
An Object Calculus with Ownership and Containment

Extended Abstract

David Clarke

School of Computer Science and Engineering,

University of New South Wales, Sydney, 2052, Australia
clad@cse.unsw.edu.au

�

Abstract

Object ownership and the nesting between objects are ar-
guably important but under appreciated aspects of object-
oriented programming. They are also prominent in many
alias management schemes. We model object ownership in
an extension to Abadi and Cardelli's object calculus [1]. Ob-
ject owners, called contexts, can be created during evalua-
tion allowing ownership on a per object basis. Contexts
are partial-ordered to capture the containment relationship
between objects.

1 Alias Protection

Aliasing is endemic in object-oriented programming.
Noble, Vitek, Potter [25]

Although fundamental to good object-oriented design
[15], aliasing is problematic: when ill-used it breaks the en-
capsulation necessary for building reliable software compo-
nents [22]. Therefore, aliasing cannot be eliminated, only
managed [20]. A variety of approaches have been proposed
to this end. Here we concentrate only on those which limit
or report the extent of aliasing by encapsulating all refer-
ences to certain objects within certain universes (packages,
classes, objects, etc.) [3, 4, 9, 11, 18, 19, 21, 25, 24]. This
kind of scheme is said to perform alias encapsulation [25].

Existing languages such as Java [17] and C++ [12] do not
include privacy information as a part of an object's type.
This information can be lost and the intended protection
can be subverted. The key idea which most alias encap-
sulation schemes adopt is to annotate types with protection
information which is preserved by subtyping. For example:

� Con�ned types [4]: modify class types using package-
level information to prevent objects from certain classes
from being accessed outside a package;

� Universes [24]: modify object types based on class-
level information to prevent certain objects from being
accessed outside of certain classes;

� Flexible Alias Protection [25], Ownership Types [9],
Universes [24]: modi�es object types based on object-
level information to prevent certain objects from being
accessed outside certain other objects.

�From March 2001, clad@cs.uu.nl, Department of Computer Sci-
ence, Utrecht University, Utrecht, The Netherlands.

These schemes select some collection of universes which
are used to partition the objects in a system. The universes
may be based on packages, classes, or even objects; they
are generally nested; and their nesting can be either derived
from the scoping of packages or classes,1 or generated as
objects are created. Types are modi�ed to include infor-
mation about which universe elements of the type inhabits.
This is the basis of ownership. The universes are then used
to control which references are allowed based on their nest-
ing. This is basis of containment. Here, we extend Abadi
and Cardelli's object calculus to model these notions.

The paper is organised as follows. Section 1 discusses
how the representation of an object is protected using a con-
tainment invariant based on object ownership. This model
was the basis for our earlier work, but it is too inexible
in practice. To overcome this, Section 3 separates the no-
tion of ownership from objects by introducing contexts as
the units of ownership and then recasts the containment in-
variant. The syntax of the calculus is presented in Section
4, followed by some motivating examples in Section 5. We
then discuss how the containment invariant is enforced by
the type system in Section 6, before presenting the type
rules in Section 7, and the dynamic semantics of the calcu-
lus in Section 8. Section 9 briey states its key properties.
Section 10 shows some undesirable behaviour the calculus
exhibits from a modelling perspective. Section 11 discusses
some related work, before the paper concludes in Section 12.

2 Representation, Containment and Ownership

The representation of an object is the collection of objects
which constitute its internal implementation. The notion
that representation should be protected from external ac-
cess is called representation containment, or just contain-
ment. Assuming that an object system has a root and that
access paths from object to object are determined by the
�elds' contents, we can state a particularly strong formula-
tion of containment, namely, that all access paths from the
root of a system to an object's representation must include
that object. An object is considered to be the owner of its
representation. The allows the containment property to be
restated equivalently as owners are dominators for access
paths between the root of the system and the corresponding
representation [9].

A consequence of this de�nition is that objects act as
single entry points for access to their representation. This

1Neither Con�ned Types [4] nor Universes [24] fully exploit the
possibilities.

allows stronger guarantees about an object's invariants, be-
cause the only external means for changing its representa-
tion is through the object itself; direct external access to the
representation is impossible.

Because both formulations above are de�ned globally
over all access paths, neither can be directly incorporated
into a type system. We seek a validity condition de�ned
locally between the source and target of a reference, which,
when invariant over the entire object graph, induces the con-
tainment property.

The �rst step is to realise that objects when considered
as owners form a tree. The root object of the system is the
root of the tree, with every object is inside its owner. That
is, for all objects �, we have � � owner(�) and � � �. This
tree, called the ownership tree, captures the nesting between
objects.2

Now consider the four possibilities depicted in Figure 1.
Here a dark square represents an object and the rounded
box attached to it encapsulates the object's representation.3

A dotted box represents an arbitrary number of nested
rounded boxes, indicating that the enclosed object is part
of the representation of some unspeci�ed other object.

’ι

ι

’ιι

(a) � = owner(�0) (b) � < owner(�0)

ι’

ι

ι’ι

(c) � > owner(�0) (d) � and owner(�0) are incomparable

Figure 1: Varieties of reference from object � to object �0

We wish to exclude references which cross an encapsula-
tion boundary from the outside to the inside, thereby gain-
ing direct external access to an object's representation. The
cases excluded are (c) and (d). The remainder, (a) and (b),
together give the following containment invariant:

� ! �0) � � owner(�0):

where ! denotes the refers to relation. When a reference
does not satisfy this condition, the object owner(�0) can no
longer be a dominator for �0 [30], thus violating the intended
containment property.

This invariant was uncovered by Potter, Noble and the
author [30], and used in a less elegant form in the �rst system

2The ownership tree in fact corresponds to the dominator tree [2].
3References originate from the rounded boxes because they come

from the implementation of an object. This will become clearer in a
moment.

Array

Enumeration Vector

Data

Figure 2: Java's Vector with multiple interfaces

of ownership types [9], although historically the type system
came �rst. This type system was for a class-based language
which had neither subclassing or subtyping. Underlying this
type system was the model of containment just described.
This model is, however, too limiting. We now explore a
generalisation.

3 Contexts and the Containment Invariant

Many object-oriented design idioms cannot be implemented
in this model, while retaining some form of representation
containment. The reason quite simply is that only one ob-
ject can both access the representation and be accessed by
objects external to the representation.

A common example is iterators in the style of Java's
Enumeration interfaces [17]. An Enumeration object for a
Vector, for example, has access to the representation of the
Vector (the underlying array), but is also accessible exter-
nally. Thus there are two access paths to the representation,
one through the Vector, the other through the Enumerator,
breaking the containment invariant. Figure 2 demonstrates
this (as well as a number of other features of our model
which we will return to in a moment.)

