Using MetaML: a Staged Programming Language

Tim Sheard

September 6, 1998

1 Why Staging?

The purpose of staged programming in general, and MetaML in particular,
is to produce efficient programs. We wish to move beyond programs that
compute the “correct” output, to those that also have better control over
resources (both space and time). The mechanism for doing this is to use
program annotations to control the order of evaluation of terms. It should
come as no surprise to those who have studied the A-calculus that the number
of steps in a reduction is strongly influenced by the order of evaluation.
Since the number of steps in a reduction relates strongly to the resources
it consumes, controlling evaluation order gives programmers better control
over resources consumed. MetaML allows programmers to move beyond
a fixed evaluation strategy, and to specify precisely the desired evaluation
order.

This provides a mechanism which allows general purpose programs (writ-
ten in an interpretive style that eases both maintenance and construction)
to perform without the interpretive overhead usually associated with such
programs.

Much of the rivalry between lazy functional languages (such as Haskell)
and strict functional languages (such as Standard ML) comes from the per-
ceived superiority of one fixed evaluation order (outermost for lazy, inner-
most for strict) over another. But this perceived superiority is just that,
perceived. Recent work, especially that of Chris Okasaki [8] on functional
data structures, has shown that no single fixed evaluation order is superior
in all cases.

There have been attempts at controlling evaluation order in the past.
Strictness annotations in lazy languages temporarily employ an eager evalu-
ation strategy, and constructs such as force and delay employ a lazy strategy
in an strict language. It is also possible (in an strict language) to simulate

laziness by using the delaying effect of lambda abstraction. For example, a
typical simulation of lazy lists in a strict language might be defined as:

datatype ’a lazylist =
lazyNil | lazyCons of ’a * (unit -> ’a lazylist);

fun count n = lazyCons(n, fn () => count (n+1))

Where the tail of a list is a function that forces the computation of the next
element, but only when applied.

The lambda expression, the basis of a language with first class func-
tions, is both a blessing and a curse. It is a blessing since it allows us to
build abstractions, which can be used many times. As illustrated, it allows
programmers to construct lazy, infinite data structures even in a strict lan-
guage, but it is a curse because it never allows computation under lambda
until the lambda is applied. This profound limitation applies equally to lazy
and strict languages. Sometimes computation under the lambda is exactly
what is called for, yet we have no way of expressing this. I will try and
illustrate this point below:

fun power n = (fn x => if n=0 then 1 else x * (power (n-1) x))

map (power 2) [1,2,3,4,5]

This defines a generic power function, and a small program where the power
function is specialized to the square function (the exponent n is fixed at 2),
and then this specialization is repeatedly applied many times by the map
function.

The most efficient strategy is to unfold the definition of power once, but
since the result of unfolding power 2 is a lambda no computation is really
performed. Suppose we could direct which reductions were to be done, even
under lambda. Then, by using the comments to choose which reduction step
to employ, we proceed as follows

map (power 2) [1,2,3,4,5]
(* unfold the definition *)
map (fn x => if 2=0 then 1 else x * (power (2-1) x)) [1,2,3,4,5]
(x perform the if, under the lambda *)
map (fn x => x * (power (2-1) x)) [1,2,3,4,5]
(* unfold power again *)
map (fn x => x * ((fn x => if 1=0 then 1 else x * (power (1-1) x)) x))
[1,2,3,4,5]
(* use the beta rule to apply the explicit lambda to x *)

map (fn x => x * (if 1=0 then 1 else x * (power (1-1) x))) [1,2,3,4,5]
(*x perform the if *)
map (fn x => x * (x * (power (1-1) x))) [1,2,3,4,5]
(* unfold power again *)
map (fn x => x * (x * (fn x => if 0=0 then 1 else x * (power (0-1) x)) x))
[1,2,3,4,5]
(* use the beta rule to apply the explicit lambda to x *)
map (fn x => x * (x * (if 0=0 then 1 else x * (power (0-1) x))))
[1,2,3,4,5]
(*x perform the if *)
map (fn x => x * (x * 1)) [1,2,3,4,5]
(* apply the map *)
[1,4,9,16,25]

Only after completely unfolding the power function do we use the map
function to repeatedly apply the squaring function. We could only unfold
power by applying reduction rules under lambda. This saves the duplicated
reductions which would unfold the power function each time power 2 is
applied.

In MetaML we annotate a program to provide exactly this kind of
knowledge. We use three annotations. One to delay the reduction of an
expression, one to splice two delayed expressions together to build a larger
delayed expression, and one to force a delayed expression to be reduced.

e We use brackets (< >) to surround expressions to indicate that reduc-
tion should not occur on the expression inside the brackets. We call
such a delayed expression a piece of code. Brackets are the introduc-
tion rule for code.

e Inside brackets we use escape () to relax the restriction that no re-
ductions may occur brackets inside brackets. That is, only escaped ex-
pressions may be reduced inside brackets. This provides a mechanism
to splice two pieces of code together to form a larger piece. Inside
brackets, if an escaped expression reduces to a bracketed one, then
both the escape and the inner bracket my be removed (e.g. < ... ~
<e> ...>reducesto<... e ...>). Thisis the first elimination rule
for code.

e Finally, we use run to remove outermost brackets. This forces a piece
of code to be evaluated (run < e > reduces to e). This rule only
applies when no escapes remain in the bracketed expression e. This is
the second elimination rule for code

It is the first elimination rule for code (escape bracket cancellation) that
makes MetaML so expressive. The escaped expression can be anywhere,
even under a lambda! E.g. <fn x => ... “e ...> forces evaluation of e
even though it would ordinarily be delayed until the lambda was applied.
This is a very powerful and expressive construct as we shall see.

After all brackets have been eliminated the default evaluation strategy
applies to the remaining term. With these annotations we rewrite the power

example as follows:

fun power n = fn x => if n=0
then <1>
else < “x * “(power (n-1) x) >)

map (run <fn z => " (power 2 <z>)>) [1,2,3,4,5]

This is just an annotated version of the original example (except that
context requires the call to (power 2) to be eta-expanded).

Using (the default) strict! evaluation strategy, but following the order
implied by the annotations (rather than using explicit comments to direct
evaluation under lambda as in the previous example), we proceed:

map (run <fn z => “(power 2 <z>)>) [1,2,3,4,5]

map (run <fn z => “(if 2=0 then <1> else < “<z> * “(power (2-1) <z>) >)>)
[1,2,3,4,5]

map (run <fn z => "< “<z> * “(power (2-1) <z>) >>) [1,2,3,4,5]
map (run <fn z => "< z * “(power (2-1) <z>) >>) [1,2,3,4,5]
map (run <fn z => "< z * “(if 1=0 then <1>
else < "<z> * “(power (1-1) <z>) >) >>)
[1,2,3,4,5]
map (run <fn z => "< z * “< “<z> * “(power (1-1) <z>) >>>) [1,2,3,4,5]
map (run <fn z => "< z * "< z * “(power (1-1) <z>) >>>) [1,2,3,4,5]

map (run <fn z => "< z * "< z * “(power 0 <z>) >>>) [1,2,3,4,5]

map (run <fn z => "< z * "< z * “<1> >>>) [1,2,3,4,5]

by strict we mean a leftmost, innermost strategy

map (run <fn z => "< z * "< z * 1 >>) [1,2,3,4,5]
map (run <fn z => "< z * z * 1 >) [1,2,3,4,5]
map (run <fn z => z * z * 1 >) [1,2,3,4,5]

map (fn z => z * z * 1) [1,2,3,4,5]

[1,4,9,16,25]

This simple idea is the key to staged programming. It can have a pro-
found effect on the way programs are constructed and used. The ability to
direct reduction under a lambda makes this paradigm strictly more power-
ful than traditional paradigms with a single fixed evaluation strategy. The
staged paradigm does not allow more programs to be expressed, but instead
allows all programs to control their own evaluation order, and thus have
more control over their resource consumption.

