable files.

Testing for Inconsistent Data
Another potential application of path-spectrum comparison is to the “data hygiene” problem.
The goal here is to identify data in a database or file that is contaminated, or inconsistent with
the assumptions about the data that the program relies on. Our hypothesis is that some contam-

i 4

448

inated data items will cause the program to take unusual paths through the code (but ones that
do not actually crash the system). Presumably the percentage of contaminated data is low; thus,
the idea behind using path-spectrum comparison is to use information about infrcqucntly exc-
cuted paths to identify possibly contaminated data in the database. Any peculiar paths (i.e.,
paths with count 1 or low relative frequency in the path spectrum) when the program is run
against the database wouId be taken as a signaI that the program was processing possibly con-
taminated data. To actually identify the contaminated data, one would need the instrumcntcd
program to gather some additional information in order to link the low-frequency paths back to
the inputs that were most recently read in at the times the path was executed.

7. Related Work
This paper has described new techniques to help with testing and debugging, using information
obtained from path profiling. Our work is based on the idea of comparing path spectm from
different runs of the program to identify paths in the program along which control divcrgcs in
the different runs. The path-spectrum-comparison technique is a completely different way of
using path profiling in the context of program testing from another use that has been proposed
in the past, namely as a criterion for evaluating the coverage of a test suite [21,13,7,15], The
question of whether there is any hope of using the path-coverage criterion in practice has often
been raised. The published results of Ball and Lams suggest that the answer to this question is
“‘no”. They retort that some of the SPEC benchmarks had approxrmately 10s - 10’ paths, of
which only 10 were ever executed on a given run [4]. Although not all of the possible paths
are necessarily feasible, it could be necessary to run 10 5 - lo7 tests (and probably far more) to
achieve a high degree of coverage.

Because our goal is different-our aim is to use spectral differences to identify paths in the
program that represent changed behavior in the different runs-our use of path profiling to sup-
port program testing does not run afoul of the “high-number-of-paths/low-covcragc-per-run”
issue. This is not to imply that our use of path profiling does not come equipped with its own
set of problems. On the contrary: The effectiveness of the path-spectrum comparison for tcst-
ing depends on how good two test sets are at eliciting different behaviors during execution, and
the question of how one designs pairs of input sets that are likely to cause errors to be revcalcd
has been left open for future research.

The Docket project has explored ways to use information obtained from testing and dynamic
analysis, including information about paths traversed during execution, in tools to support pro-
gram comprehension [5]. One application of the Docket toolset addressed the problem of
extracting “business rules” from programs [17]--i.e., high-level requirements on how input
dam is to be processed, expressed in terms of the application domain (e.g., “to be billed after
delivery the customer must have a credit rating of at least satisfactory, otherwise, the customer
must pay on delivery” [18]). Information about an input/output value pair, the types of the
input and output values, and the path through the program that was executed is used to generatc
several candidate assertions (viz. possible “business rules”) that characterize the I/O transfor-
mation.

There is a distant relationship between some of the techniques proposed in Section 6 and
previous work on testing and debugging:
l Relative debugging allows programmers to compare the execution behaviors of multiple

instances of the same program [l]. The setting for relative debugging is the porting of code
(usually Fortran) from one platform (hardware/OS) to another. Because of diffcrcnccs in
hardware and/or numerical libraries, the same program may exhibit different behaviors on
different platforms. With relative debugging, the programmer places assertions in the
source code, which are then checked against one another as the two programs cxccutc in
parallel on the different platforms. The debugger takes care of the details of inserting
breakpoints and comparing data structures across the two executions. When a substantial
difference in behavior is found (i.e., an assertion is violated), the programmer is notitlcd,
Relative debugging also supports runtime comparison of a modified program to an older
reference program.

l Dependences between tests and program entities have been used to implement sclectivc
regression testing in the TestTube system [6]. In this case, there are two different versions
of a program, and dependence information gathered,from previous tests is used to dctcr-
mine whether a test needs to be rerun on the new version.

-‘I.--.

449

Acknowledgements
We are grateful for the helpful comments of K. Baxter, B. Carlson, J. Field, S. Horwitz, T. Taft,
and D. Weise.

References
1. Abmmson, D., Foster, I., Michalakes, J., and Sosic. R., “Relative debugging: A new methodology for

debugging scientific applications,” Commun. of the ACM 39(11) pp. 68-77 (Nov. 1996).
2. Bala, V., “Low overhead path profiling,” Tech. Rep., Hewlett-Packard Labs (1996).
3, Boll, T., “Efiiciently counting program events with support for on-line queries,” ACM Truns. Pro-

gram. Lang. Sysf. i6(5) pp. 1399-1410 (Sept. 1994). --
4. Ball. T. and Lams. J.. “Efficient oath orofilin%” in Proc. ofMICRO-29. (Dec. 1996).
5; Benedusi, P.. Be&e&to, V., and Tomacelli,-I,., “The role of testing and~dynamic analysis in program

comprehension supports,” pp. 149-158 in Proc. of the Second IEEE Workshop on Program
Comprehension, (July 8-9. 1993, Capri, Italy), ed. B. Fadini and V. Rajlich,IEEE Comp. Sot. Press,
Wash,, DC (July 1993).