The set of objects owned by a particular object reside in
the same universe (the rounded boxes in the �gure). These
are the units of ownership which we call contexts. Rather
than being explicitly tied to objects, contexts form a sepa-
rate tree to capture the nesting of objects. This is given by
a relation �:, called inside, which has maximal element �.
To each object we assign two contexts. The owner, owner(�),
corresponds to the context in which the object resides. The
other context, rep(�), which we call the representation con-
text, can be thought of as the owner of the objects �'s repre-
sentation, or alternatively, where the representation resides.
Both contexts are �xed for an object's lifetime to obtain
type soundness in the presence of imperative objects.

In the previous model, an object � owned �0 when
owner(�0) = �. Now an object can be thought of as own-
ing objects whose owner is its representation context, that
is, when rep(�) = owner(�0). By making the corresponding
change to the containment invariant above, we obtain our
new containment invariant:

�! �0) rep(�) �: owner(�0)

This is the invariant which our type system enforces.
The owner context governs which objects can access an

object, controlling the target of references, acting like an ac-
cess control list. Dually, the representation context governs

2

which objects an object can access, controlling the source of
references, acting like a capability list.

We require that rep(�) �: owner(�) for all objects �, so
that an object can access itself, following the initial model.
Indeed, the initial model can be embedded into this system
by (1) guaranteeing that each object has a unique represen-
tation context, and (2) by ensuring that rep(�) is directly
inside owner(�) for all objects � (for details see [10]). So
it is when the representation context is not directly inside
the owner context, or when the representation context is not
unique, that we obtain exibility to, for example, implement
iterators which can access representation.

In fact, this is exactly what is happening with the
Enumeration object in Figure 2. Its owner is the same as
the owner of Vector, but the representation context of the
Enumeration is inside that of the Vector. The grey pipe
links the Vector to its representation context | it can be
though of as extending access to the object to an outer level.

To capture that the representation context controls the
source of references and the owner the target, references
are drawn from the representation part (round box) to an
object, which resides in the owner context. Again references
must not cross a boundary from outside of an object to the
inside.

The other noteworthy point is that the Data objects of
the are not considered as part of the Vector's representation.
Instead, they are owned externally to the Vector. Some
other alias management schemes include the Data objects
as a part of the representation and require destructive read
[19] or copy assignment [3] operations to move the Data into
and out of the Vector. Such operations, in our opinion, are
unintuitive and problematic.

4 A Calculus with Ownership and Containment

We now present our variant of Abadi and Cardelli's object
calculus. The examples presented in Section 5 should help
with the intuition. We de�ne the syntax of contexts, per-
missions, types (including method types), values, terms, and
con�gurations in Figure 3. These will be described in turn.

Contexts Contexts are either variables, �, or constants
from the partial order (C;�:C) which is supplied as a pa-
rameter to the type system. C may have a maximal element,
denoted �. The collection C could represent the package or
class name in a program, to allow ownership per-package or
-class.

Permissions Permissions represent the collection of con-
texts which are accessible in an expression. Expression typ-
ing depends on a permission: to access an object or location
within an expression its owner context must be included in
the permission. We refer to the outermost owner of an object
in an expression as the top level owner. Only this context
matters when accessing an object. Access to the methods is
governed by a di�erent context.

There are two basic permissions. The point permission
hpi allows access to the single context p. The upset permis-
sion hp "i allows access to any context q such that p �: q.
Finite unions of permissions can be formed using

S
[K1::Kn].

We use the following abbreviations: void b= S
[] and

K [K0 b= S
[K;K0].

Permissions also restrict the formation of types and the
subtype relation.

� 2 CtxVar
p 2 Context ::= � j � � 2 C

K 2 Perm ::= hpi j hp"i j
S
[K1::Kn]

X 2 TypeVar
A;B 2 Type ::= X j TopK j [li : �i

i21::n]pq
j �(X)A j 9(� �: p)A

� 2 MtdType ::= A j A! � j 8(X<:A)�
j 8(� �: p)� j 8(� :� p)�

x 2 Var
u; v 2 Value ::= x j � j fold(A; v)

j hide p as � �: q in v:A

a; b 2 Term ::= v j o j v:lh�i
j v:l (&(s : A;�)b
j let x : A = a in b
j unfold(v)
j expose v as � �: p; x:A in b:B
j new �� p in a

� 2 Actuals ::= ; j v;� j A;� j p;�

o 2 Object ::= [li = &(si : Ai;�i)bi
i21::n]pq

� 2 Param ::= ; j x : A;� j X<:A;�
j � �: p;� j � :� p;�

� 2 Store ::= ; j �; � 7! o
t 2 Config ::= (�; �; a)
� 2 Nesting ::= ; j � �: p;�

Figure 3: The Syntax

Types The types and their intended meanings di�er only
a little from the standard constructs which they resemble.
Types include type variables for both recursive types and
type parameterised methods. The top type, TopK , is the
largest type that can be constructed using permission K. It
represents the union of all values accessible in an expression
given permission K. The object type [li : �i

i21::n]pq lists
the names and types of the methods of an object, as well
as the owner context p and the representation context q.
The precise role p and q play will be discussed is Section 6.
Method types, �, are described in the next section. Recur-
sive types, �(X)A, are standard iso-recursive types. Finally,
9(� �: p)A are a limited form of existentially quanti�ed type
which abstracts only contexts, but not types.

Method Types Since the objects accessible by an object
are di�erent from those accessible outside the object, we can
consider objects to have both an inside and outside. This is
similar to languages such as Java, where method evaluation
can be thought of as occurring inside the target object, since
the method can access private members. The object calcu-
lus, however, fails to make this distinction | methods with
arguments are implemented as functions which can either
be invoked or passed to another expression. To remedy this
we introduce fat methods which must take all of their argu-
ments (values, contexts, types) when the method is called.
Thus method types are distinct syntactic entities.

3

The return type of a method must be a type A. A
method can have any number of parameters which can
be values, bounded type variables, and context parame-
ters bounded above, and below, giving types A ! �,
8(X �: A)�, 8(� �: p)� and 8(� :� p)�, respectively.
The types and contexts in later arguments can depend on
those speci�ed in earlier arguments. This implies that, for
example, 8(� �: p)8(� �: �)(A ! B) is a valid method
type.

Terms Terms are divided into values and expressions.
Closed values, that is, those without free term or type vari-
ables, constitute the results of evaluation. Expressions are
presented in a variant of the named form [31]. This simpli�es
the dynamic semantics and proof of the calculus' properties.

The language is calculus is imperative | aliasing is not
problematic in a functional language. Locations, �, refer to
objects in the store.

Objects are given by [li = &(si : Ai;�i)bi
i21::n]pq , which

are object calculus objects extended so that methods take
arguments of any kind. The variables si are the self pa-
rameters used to refer to the current instance of the ob-
ject in method bodies, bi. The formal parameters to the
method, �i, are a collection of term variables with their
type, context variables with their bound, and type variables
with their bound. As usual, a method can be considered
a �eld if s =2 FV(b), b is a value, and � = ;. Thus, we
do not distinguish between �elds and methods. Finally, the
owner context is the superscript p, and the subscript q is the
representation context.