2 Relationship to other paradigms

MetaML is strongly related to several other programming paradigms. In
particular lisp-like macros with eval, meta-programming, program genera-
tion, and partial evaluation.

Lisp-like macros. MetaML’s three annotations, bracket, escape and
run, are analagous to Lisp’s back-quote, comma and eval. Brackets are sim-
ilar to back-quote. Escape is similar to comma. Run is similar to eval in the
empty environment. However, the analogy is not perfect. Lisp does not en-
sure that variables (atoms) occurring in a back-quoted expression are bound
according to the rules of static scoping. For example ¢ (plus 3 5) does not
bind plus in the scope where the back-quoted term appears. This is an
important feature of MetaML. In addition, Lisp employs a dynamic typing
discipline, while MetaML employs a static typing discipline, an important
distinction.

Meta-programming. In MetaML a bracketed expression is consid-
ered a piece of code. We think of code as a data structure which can be
manipulated like any other, but with the additional ability that it can be
run.

Because a MetaML program manipulates programs (represented by code)
MetaML is a meta-programming system. In MetaML both the meta-language

(the language that describes the manipulations) and the object language (the
language of the programs being manipulated) are the same: ML.

Program generation. One solution to inefficient interpretive programs
is to write a program generator. Rather than write a general purpose but
inefficient program, one writes a program generator that generates an ef-
ficient solution from a specification. This provides a natural staging to
the solution. The use of the parser generator Yacc is an illustrative exam-
ple. Rather than using a general purpose parsing program, we generate an
efficient parser from a specification, i.e. a language grammar. MetaML pro-
vides a uniform environment for constructing program generators in a single
paradigm. It provides an approach radically different from, and superior to,
the ad-hoc “programs-as-strings” view that seems to predominate in most
software generation systems.

Partial evaluation. Partial evaluation optimizes a program using a-
priori information about some of that program’s inputs. The goal is to
identify and perform as many computations as possible in a program before
run-time.

The most common type of partial evaluation, Off-line partial evaluation,
has two distinct steps, binding-time analysis (BTA) and specialization. BTA
determines which computations can be performed in an earlier stage given
the names of inputs available before run-time (static inputs).

In essence, BTA performs automatic staging of the input program. After
BTA, the actual values of the inputs are made available to the specializer.
Following the annotations, the specializer either performs a computation, or
produces text for inclusion in the output (residual) program.

The relationship between partial-evaluation and staged programming is
that the intermediate data structure between the two steps is a two-stage
annotated program [1], and that the specialization phase is the execution of
the first stage in the two-stage annotated program produced by BTA.

3 Introducing MetaML

This section provides a gentle introduction to MetaML [12, 6]. We designed
MetaML as a meta-programming system, i.e. a system which is used to write
programs (meta-programs) whose sole purpose is to build and manipulate
other programs (object-programs). MetaML provides built-in support for a
number of hard problems that repeatedly occur in meta-programming and
generation systems. This support includes:

A type system ensuring the well-formedness (type-safety) of object
programs from a type analysis of the meta-program which produces
them. This is crucial when debugging multi-stage programs because it
reports type errors in the object-programs at the compile-time of the
meta-programs, not when the object-programs are executed.

e The capability to use arbitrary values from the meta-program as con-
stants in the generated program. This provides a solution to the hy-
gienic macro problem in a typed language, i.e. it supports macro-like
constructs which bind identifiers in the environment of definition, not
in the environment of their expansion. This completely eliminates
inadvertent “capture” problems, and is an implementation of static
scoping in a staged language.

e The capability to display code. When debugging, it is important for
users to observe the code produced by their programs. This implies a
display mechanism (pretty-printer) for values of type code.

e The capability to perform “generation-time” optimization on gener-
ated code. Generated code is a first class piece of data and can be
manipulated to effect optimizations etc.

e The capability to “execute” the code built for testing and prototyping
purposes.

MetaML programs are simply ML programs which are annotated with
staging operators. In the next section we describe each of the staging op-
erators and introduce the MetaML language by using short, self-contained
“sessions” of the actual implementation. MetaML uses a read-typecheck-
eval-print top level loop. An expression is entered after the prompt (1-), it
is type checked, evaluated, and then its name, value and type are printed.

3.1 The bracket operator: building pieces of code

In MetaML, a stage-1 expression is denoted by enclosing it between meta-
brackets. For instance, the pieces of code denoting the constant 23 is illus-
trated by the following MetaML session:

-| <23>;
val it = <23> : <int>

The expression <23> (pronounced “bracket 23”) has type <int> (pro-
nounced “code of int”). The types int and <int> are not the same. Trying

to use <23> as an integer fails in the type checking stage, and the system
complains:

-] <23> + 2;

Type Error:
Cannot unify the types: in type application the type constructors
do not match: int is not equal to <int>
in expression: (<23>,2)

Consider the following example where length refers to a previously de-
fined function.

-| <length [1,2]>;
val it = <Jlength [1,2]> : <int>

The % in the returned value indicates that 1ength has been lifted from a
value to a constant piece of code. We call this lezical capture of free variables
or cross stage persistence. This is explained in more detail in section 3.5.
Because in MetaML operators (such as + and *) are also identifiers, free
occurrences of operators often appear with % in front of them when code is
displayed.

Bracketed lambdas. Any expression can be delayed, including higher
order (functional) expressions. Consider the examples:

-| val idCode = <fn x => x>;
val idCode = <fn a => a> : [’b].<’b -> ’b>

-| <fn n =>n + 1>;
val it = <fn a => a %+ 1> : <int -> int>

idCode is the code representing a pure MetaML function, the type asso-
ciated to idCode is [’b] .<’b -> ’b> which is a polymorphic piece of code
with polymorphic? variable *b. Note that the display mechanism for code
alpha-renames bound variables hence the (fn a => a). <fn n => n + 1>
denotes the representation of a function. It is the encoding of the increment
function over integers.

The level of any piece of code is the number of surrounding brackets
minus the number of surrounding escapes. Simple values such as 13 and
(fn n => n+1) are level-0 code. In <fn n => n + 1>, the function inside
the brackets is level-1 code. Finally, in term <fn n => <n + 1>>, the sub-
term n + 1 is a level-2 piece of code.