6. Chen, Y.-F., Rosenblum, D.S., and Vo. K.-P., ‘“TestTube: A system for selective regression testing,” in
Proc. of dfe Sixfeenfh Int. Co& on Soffiv. Eng., (May 16-21.1994, Sorrento, Italy), IEEE Comp. Sot.
Press, Wash., DC(1994). - - - -

7. Clarke, L.A., Podgurski, A., Richardson, D.J., and Zeil, S.J.. “‘A comparison of data Row path selec-
tion criteria,” pp. 244-251 in Proc. ofrhe Eighth Int. Conf on Sofno. Eng., IEEE Comp. Sot. Press, __
Wash., DC (1985).

8. Gartner Grout. Year 2000 Problem Gains Notional Attention, Gartner Group, Stamford, CT (April
1996). (See irkL http:/Avww.gartner.com/aboutgg/pmssrel/pry2OOO.html.) -

9, Horwitz, S., Reps, T.. and Binkley, D.. “Interprocedural slicing using dependence graphs,” ACM
Trans. Program. lung. Syst. 12(l) pp. 26-60 (Jan. 1990).

10. Johnson, SC., “Postloading for fun and profit,” pp. 325-330 in Proc. of the Winter 1990 USENlX
Con& (JM. 1990).

11. Lams, J.R. and Schnarr, E., “EEL: Machine-independent executable editing,” Proc. of the ACM SIG-
PLAN 95 Conf on Programming Language Design and Implementation, (La JOE% CA, June 18-21.
1995) ACM SfGPlAN Notices 30(a) pp. 291300 (June 1995).

12. Ottenstein, K.J. and Gttenstein, L.Mi “The program dependence graph in a software development
environment.” Proc. of the ACM SIGSOFUSIGPPLAN Sofnv. Eng. Symp. on Practical Sofivare
Developmen; Environments, (Pittsburgh, PA, Apr. 23-25. i984), ACM-SiGPm Notices 19(S) pp.
177-184 (Mny 1984).

13. Rapps, S. and Weyuker. E.J., “Selecting software test data using data Row information,” IEEE Truns.
on Sofnv. Eng, SEll(4) pp. 367-375 (Apr. 1985).

14. Reps, T., Horwitz, S., Sagiv, M., and Rosay. G., “Speeding up slicing,” SIGSOFT 94: Proc. of the
Second ACM SIGSOFTSymp. on the Found of Sofnv. Eng., (New Orleans, LA, Dec. 7-9.1994). ACM
SIGSOFTSofnv. Eng. Notes 19(5) pp. 11-20 (Dec. 1994).

15. Roper, M., sb/nvare-Testing, McGraw-Hill, New York, NY (1994).
16. Seduewick. R.. Alrrorirhms. Addison-Wesley. Reading. MA (1983).
17. St&d, H.M. and kitsch, H., “Reverse eng&ering programs via dynamic analysis,” pp. 192-201 in

Proc. of fhe IEEE Working Conf: on Reverse Engineering, (May 21-23, 1993. Baltimore, MD), IEEE
Comp. Sot. Press, Wash., DC (May 1993).

18. Sneed, H.M. and Erdos, K., “Extracting business rules from source code,” pp. 240-247 in Proc. of the
Fonrlh IEEE Workshop on Program Comprehension, (Mar. 29-31. 1996, Berlin. Germany), ed. V.
Rnjlich, A. Cimitile, and H.A. Mueller,IEEEComp. Sot. Press, Wash., DC (Mar. 1996).

19. Srivastnvn, A. and Eustace, A., “ATOM: A system for building customized program analysis tools,’
Proc. of the ACM SIGPL4N 94 Co@ on Programming Language Design and Implementation.
(Grhmdo, FL, June 22-24,1994), ACM SIGPLAN Notices 29(6) pp. 196-205 (June 1994).

20. Weiser, M., “Program slicing,” IEEE Trans. on Sofnv. Eng. SElO(4) pp. 352-357 (July 1984).
21. Woodward, M.R., Hedley, D., and Hennell. M.A., “Experience with path analysis and testing of pro-

grams,” IEEE Trans. on Sofnv. Eng. SE6(3) pp. 278-286 (May 1980).

L -

.

r’

.I ‘c
c

.,

i _.

_.