Method selection, v:lh�i, denotes a call to method l of
object v, with actual parameters, �, which are a sequence
of values, contexts, and types. All the method arguments
must be supplied.

Method update, v:l (&(s : A;�)b, replaces the method
labelled l in the object v with that de�ned by b.

Folds and unfolds are coercions which mediate between
the forms of iso-recursive types as usual. Local declarations
are de�ned using let.

The hide value, hide p as � �: q in v:A, abstracts con-
text p from the value v and type A, representing it as bound
variable �. The context p and, to a certain extent, value v
can be thought of as being hidden. The only information
known about the hidden context p is that it is inside q. The
type of this expression is 9(� �: q)A. This term corresponds
to the usual term for packing existential types, except that
contexts are abstracted rather than types.

The expose expression, expose v as � �: p; x:A in b:B,
unpacks the contents of a hide value. The hidden context
and value are substituted for � and x in the expression b.
The type system ensures that they satisfy the type and con-
text constraints, and also that the exposed context cannot
escape the scope of the expression b. More precisely, it en-
sures that the hidden context cannot appear in the result
type B.

The hide and expose expressions are more commonly
called pack and open [5], but the names we have chosen are
more indicative of their intended behaviour in our modelling:
hiding and exposing representation contexts.

The �nal term, new � � p in a, creates a new context
which is inside but not equal to p, and substitutes it for
� in a. Generally a new context will be used to give new
objects a unique representation context. new is often used
in conjunction with a hide expression which protects the

new context from being exposed.
Contexts appear in both terms and types, but we present

them as a single syntactic domain, rather than two as in
Flanagan and Abadi [13]. Because contexts are syntacti-
cally distinct from other values and types, this presents no
confusion.

The contexts new generates become a part of a type.
This means our type system is a dependent type system.
We save ourselves from any problems this could entail by
limiting the forms of dependent typing to just contexts, and
by disallowing new context variables from appearing free in
the type of new.

Finally, functions have been omitted to keep the system
simple.

Stores and Con�gurations A con�guration, t, repre-
sents a snapshot of the evaluation. It consists of an expres-
sion, a, a store, �, and a collection of constraints, �, on the
context variables free in the expression and store. The store
maps locations to objects. The constraints, �, which are all
of the form � �: p, capture the nesting between the contexts
created during evaluation.

5 Examples

We now illustrate some of the features of our calculus. To
simplify matters, we'll omit annotations and subexpressions
which are unnecessary for the discussion.

Simple Objects Consider the following three objects
which represent a husband, a wife and their shared car.

husband = [car = car; books = [� � �]bc]pours
wife = [car = car;CDs = [� � �]cdc]pours
car = [engine = � � �]ours:

The husband and wife have the same representation con-
text ours. This is the owner of the car, indicating that the
husband and the wife own the car. References to the car
can only be held by objects with access to the context ours,
so the level of protection depends on the accessibility of that
context.

In addition, the husband is in a book club which has
books in context bc, and the wife is in a music club which
has CDs in context cdc. The husband can share his books
with anyone who has access to the book club context bc.
Similarly, the wife can share her CDs with anyone who has
access to the music club context cdc.

Protected Objects and Context Creation The num-
ber of objects in a system is not statically determined, in
general, so to obtain per object protection we need an op-
eration to dynamically create contexts. For exibility, this
is not tied directly to objects, as the example following will
demonstrate.

The expression new can create a new context which can
be used as the representation context of a new object. This
can then be hidden using hide, thus creating a represen-
tation context accessible only to those within the body of
the new expression. The new context can also be used to

4

initialise the object's �elds. For example

new � � p in
let engine = [� � �]� in
let car = [engine = engine; � � �]p� in
hide � as � �: p in car

The new construct creates a new context just inside p
substitutes it for � in the remainder of the expression. An
new engine object is then created with this context as its
owner. Thus the engine will become part of the represen-
tation of the car object, created on the third line. In the
last line the actual representation context � is hidden using
variable �. The type of this expression will be 9(� �: p)A,
where A is the type of car. The hidden context � does not
appear free in the type 9(� �: p)A, following the usual rule
for existential type introduction.

The resulting object can be called a protected object be-
cause its representation context is hidden. The engine is
accessible only using an expose expression, but this is lim-
ited because no other object can manufacture the necessary
context.

It is possible to restrict the syntax of expressions so that
every object is created with a unique representation context,
as car above has, but this is beyond the scope of this paper.

Borrowing Methods with context parameters allow a
form of borrowing: otherwise inaccessible objects can be
passed to an object and accessed for the duration of a
method. Such methods are owner polymorphic. Parame-
ters can be bounded above or below.

The following example is a mechanic who will �x a car
which can be owned by any context:

mycar = [: : : ; �x : B; : : :]myrep : Carmyrep

mechanic = [: : : repair = &(s : A;� �: �; c : Car�)c:�x : : :]
mechanic:repair(myrep;mycar)

Even though themechanic may not generally have access
to mycar, access is allowed by passing the context myrep,
the owner of mycar, to the mechanic's repair method for
the duration of that method.

Classes Classes can follow the encodings in [1], with mi-
nor modi�cations to deal with ownership. The following
example is indicative of the modi�cations require.

An unbounded stack class is based on the following types
(simpli�ed somewhat to maintain brevity):

cstack = [new : 8(� �: �)8(� :� �)8(X<:Toph�i)stack]��

stack = 9(�: �)[head : link; push : X ! (); pop : X]�

link = �(Y)[next : Y; data : X]

A cstack, the type of the stack class, has one method
for creating stacks. This takes arguments for the owner of
the stack, �, the owner of the data in the stack, � and the
type of the data, X. The constraints on these imply that �
can be any context, that � is accessible to the to-be-created
representation context, which will be inside �, and that X
will be any type visible with just permission h�i, that is any
type with top level owner �. The cstack class (classStack
below) is accessible to all objects because its owner is �.

stack is the type of stacks, with free parameters which
will be �lled in when cstack's new method is selected. Its

hidden representation context is created afresh for each
stack object inside �. A better type would make the head
�eld private.

link, the type of links between elements of the stack, is
a recursive type because each next �eld also has type link.
This means that all links have the same owner, and hence
receive the same amount of protection.

Neither cstack nor link have distinct owner and repre-
sentation contexts, because they do not have any represen-
tation.

Finally, the code for the class of stacks is:

classStack =

[new = &(z : cstack; � �: �; � :� �;X<:Toph�i)
new � � in
hide as �: � in
[head = &(s : stack)s:head;
push = &(s : stack; d : X)
s:head := fold(link; [next = s:head; data = d]);

pop = &(s : stack)
let prev = unfold(head) in
s:head := prev:next; prev:data]�]��

where the head method uses Abadi and Cardelli's unde�ned
but well-typed idiom, and \;" is sequential composition which
can be encoded in the standard manner using let expressions
[1].