2The treatment of polymorphism in MetaML is actually quite subtle, the full treatment
of polymorphism is beyond the scope of this paper. See [6] for more details

-| <fn n => <n + 1>>;
val it = <fn a => <a %+ 1>> : <int -> <int>>

<fn n => <n + 1>> denotes a three stage program. In stage-0 it is
simply a piece of data which represents a program (<fn n => <n+1>>). The
result of running that program is a function that can be used in stage 1 (fn
n => <n+1>). When applied to an integer that function produces another
piece of code, which can be used in stage 2 (<%n %+ 1>).

3.2 The escape operator: composing pieces of code

Bracketed expressions can be viewed as delayed, i.e. evaluation does not
apply under brackets. However, it is often convenient to allow some reduc-
tion steps inside a large delayed expression while it is being constructed.
MetaML allows one to escape from a delayed expression by prefixing a sub-
expression within it with a tilde (7). Because tilde must only appear inside
brackets, it can only be used at level 1 and higher. For instance, let us
examine the function pair below:

-| fun pair x = <("x , “x)>;
val pair = Fn : [’b].<’b> -> <(’b * ’b)>

The function pair takes a piece of code (of type <’b>) as input, and
produces a new piece of code (of type <(’b * ’b)>). It transforms the input
code z into the code of the pair (z,z). To do this we must “splice” z into
the resulting code in two places. This is done by escaping the occurrences
of x in the definition of pair.

When " e appears inside brackets at level 1, the system evaluates e
to a piece of code <v>. Then v is spliced into the bracketed expression in
the context where the original escaped expression occurred. This is the first
elimination rule for code. It is an elimination rule since it shows how escape
removes brackets.

The purpose of escape is to construct larger pieces of code by splicing
smaller pieces of code together. Consider the function pair, which is used
to construct new code from old:

-| (pair <17-4>);
val it = <(17 %- 4,17 %- 4)> : <(int * int)>

By using the first elimination rule for code (~<e> rewrites to e), this reduc-
tion proceeds as follows:

pair <17 %- 4>
<(~<17 % 4>, <17 Y- 4>)>

<(17 %= 4, 17 %= 4)>

3.3 The run operator: executing user-constructed code

The run operator is the explicit annotation used to indicate that it is now
time to execute a delayed computation (i.e. a piece of code).

-| val z = <27 - 15>;
val z = <27 %- 15> : <int>

-| run z;
val it = 12 : int

The run operator allows us to reduce a piece of code to a value by exe-
cuting the code. Computation is no longer deferred and the resulting value
is a pure value. The second elimination rule for code (run <e> rewrites to
e) can only be applied if e does not contain escaped expressions. If e does
contain escaped expressions, they must be evaluated and then eliminated
using the first elimination rule for code before the run elimination rule ap-
plies. This is an important rule, since it forces a piece of code to be “fully
expanded” before it can be run.

run <1 + “((fn x => x) <2+3>)>
run <1 + “(<2+3>) >

run <1 + “<2+3> >

run <1 + 2+3 >

1 + 243

N-stage code is executed by N applications of the run annotation.

-| val x = <fn n => <n + 1> >;
val x = <fn a => <a %+ 1> > : <int -> <int>>

-| val y = run x;
val y = fn : int -> <int>

10

-| val z = y 6;
val z = <%n %+ 1> : <int>

-| run z
val it = 7 : int

3.4 The 1ift operator: another way to build code

Similar to meta-brackets, 1ift transforms an expression into a piece of
code. But 1ift differs in that it reduces its input before delaying it. This
is contrasted in the examples below.

- <4+1>;
val it = <4 %+ 1> : <int> (* no execution *)
-| 1ift (4+1); (* 4+1 executed x)

val it = : <int>

Lift can be used to make the 2 stage example of the previous section
more comprehensible. By using lift in the second stage the bound variable
n appears as a literal constant (6 below) rather than a lexically captured
constant (%n in the previous example).

-| val x = <fn n => < “(lift n) + 1> >;
val x = <fn a => <" (1lift a) %+ 1> > : <int -> <int>>

-] val y = run x;
val y = fn : int -> <int>

-| val z = y 6;
val z = <6 Y%+ 1> : <int>

-| run z
val it = 7 : int

It should also be noted that 1ift can not be applied to a higher-order
(i.e. functional) arguments, as it is undefined on them.
3.5 Lexical capture of free variables: constant pieces of code

As illustrated in the two stage example, it is often useful to construct code
containing variables referring to values previously defined in an earlier stage.
For example:

11

-| val n = 10;
val n = 10 : int

-| val codePair = <(n,3)>;
val codePair = <(%n,3)> : <(int * int)>

Here, the variable n is defined at stage 0, but inside codePair (where
it occurs free), it is referenced at stage 1. At runtime, when the expression
<(n,3)> is evaluated, the system has to compute a piece of code related to
the wvalue of n. This piece of code will be a constant, because n is known
to be 10. We call this phenomenon cross stage persistence[12]. The pretty
printer for code prints all lexically captured constants with the annotation %,
followed by the name of the free variable whose value was used to construct
the constant. All free variables (regardless of type) inside meta brackets
construct these constants. This is the way functions are made into code.

Differences between lift and lexical capture. The 1ift operator can-
not be used on functional values. This is because lift must construct an ex-
pression, which when evaluated returns the same result. For functions this
is not always possible. With cross stage persistence we can lift a function
into a piece of code. Cross stage persistence constructs a constant, which
needs no evaluation when it is finally run. This allows us to construct code
for functions.

-| val inc = fn a => a+1;
val inc = fn : int -> int

-| val encodelnc = <inc 5>;
val encodelnc = <%inc 5> : <int>

-| run encodelnc;
val it = 6 : int

We use 1ift when we want value in a previous stage to appear as a
literal constant in the code representing a future stage.
4 Pattern matching against code
Since code is just a data structure it is possible to pattern match against
pieces of code. Code patterns are constructed by placing brackets around

code. For example a pattern that matches the litteral 5 can be constructed
by:

12

-| fun isb <5> = true
| isb _ = false;
val isb = fn : <int> -> bool

-| isb (1ift (1+4));

val it = true : bool
-| isb <0>;
val it = false : bool

The function is5 matches its argument to the constant pattern <5> if it

succeeds it returns true else false.
Pattern variables in code patterns are indicated by escaping variables in
the code pattern.

-| fun parts < “x + "y > = SOME(x,y)
| parts _ = NONE;
val parts = fn : <int> -> (<int> * <int>) option

-| parts <6 + 7>;
val it = SOME (<6>,<7>) : (<int> * <int>) option

-| parts <2>;
val it = NONE : (<int> * <int>) option

The function parts matches its argument against the pattern < "x + "y
>. If its argument is a piece of code which the is the addition of two sub
terms, it binds the pattern variable x to the left subterm and the pattern
variable y to the right subterm.