Multiple Interfaces Just as a Vector presents di�erent
interfaces to its clients, we could imagine a car abstraction
presenting at least two di�erent interfaces to its users. The
principal interface is the driver's, and the other, less fre-
quently used one, is for mechanics to tune the car's engine.
Each interface consists of its own components, thus is a sep-
arate object with its own representation; each interface ac-
cesses the protected engine of the car.

At �rst glance it would seem that, following the �rst ex-
ample in this section, sharing the principal object's represen-
tation context would suÆce, but this prevents each interface
from having its own representation. The key to achieving
the desired model is illustrated by the following example:

mycar =
new �� p in
let engine = [� � � ; tamper = � � �]� in
let car =
[engine = &(x)engine;
tune = &(s)

let t = new � � � in [: : : s:engine:tamper : : :]p� in
hide � as �: p in t]p� in

hide � as Æ �: p in car

The mycar object itself is the principal. The alternative
interface is a new object created by the tune method. The
engine is part of mycar 's representation. The representation
context of the new tune object is a new context � which is
inside the representation context of the mycar object. This
means that the tune object has permission to tamper with
the engine.

Recapping, the idea is to create the representation con-
text of the interface objects inside that of the principal, and
give both the same owner.

Accessing Representation and Friendly Functions
The expose expression allows direct, but limited, access to

5

the hidden representation context. This is useful for imple-
menting friendly functions which access the representation
of two or more di�erent objects.

Dealing with friendly functions in the presence of repre-
sentation containment is one of the limitations of most exist-
ing alias management schemes; although essential for appli-
cations, friendly functions violate encapsulation. (They also
present a number of challenges for typing [28, for example].)

In the present setting, the key issue is to avoid confus-
ing the representation of the di�erent objects involved in a
friendly function. This was impossible in our previous work
[9], because there was no way to distinguish two di�erent
representation contexts. The solution Universes adopts re-
stricts access to all but one party to read-only [24], but this
is potentially too restrictive.

The solution in the calculus presented here uses nested
expose statements to access the representation context of
each member of the friendship. The following brief example
accesses the representation context of two engines to com-
pare the rate of their exhaust emissions:

[analyse = &(s : A; car1 : 9(� �: p)Car; car2 : 9(� �: p)Car')
expose car1 as � �: p; c1 : Car in
expose car2 as � �: p; c2 : Car' in

c1:engine:exhaust > c2:engine:exhaust]

The representation contexts cannot be confused because
they are bound to di�erent variables, � and �, and thus the
types of the representation will di�er in their owner param-
eters.

6 From the Containment Invariant to Types

We now demonstrate how the containment invariant is en-
forced in the type system. Recall that the containment in-
variant states a necessary condition for a reference from � to
�0 to exist:

� ! �0) rep(�) �: owner(�0):

Let � 7! [li = &(si : A)bi
i21::n]pq be a location-object binding

in some store. The locations accessible to � are those appear-
ing in the method bodies bi. The containment invariant can
be transformed to give an upper bound on these locations:

f�0 j q �: owner(�0)g; (1)

where q = rep(�). The permission hq "i corresponds to the
set fp j q �: pg. Using this (1) becomes:

f�0 j owner(�0) 2 hq"ig: (2)

Now consider an object at location �0 having owner p0. Ac-
cess to this object requires permission hp0i, which corre-
sponds to the singleton set fp0g. Thus �0 is in the set (2) if
and only if

hp0i � hq"i: (3)

This condition is enforced by our type system.
Expressions are typed against a permission which limits

the object owners accessible in the expression. A locations
and object whose owner is not in the permission cannot be
accessed. The following (simpli�ed) object typing rule con-
tains the essential ingredients for attaining the containment
invariant:

(Val Object-Simpli�ed) (where A � [li : �i
i21::n]pq)

E; si : A; hq"i ` bi : �i 8i 2 1::n
E; hpi ` [li = &(si : A)bi

i21::n]pq : A

The conclusion states, among other things, that the per-
mission required to access this object is hpi, where p is its
owner. This captures the left-hand side of condition (3).
The premises, i 2 1::n, each state that the permission gov-
erning access in the method bodies bi is hq"i, where q is the
representation context. This captures the right-hand side
of condition (3). Therefore, the only locations accessible
in a method body are those permitted by the containment
invariant.

This completes the details of the local formulation we
sort. In fact, a global component still remains. The own-
ership tree is captured by the contexts de�ned in the envi-
ronment E. But the containment invariant is de�ned locally
using permissions.

7 Type Rules

The type rules formally capture the intuition described
above. Due to space limitations, we describe only the most
important features of the type system.

The type system depends on a typing environment, E,
which records the types of program variables and locations,
subtyping assumptions for type variables, and lower or up-
per bounds on context variables. The typing environment is
organised as a sequence of bindings and constraints, where
; denotes the empty environment:

E ::= ; j E; x : A j E; � : A j E;X<:A
j E;� �: p j E;� :� p

Note that syntax of method formal parameters, �, and
of the constraints, �, are included within this syntax. This
allows them to be treated uniformly in the type rules.

The type system is based on the twelve judgements given
in Figure 4. The well-typed term, well-formed type, and
the subtype relation judgements depend on a permission K.
This has the following consequences:

� Expressions can access only contexts given in the per-
mission.

� All values of a type which is de�ned for some permission
are accessible in expressions having that permission.

� The subtyping relation ensures that all subtypes of a
type are valid with the same permissions as the type.

Figure 5 contains the rules for well-formed environments.
Figure 6 de�nes well-formed contexts and their nesting.

The rules (Context �) and (In �) simply embeds the con-
stant contexts and their nesting into contexts and their nest-
ing. The rule (In �) guarantees that � is maximal. If C has
no maximal element, then this rule is omitted.

Well-formed Permission and Subpermissions Fig-
ure 7 de�nes well-formed permissions and the subpermission
relation.

A point permission is a subpermission of the correspond-
ing upset permission by rule (SubPerm p). The rule (Sub-
Perm �:), in e�ect, lifts the nesting relation between con-
texts to upset permissions, based on the following intuition:

6

E ` 3 E is a well-formed typing environment
E ` p p is a well-formed context in E
E ` p �: q p is inside q in E
E ` K K is a well-formed permission in E
E ` K � K0 K is a subpermission of K0 in E
E;K ` A A is a well-formed type in E given permission K
E;K ` A<:B A is a subtype of B in E given permission K
E;K ` a : A a is a well-typed expression of type A in E given permission K
E;K ` � meth � is a well-formed method type in E given permission K.
E;K ` (�)(�)) C Arguments � match � with return type C in E given permission K
E ` � � is a well-formed store in E
E;K ` (�; �; a) : A (�; �; a) is a well-typed con�guration with expression type A

in E given permission K

Figure 4: Judgements

assume that E ` hp"i � hq"i; if p0 2 hp"i, then p �: p0; from
q �: p, we have q �: p0; hence p0 2 hq"i.

Rules (Perm Union), (SubPermUnion-L), and (SubPerm
Union-UB) extend permissions and the subpermission rela-
tion to unions (following, for example, Pierce [27].)

Whenever E ` K � K0 holds, any well-formed term,
type, or subtype de�ned given permission K is also well-
de�ned with the larger permission K0.

Well-formed Types Figure 8 de�nes well-formed types.
The rule (Type X) helps ensure that type substitution

does not violate permissions by being valid for permissions
required to construct the bound on a type variable.

The constraints in rule (Type Object) are based on the
discussion in Section 6. The additional condition E ` q �: p
implies that E ` hpi � hq "i, ensuring that an object can
access itself.

Existential type formation is standard, by (Type Exists),
except that it is restricted to contexts with an upper bound.
The type rule has an additional clause, E ` K, which guar-
antees that the existential type cannot abstract a context in
the top level owner position. Doing so would break our de-
sired containment invariant, because access control is based
on the top level owner position. We now briey illustrate
how the clause E ` K achieves this.

An example of the type we wish to avoid is 9(� �:
p)[� � �]�q . We argue that such a type is impossible. Consider
the following typing derivation, where `? indicates question-
able judgements, and 1 and 2 denote application of the rules
(Type Lift) and (Type Exists), respectively:

E;� �: p; h�i ` [� � �]�q E;� �: p `? h�i � K

E;� �: p;K `? [� � �]
�
q

1
E ` K

E;K `? 9(� �: p)[� � �]�q
2

There is no K such that E ` K and E;� �: p ` h�i � K.
Note that � =2 dom(E) and hence � =2 FV(K). If K is a
union, then one of its components must satisfy the condition
we require. Clearly K cannot be of the form hp0i, because
this would require that p0 = �, which is disallowed. Hence
K must be of the form hp0 "i. If E;� �: p `? h�i � hp0 "i,
then E;� �: p `? h�"i � hp0"i, from which follows E;� �:
p `? p

0 �: �. But this cannot be derived.
The rule (Type Rec) for recursive types places the given

bound of the variable X to ensure that the unfolding of type

�(X)A into Aff�(X)A=Xgg is well-formed, because the permis-
sion K required to type X is suÆcient for typing �(X)A.

By (Type Lift) a type which is valid with some permis-
sion is also valid given a larger permission.

Well-formed Method Types Method types include
function types, and types parameterised by type and context
variables, both with appropriate bounds. The type rules are
given in Figure 9. The two rules (Type All �:) and (Type
All :�) allow the permission to be extended by the point
permission corresponding to the context parameter, so that
an additional context is accessible for the duration of the
method.

Making method types variant does not present any chal-
lenges [1], nor does adding �rst class functions (of each kind).
In the latter case, the separation of methods and functions
must remain to preserve the distinction between evaluation
inside or outside an object. This may result in some redun-
dancy in the de�nitions.

Well-formed Subtype Relation The subtyping rules in
Figure 10 contain no surprises. The rule (Sub Object) al-
lows neither the owner nor the representation context to
vary, only which methods are present. The rule (Sub Ex-
ists) follows the pattern of subtyping existential types, ex-
cept that it applies only to contexts, and the �: relation
lacks a notion of subsumption. Finally, (Sub Lift) states
that subtyping relationships valid for some permission are
valid at a larger permissions.

Well-typed Terms Figure 11 de�nes well-typed terms.
Expressions are typed against a typing environment and a
permission. The permission bounds the contexts appearing
in the top-level owner position of the objects and locations in
the given expression. Term typing depends on the following
auxiliary functions.

The function b�cC converts the method arguments � and
the return type C into a method type �:

De�nition 1 (b�cC)

b;cC b= C

bx : A;�cC b= A! b�cC

bX<:A;�cC b= 8(X<:A)b�cC

7

(Env ;)

; ` 3

(Env X)

E;K ` A X =2 dom(E)
E;X<:A ` 3

(Env x)

E;K ` A x =2 dom(E)
E; x : A ` 3

(Env � �:)

E ` p � =2 dom(E)
E;� �: p ` 3

(Env � :�)

E ` p � =2 dom(E)
E;� :� p ` 3

(Env Location)

E; hpi ` [li : �i
i21::n]pq � =2 dom(E)

E; � : [li : �i
i21::n]pq ` 3

Figure 5: Well-formed Environments

(Context �)

E ` 3 � 2 C
E ` �

(Context �)

� 2 dom(E)
E ` �

(In �:)

� �: p 2 E
E ` � �: p

(In :�)

� :� p 2 E
E ` p �: �

(In �)

E ` 3 � �:C �0

E ` � �: �0

(In �)

E ` p
E ` p �: �

Figure 6: Well-formed contexts and their nesting (reexivity and transitivity of �: omitted)

(Perm p)

E ` p
E ` hpi

(Perm p ")

E ` p
E ` hp"i

(Perm Union)

E ` Ki 8i 2 1::n
E `

S
[K1::Kn]

(SubPerm p)

E ` p
E ` hpi � hp"i

(SubPerm �:)

E ` q �: p
E ` hp"i � hq"i

(SubPerm Union-L)

E ` Ki � K 8i 2 1::n
E `

S
[K1::Kn] � K

(SubPerm Union-UB)

E `
S
[K1::Kn] i 2 1::n

E ` Ki �
S
[K1::Kn]

Figure 7: Permissions and Sub-permission (reexivity and transitivity of � omitted)

b� �: p;�cC b= 8(� �: p)b�cC

b� :� p;�cC b= 8(� :� p)b�cC

The function d�e gives the collection of additional per-
missions for the context parameters in �:

De�nition 2 (d�e)

d;e b= void

dx : A;�e b= d�e

dX<:A;�e b= d�e

d� �: p;�e b= h�i [d�e

d� :� p;�e b= h�i [d�e

In (Val Object), the permission hpi is required to create
an object with owner context p. The method body bi of
method &(si : A;�i)bi is typed against an environment ex-
tended with the self parameter si with A, the type of the
object being formed, and with the formal parameter list �i,
and against the union of permission hq"i, where q is the rep-
resentation context, the point permissions for any context
declared in �i. Because the contexts in �i are variables,
no location with such an owner can appear in the method
body bi. Thus this does not e�ect the containment invari-
ant. The return type of the method body Ci and the formal
parameters are combined to give the method type �i.

In (Val Select), given that the selected method of a well-
typed target has type �j , the clause E;K ` (�j)(�)) Cj

guarantees that the arguments � are correct in number and
type, and that they and the return type Cj are all well-
formed given permission K. This ensures that enough per-
mission is given to access the method's arguments and re-
turn value. The type rules for well-typed arguments lists are
given in Figure 12 and are explained in the next section.

In (Val Update) the new method body is typed against
a permission K0 which, in e�ect, is the intersection of the
contexts accessible inside the object, hq "i, and the con-
texts visible to the surrounding expression, K, along with
the point permissions for the context parameters declared
in �j . This `intersection' of permissions prevents any oth-
erwise inaccessible locations from being added into object,
while maintaining the constraints on the expression perform-
ing the method update.