Code patterns which contain pieces of code with binding occurrences
must use higher-order pattern variables. A higher-order pattern variable is
indicated by an escaped application. This application must have a special
form. It must be the application of a variable to arguments. This introduces
a higher-order pattern variable. The arguments of the variable must be
explicit bracketed variables, one for each variable bound in the code pattern
at the context where the escaped application appears. For example consider
the following patterns:

13

<fn x => 7 (f <x>)> legal

<fn x => 7 (f <2>) illegal, <2> is not a bracketed
variable

<fn x => 7 £> illegal, £, under lambda, is not
applied to an argument

<fn x => fny => 7 (f <x>)> illegal, £ not applied to all bound
variables

<fn (x,y) => 7 (f <x> <y>) + 1> legal

A higher order pattern variable is used like a function on the right hand
side of a matching construct. For example a function which applies the rule
that 0 is the identity of addition to the body of function is written as:

-| fun f <fn x => “(g <x>) + 0> = <fn y => “(g <y>)>
| £ x = x;
val £f = Fn : [’b]l.<’b -> int> -> <’b -> int>

-| £ <fn x => (x-4) + 0>;
val it = <(fn a => a %- 4)> : <int -> int>

In the next sections we give several substantial examples which illustrate
program staging.

5 A staged term rewriting system

One may think of a term-rewriting system as a set of directed rules. Each
rule is made of a left-hand side and a right-hand side. Both the left-hand
side and right-hand side of a rule are made of patterns. A pattern is a term
with pattern matching variables as subterms.

A rule may be applied to a term ¢ if a subterm s of ¢ matches the left-
hand side under some substitution ¢. A rule is applied by replacing s with
', where t' is the result of applying the substitution o to the right-hand side.
We say “t rewrites (in one step) to t'”, and write ¢ = t'. As an example,
here are the rules for a Monoid [2]:

71t z+0 — =z
T9 O+z — =z
r3: z+@W+z) = (z+y) +2

14

Variables z, y, and z in the rules can each match any term. If a variable
occurs more than once on the left-hand side of a rule, all occurrences must
match identical terms.

Generally, the rules do not change over the life of the system. At the
same time, the basic form of the matching function is a simultaneous traver-
sal of a subject term and the left-hand side of the rule it is being matched
against. This offers an opportunity for staging: We can “specialize” match-
ing over the rules in a first stage, and eliminate the overhead of traversing
the left-hand side of the rules. Not only that, but as we will see, we can
also remove a significant amount of administrative computations involved in
constructing and applying the substitution ¢. One would expect that this
would significantly speed up the rewriting system.

In our system we have both patterns (with variables) and terms (without
variables) We capture this with the following data structures:

datatype ’a Structure =
Op of (’a * string * ’a) (x e.g. (1 + B) *)
| Int of int; (x e.g. b *)

datatype term = Wrap of term Structure;

datatype pat =
Var of string
| Term of pat Structure;

In the following algorithm it is necessary to compare two terms for equal-
ity if a pattern variable occurs more than once in the same pattern. Such a
function is easy to write as a simultaneous traversal over two terms.

fun termeq (Wrap t1) (Wrap t2) =
case tl1 of

Op(m,s,n) =>
(case t2 of 0Op(a,b,c) =>
if s=b

then (if termeq m a
then termeq n c
else false)
else false
| _ => false)
| Int n =>
(case t2 of
Int m => n=m
| _ => false);

15

Because we are constructing a staged version of a pattern matcher, it is
necessary to define a staged version of the substitution function. The subst
function takes a substitution (binding variable names to code of terms) a
pattern (containing variables) and produces the code of a term (without any
variables). Since substitutions are implemented as lists, we need a auxillary
function for looking things up in lists. The difference between this function
and normal subsitution is that subst manipulates pieces of code (which will
compute a term) rather than terms themselves.

fun find s [] = NONE
| find s ((a,z)::xs) =
if a=s then SOME z else find s xs

(* subst: (string * <term>) list =-> pat =-> <term> *)
fun subst sigma pat =
case pat of
Var v =>
(case find v sigma of
SOME w => w)
| Term(Int i) => <Wrap(Int ~(lift i))>
| Term(Op(tl,s,t2)) =>
<Wrap(Op (" (subst sigma t1),
~(1ift s),
~(subst sigma t2)))>

Note the use of staging annotations to construct the code corresponding to
the pattern.

A staged matcher takes a pattern and produces the code which matches
a term against that pattern. The pattern is completely known, and the code
produced depends upon the pattern. In the rewrite system the code we want
to produce will build an instance of the right-hand side of a rule if the left-
hand side matches the term. The instance depends upon the substitution
built by the matching. Rather than returning a substitution (which is then
applied to the right-hand side) the matching function is given a continuation
which it should apply to the substitution. It is the continuation that builds
the instance of the right-hand side, not the matching function.

type substitution = ((string * term) list) option;
type continuation = substitution -> term;

fun unWrap (Wrap x) = x;

fun unWrapCode <Wrap “t> =t
| unWrapCode e = <unWrap ~e>;

16

(* match : pat -> continuation -> substitution -> term -> term

fun match pat
k

msigma
term

case (msigma) of
NONE => k NONE
| SOME (sigma) =>
(case pat of
Var u =>

(*
(*
(*
(*
(*

the pattern being matched, completely known

the continuation to build the code. Must be applied
to a substitution

the substitution that is built when matching occurs
code for the term being matched against the pattern

(case find u sigma of

NONE =>

k (SOME ((u,term) :: sigma))

| SOME w =>

<if termeq "w “term
then ~(k (SOME sigma))
else ~(k NONE)>)

| Term(Int n) =>

<case ~(unWrapCode term) of
Int u => if u= ~(lift n)
then ~(k msigma)
else ~(k NONE)
| _ => ~(k NONE)>
| Term(Op(pl,s1,p2)) =>
<case ~(unWrapCode term) of
Op(t1,s2,t2) =>
if “(1ift s1) = s2

then ~(match p1

else ~(k NONE)

(fn msig => match p2 k msig <t2>)
msigma
<t1>)

| _ => ~(k NONE)>

Rewriting builds the code of a term from a rule. We do this as follows:

fun rewrite (lhs,rhs) =

<fn (Wrap t) =>
~(match 1lhs

(fn NONE => <Wrap t>

(* the initial continuation *)

| SOME s => subst s rhs)

(SOME [1)

17

*)
*)
*)
*)
*)
*)

<Wrap t>)>;

Note how we build a continuation to apply the substitution to the right-
hand side of the rule, and pass it to the match function. If the continuation
is ever passed the failure substitution (NONE) it simply returns the original
term.