The �rst clause in (Val New) types the term a with the
additional assumption about the new context �. The per-
mission is extended with h�i so that objects can be created
with this new context as owner, as in the Protected Objects
example from Section 5. The second clause prevents the new
context � from appearing in the resulting type.

The rule (Val Hide) parallels the standard rule for pack-
ing existential types, with the additional clause E;K `
9(� �: q)A for the reasons discussed above. Similarly, (Val
Expose) parallels the usual rule for opening existential types.

8

(Type X)

X<:A 2 E E;K ` A
E;K ` X

(Type Top)

E ` K

E;K ` TopK

(Type Object) (li distinct)

E; hq"i ` �i meth 8i 2 1::n E ` q �: p
E; hpi ` [li : �i

i21::n]pq

(Type Rec)

E;X<:TopK ;K ` A
E;K ` �(X)A

(Type Exists)

E;� �: p;K ` B E ` K
E;K ` 9(� �: p)B

(Type Lift)

E;K ` A E ` K � K0

E;K0 ` A

Figure 8: Well-formed Types

(Type Return)

E;K ` A
E;K ` A meth

(Type Arrow)

E;K ` A E;K ` � meth

E;K ` A! � meth

(Type All)

E;X<:A;K ` � meth

E;K ` 8(X<:A)� meth

(Type All �:)

E;� �: p;K [h�i ` � meth E ` K
E;K ` 8(� �: p)� meth

(Type All :�)

E;� :� p;K [h�i ` � meth E ` K
E;K ` 8(� :� p)� meth

Figure 9: Well-formed Method Type

(Sub X)

X<:A 2 E E;K ` A
E;K ` X<:A

(Sub Top)

E;K ` A

E;K ` A<:TopK

(Sub Object) (li distinct)

E; hq"i ` �i meth 8i 2 1::n +m E ` q �: p
E; hpi ` [li : �i

i21::n+m]pq<:[li : �i
i21::n]pq

(Sub Rec)

E;K ` �(X)A E;K ` �(Y)B E; Y <:TopK ; X<:Y ;K ` A<:B
E;K ` �(X)A<:�(Y)B

(Sub Exists)

E ` p �: p0 E;� �: p;K ` A<:A0 E ` K
E;K ` 9(� �: p)A<:9(� �: p0)A0

(Sub Lift)

E;K ` A<:B E ` K � K0

E;K0 ` A<:B

Figure 10: Well-formed Subtype Relation (reexivity and transitivity of <: omitted)

9

(Val x)

x : A 2 E E;K ` A
E;K ` x : A

(Val Location)

� : [li : �i
i21::n]pq 2 E

E; hpi ` � : [li : �i
i21::n]pq

(Val Object) (where A � [li : �i
i21::n]pq and �i � b�icCi)

E; si : A;�i; hq"i [d�ie ` bi : Ci 8i 2 1::n
E; hpi ` [li = &(si : A;�i)bi

i21::n]pq : A

(Val Select)

E;K ` v : [li : �i
i21::n]pq E;K ` (�j)(�)) Cj j 2 1::n
E;K ` v:ljh�i : Cj

(Val Update) (where A � [li : �i
i21::n]pq and �j � b�jcCj)

E;K ` v : A E; s : A;�j ;K
0 ` b : Cj

E;�j ` K0 � hq"i [d�je E;�j ` K0 � K [d�je j 2 1::n
E;K ` v:lj (&(s : A;�j)b : A

(Val Fold) (where A � �(X)B)

E;K ` v : BffA=Xgg
E;K ` fold(A; v) : A

(Val Unfold) (where A � �(X)B)

E;K ` v : A

E;K ` unfold(v) : BffA=Xgg

(Val Let)

E;K ` a : A E; x : A;K ` b : B
E;K ` let x : A = a in b : B

(Val New)

E;� �: p;K [h�i ` a : A E;K ` A
E;K ` new �� p in a : A

(Val Hide)

E ` p �: q E;K ` vffp=�gg : Aff
p=�gg E;K ` 9(� �: q)A

E;K ` hide p as � �: q in v:A : 9(� �: q)A

(Val Expose)

E;K ` v : 9(� �: p)A E;K ` B E;� �: p; x : A;K [h�i ` b : B
E;K ` expose v as � �: p; x:A in b:B : B

(Val Subsumption)

E;K ` a : A E;K0 ` A<:B E ` K � K0

E;K0 ` a : B

Figure 11: Well-typed Expressions

Finally, (Val Subsumption) allowing an expression given
one type to be given a supertype and to be used with a
larger permission.

Well-typed Actual Parameters The type rules in Fig-
ure 12 check that the arguments supplied to a method are
correct in number and type. Underlying the rules are the
usual rules for function and type application. The judge-
ment E ` (�)(�)) C actually resembles (total) function
application. All types and values, including the return type,
must be accessible given permission K.

Well-formed Stores and Con�gurations The type
rules for stores and con�gurations are given in Figure 13.
Con�guration typing is performed in an environment con-
sisting of two parts: � to account for the nesting of free
context variables and E0 for location types. The remainder
is standard.

8 Dynamic Semantics

The operational semantics of the calculus is presenting in a
big-step, substitution-based style in Figure 14. Fundamen-
tally it di�ers little from the object calculus semantics of
Gordon et al. [16], though the named form of expression al-
lows some minor simpli�cations. Again, we only highlight
key and subtle points.

The evaluation rule (Subst Select) uses the following def-
inition to construct a substitution from the actual parame-
ters � into the formal parameters � for the selected method.
The substitution into the method body b is then performed
and the resulting expression evaluated.

De�nition 3 (ff�=�gg)

ff;=;gg b= �

ffv;�=x : A;�gg b= ffv=xggff�=�gg

ffB;�=X<:A;�gg b= ffB=Xggff�=�gg

ffp;�=� �: q;�gg b= ffp=�ggff�=�gg

ffp;�=� :� q;�gg b= ffp=�ggff�=�gg

where � is the empty substitution. Otherwise ff�=�gg is unde-
�ned.

The rule (Subst New) is the only signi�cant addition to
the calculus. It creates a new context inside p. This is cap-
tured by �nding a fresh variable �0 to represent the new
context and adding the appropriate constraint to the exist-
ing nesting constraints �0. The new context is substituted
into the expression, which is then evaluated.

The rule (Subst Expose) follows [13] by relying on �-
conversion to make the variable bound in the hide expres-
sion the same as that in the expose expression, resulting in
a simpler presentation. The rule is otherwise standard.

Contexts do not a�ect computation and could be erased.
They do however record the nesting required to obtain the
containment invariant.

Evaluation commences with con�guration (;; ;; a), typed
as ;;K ` (;; ;; a) : A against a permission consisting only of
constants.

9 Properties

The type system has been proven sound. This result de-
pends on the following fundamental lemma.