When we apply the rewrite function to a rule some code is constructed.

val r3 = (¥*x (x + y) + z => x + (y+ 2) *x*)
(Term(Op(Term (Op(Var "x","+",Var "y")), "+", Var "z")),
Term(Op(Var "x","+",Term(0p(Var "y","+",Var "z")))));

-| rewrite r3;
val it =
<(fn Wrap a =>
(case a of
Op(d,c,b) =>
if nen %= c
then (case %unWrap d of
Op(g,f,e) =>
if "4n %= f
then Wrap (Op(g,"+",Wrap (Op(e,"+",b))))
else Wrap a
|~ =
Wrap a)
else Wrap a
| _ => Wrap a))>
: <term -> term >

6 Safe reductions under brackets

The purpose of MetaML is to control evaluation order. The bracket anno-
tation is the mechanism used to delay evaluation. It is used to say “do not
apply any reduction rules in this term wuntil I say so”. Even so, there are
reduction rules that are safe to apply even inside brackets. These rules never
change the semantics or the termination properties of term, or the order in
which sub-terms are evaluated. The reason we wish to apply such rules is
that they can significantly reduce the size and complexity of a piece of code
without affecting any of its important properties. To write multi-stage pro-
grams effectively, one needs to observe the programs produced, and these
programs should be as simple as possible. For this reason, it is important
that code produced be as simple as possible.

18

6.1 Safe-beta

There is one safe case which is particularly well known, namely instances
of Plotkin’s 3, rule [9]. Whenever an application is constructed where the
function part is an explicit lambda abstraction, and the argument part is
a value, then that application can be symbolicly beta reduced. In order to
avoid duplicating code we restrict our safe-beta reductions to those terms
where the argument is a constant or a variable (while Plotkin’s 3, rule also
allows the values to be lambda expressions). For example in:

val g = <fn x => x * 5>;
val h = <fn x => ("g x) - 2>;

The variable h evaluates to: <fn d1 => (d1 * 5) - 2> rather than
<fn d1 => ((fn d2 => d2 * 5) d1) - 2>.

6.2 Safe-eta

Another simple example is eta-reduction, i.e terms of the form: (fn x =>
e x) where e is a value (an explicit lambda or a variable) and x does not
occur free in e. Such terms can be eta-reduced to e without changing their
meaning or termination behavior. To see how this works in MetaML see the
example below:

-] <fn f => (fn x => f x)>;
val it = <(fn a => a)> : [’b,’c].<CPc -> b) -> ’¢c -> ’b>

| <fn (£,y) => (fn x => (f y) x)>;
val it = <(fn (b,a) => (fn ¢ => b a ¢c))> :
[’b,’c,’d] .<((’d ->’c ->’b) *x°’d) -> ’c -> ’b>

Notice how the eta-rule is applied in the first example, but not in the second.
This is because the conditions for safety are not met (the function part is
an application not a value) in the second example.

6.3 Safe-let-hoisting

Let-hoisting is illustrated by the following examples:

-| <let val x = (let val y = 5 in y+1 end) in x + 2 end>;

val it = <let val a =5val b=a %+ 1 in b %+ 2 end> : <int>

-| <let val y = 5 in let val x = y+1 in x+2 end end>;
val it = <let val a =5 val b =a %+ 1 in b %+ 2 end> : <int>

19

Safe-beta, safe-eta, and safe-let-hoisting are instances of Wadler and
Sabry’s call-by-value equivalence rules [10]. Applying these rules makes
it harder to understand why a particular program was generated, but in
our experience, the resulting programs are smaller, simpler, and easier to
understand. These advantages make this tradeoff worthwhile.

7 Non-standard Extensions

We built MetaML to investigate new paradigms of programming. As we
used MetaML we discovered several simple extensions to ML in addition to
the staging annotations that were quite useful. These extensions are not not
original to MetaML. All are well thought-out ideas that have appeared in
the literature, and several have appeared as features in other languages.

7.1 Higher order type constructors

It is sometimes useful to define a parameterized type constructor, parame-
terized not just by a type, but by another type constructor. In MetaML this
can be done by placing a kind annotation on the parameter that indicates it
is a type constructor. For example consider the definition below for a tree
of integers with an arbitrary branching factor:

datatype (’F : * -> x) tree = tip of int | node of (’F tree) ’F;

datatype ’a binary = bin of ’a * ’a;

The branching factor of a tree is specified by the parameter ’F which is
itself a type constructor. The notation: ’F : * -> * means ’F has kind
“type to type”, which means it is a type constructor taking one type (*) to
another type (*).

For example the tree: node (bin(tip 4, tip 7)) hastype binary tree,
and the tree constructed by: node[tip 4, tip 0, tip 6] has type list
tree.

It is possible to define type constructors parameterized by several higher
order type constructors by definitions of the form:
datatype (’F : * => %, ’G: * => %) T = ...
or by a type constructor that takes several arguments by a definition of the
form:
datatype (°F : * => x => x) S = ...

The postfix application (e.g. (int,string) T) of type constructors in
ML causes a little subtlety. A unary type constructor can be constructed

20

from a binary type constructor by partial application. But this requires
some special syntax since in ML all arguments are “grouped together” inside
parentheses. We think of the normal (parenthesized) notation of ML as a
shorthand for our special syntax which allows partial application. Thus the
normal (’a,’b,’c) Tisashorthand for the more verbose (but more flexible
since it allows partial application) ’a (’b (’c T)).

For example by defining the binary type constructor state

datatype (’a,’b) state = St of (’a -> (’b * ’a));

we can construct an instance: node (St (fn x => (4,x))), which has type
(int state) tree where the parameter to tree is a partial application of
state

7.2 Local polymorphism

It is often convenient to build records where a component of a record is a
polymorphic function. This allows a limited form of “local polymorphism”.
By “local” we mean non-Hindley-Milner because all of the forall quantifi-
cations are not at the outermost level.

For example consider the specification of a list monoid as a record con-
taining three polymorphic elements: an injection function, a plus function,
and a zero element. In MetaML we specify this with an extension to the
datatype definition which allows polymorphic record components:

datatype list_monoid = LM of

{ inject : [’al.’a -> ’a list,
plus : [’a]. ’a list -> ’a list -> ’a list,
zero : [’al.’a list

};

The notation inject: [’al. ’a -> ’a list declares that the inject
component of the record must be a polymorphic function.
We could construct an instance of list_monoid by:

val Iml = LM{inject = fn x => [x],
plus = fn x => fn y => x0y,
zero = [1}

We can exploit the polymorphism of the record by using pattern match-
ing:

21

fun f (LM{inject=inj, plus = sum, zero = z}) =
(sum z (inj 2), sum (inj true) (inj false));

When applied to 1ist_monoid we obtain:

-1 £ 1mi;
val it = ([2],[true ,false]) : (int list * bool 1list)

Note that the sum and inj functions are used polymorphically. Because
of the explicit type annotations in the datatype declaration MetaML knows
to generalize polymorphic names introduced by pattern matching and to en-
force that construction of such records is only allowed on truly polymorphic
objects. The effect of local polymorphism and higher order type constructors
on the Hindley-Milner type inference system has been well studied|3, 7].

7.3 Monads

A monad is a type constructor M (a type constructor is a function on types,
which given a type produces a new type), and two polymorphic functions
unit : ’a — ("a M) and bind: ("a M) — ("a — b M) — (’b M). The usual
way to interpret an expression with type ’a M is as a computation which
represents a potential action that also returns a value of type ’a.