10

(Arg Empty)

E;K ` C
E;K ` (C)(;)) C

(Arg Val)

E;K ` v : A E;K ` (�)(�)) C
E;K ` (A! �)(v;�)) C

(Arg Type)

E;K ` B<:A E;K ` (�ffB=Xgg)(�)) C
E;K ` (8(X<:A)�)(B;�)) C

(Arg Context �:)

E ` q �: p E;K ` (�ffq=�gg)(�)) C
E;K ` (8(� �: p)�)(q;�)) C

(Arg Context :�)

E ` p �: q E;K ` (�ffq=�gg)(�)) C
E;K ` (8(� :� p)�)(q;�)) C

Figure 12: Well-typed Actual Parameters

(Val Store)

E; hpi ` o : [li : �i
i21::n]pq � : [li : �i

i21::n]pq 2 E 8� 7! o 2 �
E ` �

(Val Con�g) (where E � �; E0)

E ` � E;K ` a : A ; ` K dom(�) = dom(E0)
E;K ` (�; �; a) : A

Figure 13: Well-typed Stores and Con�gurations

Lemma 1 1. If E;K ` v : A and E;K0 ` A, then E;K0 `
v : A, where v is a value.

2. If E;K ` A<:B and E;K0 ` B, then E;K0 ` A<:B.

The �rst clause in essence states that the type contains
enough information to determine the permission required to
access a value. This allows values to be passed across an ob-
ject's boundary whenever the type is well-formed both inside
and outside of the object, even though the expression which
computed the value may not have been. This was essential
for demonstrating type preservation for method select and
update.

The second clause states, in e�ect, that all subtypes of
a given type are accessible wherever the type is accessible.
This was required for the validity of substitution and sub-
sumption.

Soundness is given in part by the following type preser-
vation result (assuming the usual de�nition of environment
extension, �):

Theorem 2 (Preservation) If E;K ` (�; �; a) : A and
(�; �; a) + (�0; �0; v), then there exists an environment E0

such that E0 � E and E0;K ` (�0; �0; v) : A.

The containment invariant follows from type preserva-
tion. De�ne the refers to relation ! for a store as:

f� ! �0 j � 7! [li = &(si : Ai;�i)bi
i21::n]pq 2 � ^ �0 2 locs(bi)g

where locs(b) is the set of locations in expression b. The
containment invariant states: � ! �0) rep(�) �: owner(�0).
The proof that this is indeed invariant is based on the fol-
lowing intuition: A location with owner p is accessible only
if permission hpi is held. The locations �0 such that � ! �0

are all accessible using permission hq"i [d�e, where q is the
representation context of �, for an appropriate �. But the
context variables in d�e cannot be the owner of any loca-
tion, hence the locations in the method body have owners
p0 where q �: p0. From this the desired result follows.

10 Danger: Vampires

The trick to implementing multiple interfaces to an object
was to create an object with the same owner as the original
object, but with a representation context inside the original
object's representation context. Unfortunately, in the raw
calculus, this can be ill-used to produce what we call vam-
piric behaviour. The following example illustrates its most
brutal form:

vampire =
expose v as � �: �; x : A in
new � �: � in
let vamp = [drain = drink(x:blood)]�� in
hide � as � �: � in vamp

This expression takes a protected object v and unpacks
the underlying representation context and unprotected ob-
ject into � and x, respectively. It then creates a new con-
text � inside �, which becomes the representation context
of new object vamp. Thus object vamp has surreptitious
access to the representation of v, without v being aware.
Furthermore, because the owner of vamp is �, it is accessible
anywhere.

This sort of behaviour can be avoided by encoding
method select and �eld update of protected objects in terms
of expose and then removing expose from the program-
mer's syntax [10].

However, similar vampiric behaviour can occur whenever
new contexts are created inside contexts which are passed
as method parameters. Classes rely on this idiom. But,
in a language based entirely on classes (which does not al-
low classes to be de�ned inside methods), this vampiric be-
haviour is not a problem because the resulting structure of
objects is entirely determined by classes, and therefore more
tractable to reason about.

Ultimately, this phenomenon means that that represen-
tation protection is not as strong as we would like in the
raw calculus. It is possible to design syntactic restrictions or
encodings which avoid vampiric behaviour, respecting syn-
tactic encapsulation boundaries such as classes and objects.

11

(Subst Value)

(�; �; v) + (�; �; v)

(Subst Object) where o � [li = &(si : Ai;�i)bi
i21::n]pq

�1 = (� 7! o) :: �0 � =2 dom(�0)
(�; �0; o) + (�; �1; �)

(Subst Select) where j 2 1::n

�0(�) = [li = &(si : Ai;�i)bi
i21::n]pq ff�=�jgg is de�ned

(�0; �0; bjff
�=sjggff�=�jgg) + (�1; �1; v)

(�0; �0; �:ljh�i) + (�1; �1; v)

(Subst Update) where j 2 1::n

�0(�) = [li = &(si : Ai;�i)bi
i21::n]pq

�1 = �0 + (� 7! [li = &(si : Ai;�i)bi
i21::j�1;j+1::n; lj = &(s : Aj ;�j)b]

p
q)

(�; �0; �:lj (&(s : A;�j)b) + (�; �1; �)

(Subst Let)

(�0; �0; a) + (�1; �1; v) (�1; �1; bff
v=xgg) + (�2; �2; u)

(�0; �0; let x : A = a in b) + (�2; �2; u)

(Subst Unfold)

(�; �;unfold(fold(A; v))) + (�; �; v)

(Subst New)

�0 =2 dom(�0) �1 = (�0; �
0 �: p) (�1; �0; aff

�0=�gg) + (�2; �1; v)
(�0; �0;new �� p in a) + (�2; �1; v)

(Subst Expose)

(�0; �0; bff
v=xggff

p=�gg) + (�1; �1; u)
(�0; �0; expose (hide p as � �: p0 in v:A) as � �: p00; x:A0 in b:B) + (�1; �1; u)

Figure 14: Dynamic Semantics

Unfortunately, the type system cannot express or enforce
such distinctions.

11 Related Work

Our new term which generates new \names" has been stud-
ied by Pitts and Stark [29] and independently by Odersky
[26] in a di�erent context. It also resembles � operator in
the � calculus and related calculi [23]. These do not include
names in types.

Recently Cardelli, Ghelli and Gordon use names at the
level of types to prove security properties about the �-
calculus [7] and the Ambient calculus [6], and to demon-
strate the soundness of the Tofte and Talpin's [32] regions
calculus [33]. We believe that this work is complementary,
and, in a sense, orthogonal to the work presented here, be-
cause they capture properties of ephemeral entities such as
references on the stack, rather than the deep structure of ob-
jects in the store. A thorough comparison has been slated
for future work.

Recently, Gabbay and Pitts introduces a new quanti�er
over fresh names [14], which is used by Cardelli and Gor-
don [8] to study the logical properties of name restriction.
On the surface, it seems that this is more suited to our
calculus for hiding representation contexts than existential
quanti�cation. However, it is not entirely appropriate since
it precludes methods which return self.

12 Conclusion and Future Work

We modelled object ownership in a small extension to Abadi
and Cardelli's object calculus. The result satis�es a par-
ticular containment property and o�ers a framework to
study schemes which tame unconstrained aliasing in object-
oriented programs. We have made the following contribu-
tions beyond our previous work: a sound extension of the ob-
ject calculus with object ownership, where ownership is sep-
arate from objects; and a more exible containment model
obtained by having separate representation and owner con-
texts.

The main problem remaining, apart from the vampiric
action noted in Section 10, is that types may be syntactically
too burdensome to use in practice. If the types could be
inferred based on some small syntactic speci�cation, such
as an annotation indicating which �elds are representation,
then ownership and containment could �nd application in
future object-oriented programming languages.

Stay tuned for the author's thesis which further explores
ownership and containment [10].

Acknowledgements

Many thanks to John Potter and James Noble for their con-
tinued support, to Sophia Drossopoulou and Alex Buckley
for forcing me to improve my explanations, to Ron van der

12

Meyden for a few general hints which enabled me to hurdle
a major obstacle, and to the anonymous referees for advice
which improved this paper.

References

[1] Mart��n Abadi and Luca Cardelli. A Theory of Objects.
Springer-Verlag, 1996.

[2] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman.
The design and analysis of computer algorithms. Addison-
Wesley, 1974.

[3] Paulo S�ergio Almeida. Balloon Types: Controlling sharing
of state in data types. In ECOOP Proceedings, June 1997.

[4] Boris Bokowski and Jan Vitek. Con�ned Types. In OOPSLA
Proceedings, 1999.

[5] Luca Cardelli. Type Systems, chapter 103, pages 2208{2236.
The Computer Science and Engineering Handbook. Allen B.
Tucker (Ed.). CRC Press, 1997.

[6] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Am-
bient groups and mobility types. In Theoretical Computer
Science; Exploring New Frontiers in Theoretical Informat-
ics. International Conference IFIP TCS 2000, volume 1872
of LNCS, pages 333{347, 2000.

[7] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Se-
crecy and group creation. In CONCUR 2000 { Concur-
rency Theory. 11th International Conference, volume 1877
of LNCS, pages 365{379, August 2000.

[8] Luca Cardelli and Andrew D. Gordon. Logical properties of
name restriction. In 28th ACM Symposium on Principles of
Programming Languages, January 2001.

[9] David Clarke, John Potter, and James Noble. Ownership
types for exible alias protection. In OOPSLA Proceedings,
1998.

[10] David G. Clarke. Ownership and Containment. PhD thesis,
School of Computer Science and Engineering, University of
New South Wales, Sydney, Australia, 2001. In preparation.

[11] David L. Detlefs, K. Rustan M. Leino, and Greg Nelson.
Wrestling with rep exposure. Technical Report SRC-RR-98-
156, Compaq Systems Research Center, July 1998.

[12] Margaret Ellis and Bjarne Stroustrup. The Annotated C++
Reference Manual. Addison-Wesley, 1990.

[13] Cormac Flanagan and Mart��n Abadi. Types for Safe Lock-
ing. In Programming Languages and Systems, volume 1567
of Lecture Notes in Computer Science, pages 91{107, March
1999.

[14] M. J. Gabbay and A. M. Pitts. A new approach to abstract
syntax involving binders. In 14th Annual Symposium on
Logic in Computer Science, pages 214{224. IEEE Computer
Society Press, Washington, 1999.

[15] Erich Gamma, Richard Helm, Ralph E. Johnson, and John
Vlissides. Design Patterns. Addison-Wesley, 1994.

[16] A. D. Gordon, P. D. Hankin, and S. B. Lassen. Compilation
and equivalence of imperative objects. Journal of Functional
Programming, 9(4):373{426, July 1999.

[17] James Gosling, Bill Joy, and Guy Steele. The Java Language
Speci�cation. Addison-Wesley, 1996.

[18] Aaron Greenhouse and John Boyland. An object-oriented
e�ects system. In ECOOP'99, 1999.

[19] John Hogg. Islands: Aliasing protection in object-oriented
languages. In OOPSLA Proceedings, November 1991.

[20] John Hogg, Doug Lea, Alan Wills, Dennis de Champeaux,
and Richard Holt. The Geneva convention on the treatment
of object aliasing. OOPS Messenger, 3(2), April 1992.

[21] K. Rustan M. Leino. Data Groups: Specifying the Modi�-
cation of Extended State. In OOPSLA Proceedings, 1998.

[22] Barbara Liskov and John Guttag. Abstraction and Speci�-
cation in Program Development. The MIT Press, 1986.

[23] Robin Milner, Joachim Parrow, and David Walker. A cal-
culus of mobile processes, Parts I and II. Information and
Computation, 100:1{77, September 1992.

[24] P. M�uller and A. Poetzsch-He�ter. Universes: A type sys-
tem for controlling representation exposure. In A. Poetzsch-
He�ter and J. Meyer, editors, Programming Languages
and Fundamentals of Programming. Fernuniversit�at Hagen,
1999.

[25] James Noble, Jan Vitek, and John Potter. Flexible alias pro-
tection. In Eric Jul, editor, ECOOP'98| Object-Oriented
Programming, volume 1445 of Lecture Notes In Computer
Science, pages 158{185, Berlin, Heidelberg, New York, July
1988. Springer-Verlag.

[26] Martin Odersky. A functional theory of local names. In 21th
ACM conference on Principles of Programming Languages,
January 1994.

[27] Benjamin C. Pierce. Programming with intersection types,
union types, and polymorphism. Technical Report CMU-
CS-91-106, Carnegie Mellon University, February 1991.

[28] Benjamin C. Pierce and David N. Turner. Statically typed
friendly functions via partially abstract types. Technical
Report ECS-LFCS-93-256, University of Edinburgh, LFCS,
April 1993. Also available as INRIA-Rocquencourt Rapport
de Recherche No. 1899.

[29] A. M. Pitts and I. D. B. Stark. Observable properties of
higher order functions that dynamically create local names,
or: What's new? In Mathematical Foundations of Com-
puter Science, Proc. 18th Int. Symp., Gda�nsk, 1993, volume
711 of Lecture Notes in Computer Science, pages 122{141.
Springer-Verlag, Berlin, 1993.

[30] John Potter, James Noble, and David Clarke. The ins and
outs of objects. In Australian Software Engineering Confer-
ence, Adelaide, Australia, November 1998. IEEE Press.

[31] Amr Sabry and Matthias Felleisen. Reasoning about pro-
grams in continuation-passing style. In 1992 ACM Confer-
ence on LISP and Functional Programming, pages 288{298,
San Francisco, CA, June 1992. ACM.

[32] Mads Tofte and Jean-Pierre Talpin. Region-Based Memory
Management. Information and Computation, 132(2):109{
176, 1997.

[33] Silvano Dal Zilio and Andrew D. Gordon. Region analyis and
a �-calculus with groups. In 25th International Symposium
on Mathematical Foundations of Computer Science, MFCS
2000, Bratislava, Slovak Republic, August 28{September 1
2000.

13