Actions might include things like performing I/O, updating a mutable
variable, or raising an exception. It is possible to emulate such actions in
a purely functional setting by explicitly threading “stores”, “I/O streams”,
or “exception continuations” in and out of all computations. We sometimes
call such an emulation the reference implementation, since it describes the
actions in a purely functional manner, though it may be inefficient.

The two polymorphic functions unit and bind must meet the following
three axioms:

(left id) bind (unit) (Ay.e[y]) = e[z/y]
(right id) bind e (Ay.unit y) = e
(bind assoc) bind (bind e (\x.f[z])) (Ay.gly]) = bind e (Az.bind (f[z/z])(Aw.g[w/y]))

where on the left side of an equation e[z] indicates that e is an expression
that contains occurrences of the free variable z, and on the right side of an
equation e[z/y] means substitute y for all free occurrences of z in e.

The monadic operators, unit and bind, are called the standard mor-
phisms of the monad, and are used to create empty actions (unit), and se-
quence two actions (bind). A particular monad must also have non-standard

22

morphisms that describe the primitive actions of the monad (like fetch the
value from a variable and update a variable in the monad of mutable state).

A useful property of monads is that they encapsulate their actions in
an abstract datatype (ADT), where the only access to the encapsulation is
through unit, bind, and the non-standard morphisms. Like any ADT, it is
possible to use different implementations without affecting the behavior of
the system built on top of the ADT. Thus it is possible for a purely functional
language to use a primitive implementation of a monad that actually side-
effects the world[5], and for the applications built on top of this ADT to still
appear purely functional. As long as the primitive implementation behaves
like the reference implementation (that might passes stores etc.) everything
works out.

Monads perform two useful functions. First, they abstract away all the
“plumbing” that all the explicit threading implies, and second, they make
explicit actions that can be used to effect the world.

7.4 Monads in MetaML

In MetaML a monad is a data structure encapsulating the type constructor
M and the unit and bind functions[14].

datatype (°M : * => %) Monad = Mon of
([’al. ’a -> ’a "M) * ([’a,’b]. ’a ’M -> (’a -> b ’M) -> ’b ’M);

This definition uses two of the other non-standard extensions to ML.
First, it declares that the argument (°M : * -> %) of the type construc-
tor Monad is itself a unary type constructor. Second, it declares that the
arguments to the constructor Mon must be polymorphic functions.

In MetaML, Monad is a first-class, although pre-defined type. In particu-
lar, there are two syntactic forms which are aware of the Monad datatype: Do
and Return [5]. Both are parameterized by an expression of type M Monad.
Users may freely construct their own monads, though they must be careful
that their instantiation meets the monad axioms listed above.

Do is MetaML’s interface to the monadic bind and Return is MetaML’s
interface to the monadic unit. In MetaML these are really nothing more

than syntactic sugar for the following:
Syntactic Sugar Derived Form

Do (Mon(unit,bind)) { x <- e; £ } bind e (fn x => f)

unit e

Return (Mon(unit,bind)) e

23

In addition the syntactic sugar of the Do allows a sequence of x; <- e;
forms, and defines this as a nested sequence of Do’s. For example:

Dom{ x1 <-el; x2 <-e2 ; x3<-e3 ; e4} =
Domq{ x1 <-el; Domq{ x2 <-e2 ; Dom { x3 <- e3 ; e4 }}}

7.5 An example monad

A simple example is the intState monad which encapsulates read and write
actions on a single, mutable, integer variable. We give a reference implemen-
tation which encodes the mutable integer value as an integer. This integer
is threaded into and out of every computation. Read’s will access the value,
and Write’s will pass out a new updated value.

datatype ’a St = St of (int -> (’a * int));
fun unSt (St f) = f;

(* unit : ’a -> St ’a *)
fun unit x = St(fn n => (x,n));

(* bind : (St ’a) -> (Pa -> St ’b) -> (St ’b) *)
fun bind e f = St(fn n => let val (a,n’) = (unSt e) n
in unSt(f a) n’ end);

val intState : St Monad = Mon(unit,bind);

We encapsulate the type constructor of the monad as the algebraic
datatype St, the regular morphisms as functions over this datatype, and
then encapsulate them with the Mon data constructor.

The non-standard morphisms of the intState monad are the actions
read and write. Because there is only one variable they need not take a
variable as an argument.

(* read : int St *)
val read = St(fn n => (n,n));

(* write : int -> unit St *)
fun write n’ = St(fn n => (), n’));

It is interesting to unfold all these definitions by hand on a simple ex-
ample:

24

Do intState { x <- read ; write (x+1) } =
Do (Mon(unit,bind)) { x <- read ; write (x+1) } =

bind read (fn x => write (x+1)) =

St(fn n => let val (a,n’) = (unSt read) n in unSt(write (a+1)) n’ end)

St(fn n => let val (a,n’) (n,n) din (), n’+1) end)

There are three important things to notice about this example. First,
by writing it in monadic style, the sequencing (the read before the write)
is enforced by the data dependencies of the result. Second, the “plumbing”
of passing the int valued state is completely abstracted away in the source.
Third, it makes the read and write “actions” that must be performed
explicit.

7.6 Safe Monad-law-normalization inside brackets

Like safe-beta, safe-eta, and safe-let-hoisting the monad laws are reduction
rules that can safely be applied inside brackets without changing the evalua-
tion order, termination behaviour, or any other semantic property. We give
several examples below which illustrate the effect of monad law normaliza-
tion on constructed code:

(* left id *)

-| <Do intState { x <- Return intState 5; Return intState x + 2 }>;

val it = <Return %intState 5 %+ 2> : <int St>

(* right id *)
-| <fn e => Do intState { x <- e; Return intState x}>;
val it = <(fn a => a)> : [’b].<’b St -> ’b St>

When monadic code is constructed, the monad normalization laws are
automatically applied in the MetaML interpreter.

8 From Interpetors to compilers using staging

In this section, we construct a compiler by annotating a monadic interpretor
for a small imperative while-language. We proceed in two steps. First, we
introduce the language and its denotational semantics by giving a monadic

25

interpreter as a one stage MetaML program. Second, we stage this inter-
preter by using a two stage MetaML program in order to produce a compiler.

8.1 The while-language

In this section, we introduce a simple while-language composed from the
syntactic elements: expressions (Exp) and commands (Com). In this sim-
ple language expressions are composed of integer constants, variables, and
operators. A simple algebraic datatype to describe the abstract syntax of
expressions is given in MetaML below:

datatype Exp =

Constant of int (x b *)
| Variable of string (x x *)
| Minus of (Exp * Exp) (x x -5 %)
| Greater of (Exp * Exp) (x x>1 %)
| Times of (Exp * Exp) ; (x x *x 4 %)

Commands include assignment, sequencing of commands, a conditional
(if command), while loops, a print command, and a declaration which intro-
duces new statically scoped variables. A declaration introduces a variable,
provides an expression that defines its initial value, and limits its scope to the
enclosing command. A simple algebraic datatype to describe the abstract
syntax of commands is:

datatype Com =

Assign of (string * Exp) (x x :=1 x)
| Seq of (Com * Com) (x {x:=1;y:=21} *)
| Cond of (Exp * Com * Com) (x if x then x := 1 else y := 1 %)
| While of (Exp * Com) (* while x>0 do x = x - 1 *)
| Declare of (string * Exp * Com) (x declare x =1 in x :=x - 1 %)
| Print of Exp; (* print x x)

A simple while-program in concrete syntax, such as

declare x = 150 in
declare y = 200 in { while x > 0 do { x :=x - 1; y :=y - 1 }; print y}

is encoded abstractly in these datatypes as follows:

val S1 =
Declare("x",Constant 150,
Declare("y",Constant 200,
Seq(While(Greater(Variable "x",Constant 0),

26

Seq(Assign("x",Minus(Variable "x",Constant 1)),
Assign("y",Minus(Variable "y",Constant 1)))),
Print(Variable "y"))));

8.2 The structure of the solution

Staging is an important technique for developing efficient programs, but
it requires some forethought. To get the best results one should design
algorithms with their staged solutions in mind.

The meaning of a while-program depends only on the meaning of its com-
ponent expressions and commands. In the case of expressions, this meaning
is a function from environments to integers. The environment is a mapping
between names (which are introduced by Declare) and their values.

There are several ways that this mapping might be implemented. Since
we intend to stage the interpreter, we break this mapping into two compo-
nents. The first component, a list of names, will be completely known at
compile-time. The second component, a list of integer values that behaves
like a stack, will only be known at the run-time of the compiled program.

The functions that access this environment distribute their computation
into two stages. First, determining at what location a name appears in the
name list, and second, by accessing the correct integer from the stack at
this location. In a more complicated compiler the mapping from names to
locations would depend on more than just the declaration nesting depth,
but the principle remains the same. Since every variable’s location can be
completely computed at compile-time, it is important that we do so, and
that these locations appear as constants in the next stage.

Splitting the environment into two components is a standard technique
(often called a binding time improvement) used by the partial evaluation
community[4]. We capture this precisely by the following purely functional
implementation.

type location = int;
type index = string list;
type stack = int list;

(* position : string -> index -> locatiom *)

fun position name index =
let fun pos n (nm::nms) = if name = nm then n else pos (n+1) nms
in pos 1 index end;

(* fetch : location -> stack -> int *)
fun fetch n (v::vs) = if n = 1 then v else fetch (n-1) vs;

27

(* put: location -> int -> stack -> stack *)
fun put n x (v::vs) = if n = 1 then x::vs else v::(put (n-1) x vs);

The meaning of Com is a stack transformer and an output accumulator.
It transforms one stack (holding the values of the variables in scope) into
another stack (with presumably different values for the same variables) while
accumulating the output printed by the program.

To produce a monadic interpreter we could define a monad which en-
capsulates the index, the stack, and the output accumulation. Because we
intend to stage the interpreter we do not encapsulate the index in the monad.
We want the monad to encapsulate only the dynamic part of the environ-
ment (the stack of values where each value is accessed by its position in the
stack, and the output accumulation).

The monad we use is a combination of monad of state and the monad
of output.

The part corresponding to the monad of state is similar to the monad
described in section 7.5, except the mutable value is not an integer, but
instead a vector of mutable integers that will be managed like a stack.

datatype ’a M = StOut of (int list -> (’a * int list * string));
fun unStOut (StOut f) f;
fun unit x = StOut(fn n => (x,n,""));
fun bind e f = StOut(fn n => let val (a,nl,sl) (unStQOut e) n
val (b,n2,s2) unStOut (f a) nil
in (b,n2,s1 ~ s2) end);
val mswo : M Monad = Mon(unit,bind); (* Monad of state with output *)

The non-standard morphisms must describe how the stack is extended
(or shrunk) when new variables come into (or out of) scope; how the value
of a particular variable is read or updated; and how the printed text is
accumulated. Each can be thought of as an action on the stack of mutable
variables, or an action on the print stream.

(x read : location -> int M *)
fun read i = StOut(fn ns => (fetch i ns,ns,""));

(* write : location -> int -> unit M %)
fun write i v = StOut(fn ns =>((), put i v ns, ""));

(* push: int -> unit M *)
fun push x = StOut(fn ns => ((), x :: ns, ""));

28

(* pop : unit M %)
val pop = StOut(fn (n::ns) => ((), ns, ""));

(* output: int -> unit M x)
fun output n = StOut(fn ns => ((), ns, (toString n)~" "));

8.3 Step 1: monadic interpreter

Because expressions do not alter the stack, or produce any output, we could
give an evaluation function for expressions which is not monadic, or which
uses a simpler monad than the monad defined above. We choose to use the
monad of state with output throughout our implementation for two reasons.
One, for simplicity of presentation, and two because if the while language
semantics should evolve, using the same monad everywhere makes it easy
to reuse the monadic evaluation function with few changes.

The only non-standard morphism evident in the evall function is read,
which describes how the value of a variable is obtained. The monadic in-
terpretor for expressions takes an index mapping names to locations and
returns a computation producing an integer.

(* evall: Exp -> index -> int M *)
fun evall exp index =
case exp of
Constant n => Return mswo n
| Variable x => let val loc = position x index
in read loc end
| Minus(x,y) =>
Do mswo { a <- evall x index ;
b <- evall y index;
Return mswo (a - b) }
| Greater(x,y) =>
Do mswo { a <- evall x index ;
b <- evall y index;
Return mswo (if a ’>’ b then 1 else 0) }
| Times(x,y) =>
Do mswo { a <- evall x index ;
b <- evall y index;
Return mswo (a * b) I};

The interpreter for Com uses the non-standard morphisms write, push,
and pop to transform the stack and the morphism output to add to the
output stream.

29

(* interpretl : Com -> index -> unit M *)
fun interpretl stmt index =
case stmt of
Assign(name,e) =>
let val loc = position name index
in Do mswo { v <- evall e index ; write loc v } end
| Seq(s1,s2) =>
Do mswo { x <- interpretl sl index;
y <- interpretl s2 index;
Return mswo () }
| Cond(e,sl1,s2) =>
Do mswo { x <- evall e index;
if x=1
then interpretl sl index
else interpretl s2 index }
| While(e,body) =>
let fun loop () =
Do mswo { v <- evall e index ;
if v=0 then Return mswo ()
else Do mswo { interpretl body index ;
loop OO } %
in loop () end
| Declare(nm,e,stmt) =>
Do mswo { v <- evall e index ;
push v ;
interpretl stmt (nm::index);
pop }
| Print e =>
Do mswo { v <- evall e index;
output v };

Although interpretl is fairly standard, we feel that two things are
worth pointing out. First, the clause for the Declare constructor, which
calls push and pop, implicitly changes the size of the stack and explicitly
changes the size of the index (nm:index), keeping the two in synch. It
evaluates the initial value for a new variable, extends the index with the
variables name, and the stack with its value, and then executes the body of
the Declare. Afterwards it removes the binding from the stack (using pop),
all the while implicitly threading the accumulated output. The mapping is
in scope only for the body of the declaration.

Second, the clause for the While constructor introduces a local tail re-
cursive function loop. This function emulates the body of the while. It
is tempting to control the recursion introduced by the While by using the

30

recursion of the interpret1 function itself by using a clause something like:

| While(e,body) =>
Do mswo { v <- evall e index ;
if v=0 then Return mswo ()
else Do mswo { interpretl body index ;
interpretl (While(e,body)) index }
}

Here, if the test of the loop is true, we run the body once (to transform
the stack and accumulate output) and then repeat the whole loop again.
This strategy, while correct, will have disastrous results when we stage the
interpreter, as it will cause the first stage to loop infinitely.

There are two recursions going on here. First the unfolding of the finite
data structure which encodes the program being compiled, and second, the
recursion in the program being compiled. In an unstaged interpreter a sin-
gle loop suffices. In a staged interpreter, both loops are necessary. In the
first stage we only unfold the program being compiled and this must always
terminate. Thus we must plan ahead as we follow our three step process.
Nevertheless, despite the concessions we have made to staging, this inter-
preter is still clear, concise and describes the semantics of the while-language
in a straight-forward manner.

8.4 Step 2: staged interpreter

To specialize the monadic interpreter to a given program we add two levels
of staging annotations. The result of the first stage is the intermediate code,
that if executed returns the value of the program. The use of the bracket
annotation enables us to describe precisely the code that must be generated
to run in the next stage. Escape annotations allow us to escape the recursive
calls of the interpreter that are made when compiling a while-program.

(* eval2: Exp -> index -> <int M> *)
fun eval2 exp index =
case exp of
Constant n => <Return mswo ~(lift n)>
| Variable x =>
let val loc = position x index
in <read ~(1ift loc)> end
| Minus(x,y) =>
<Do mswo { a <- “(eval2 x index) ;
b <- “(eval2 y index);
Return mswo (a - b) }>

31

| Greater(x,y) =>
<Do mswo { a <- “(eval2 x index) ;
b <- “(eval2 y index);
Return mswo (if a ’>’ b then 1 else 0) }>
| Times(x,y) =>
<Do mswo { a <- “(eval2 x index) ;
b <- “(eval2 y index);
Return mswo (a * b) }>;

The 1ift operator inserts the value of loc as the argument to the read
action. The value of loc is known in the first-stage (compile-time), so it is
transformed into a constant in the second-stage (run-time) by 1ift.

To understand why the escape operators are necessary, let us consider
a simple example: eval2 (Minus(Constant 3,Constant 1)) []. We will
unfold this example by hand below:

eval?2 (Minus(Constant 3,Constant 1)) [] =

< Do mswo
{ a <- “(eval2 (Constant 3) [1);
b <- “(eval2 (Constant 1) [1);
Return mswo (a-b)} > =

< Do mswo
{ a <- "<Return mswo 3>;
b <- "<Return mswo 1>;
Return mswo (a - b)} > =

< Do mswo
{ a <- Return mswo 3;
b <- Return mswo 1;
Return mswo (a - b)} > =

< Do Ymswo
{ a <- Return %mswo 3;
b <- Return Ymswo 1;
Return %mswo (a %- b)} >

Each recursive call produces a bracketed piece of code which is spliced
into the larger piece being constructed. Recall that escapes may only appear
at level-1 and higher. Splicing is axiomatized by the the first elimination rule
for code: ~ <x> — x, which applies only at level-1. The final step, where
mswo and - become %mswo and %-, occurs because both are free variables
and are lexically captured.

32

Interpreter for Commands.

Staging the interpreter for commands proceeds in a similar manner:

(* interpret2 : Com -> index -> <unit M> *)
fun interpret2 stmt index =
case stmt of
Assign(name,e) =>
let val loc = position name index
in <Do mswo { n <- “(eval2 e index) ;
write “(1lift loc) n }>
end
| Seq(s1,s2) =>
<Do mswo { x <- “(interpret2 sl index);
y <- “(interpret2 s2 index);
Return mswo () }>
| Cond(e,s1,s2) =>
<Do mswo { x <- “(eval2 e index);
if x=1
then ~(interpret2 sl index)
else “(interpret2 s2 index)}>
| While(e,body) =>
<let fun loop () =
Do mswo { v <- “(eval2 e index);
if v=0
then Return mswo ()

else Do mswo { q <- “(interpret2 body index); loop ()}

}
in loop () end>
| Declare(nm,e,stmt) =>
<Do mswo { x <- “(eval2 e index) ;
push x ;
“(interpret2 stmt (nm::index)) ;
pop }>
| Print e =>
<Do mswo { x <- “(eval2 e index) ;
output x }>;

8.4.1 An example.

The function interpret2 generates a piece of code from a Com object. To
illustrate this we apply it to the simple program: declare x

:= x - 1; print x } and obtain:

<Do Ymswo

33

10 in { x

{ a <- Return %mswo 10
; hpush a
; Do Jmswo
{ e <- Do Ymswo
{ d <- Do Ymswo
{ b <- Yread 1
; ¢ <- Return Ymswo 1
; Return %mswo b %- c
}
; hwrite 1 d
}
; & <- Do %mswo
{ f <- Yread 1
; %houtput f
}

; Return Y%mswo ()
}
; hpop
>

By applying the safe monad normalization laws while constructing the
above program we obtain the more satisfying:

<Do %mswo
{ %push 10
; a <- Y%read 1
; b <- Return %mswo a %- 1
; ¢ <—- Y%write 1 b
; d <- Y%read 1
; e <- Y%output d
; Return Ymswo ()
; %pop
>

The difference in the complexity of the two programs illustrates why pro-
gram normalization is important if constructed programs are to be observed.
In the MetaML implementation the normalization laws can be turned on and
off. They are all on by default. The side effecting function feature can be
used to control the normalization laws. feature O displays the normaliza-
tion modes, and feature n toggles the nth feature.

-| feature 0;

1 Safe-beta is on.

2 Safe-eta is on.

3 Let-hoisting is on.

34

4 Monad-law-normalization is on.
val it = false : bool

-| feature 4;
Monad-law-normalization is off.
val it = false : bool

9 Polytypic Programming

A polytypic function is defined just once, but useable on many different
datatypes. Generalized map functions, show functions, and structural equal-
ity are examples.

In MetaML, we proceed as follows. We construct universal, but ineffi-
cient solutions, and then use staging to remove the inefficiencies.

The universal but inefficient solution involves a universal datatype. Ev-
ery first-order datatype with a single type parameter (such as 1ist) can be
mapped into this universal domain. When this is done the datatype looses
its “type”. We encode the generic function as a function over values in the
"typeless” universal domain (thus applicable to all such datatypes). After
applying the generic function, the answer is projected from the universal
domain back into the typed domain.

The strategy uses staging to specialize the generic function and thus
remove all reference to the universal domain. We illustrate for first-order
datatypes with a single parameter. Call these datatypes R. The universal
domain is encoded in the dataype V (for variant) below. Its two parameters
encode the type parameter (’p), and recursive component(s) (’r) of the set
of datatypes R.

datatype (’p ,’r) V =
Vparam of ’p

| Vrec of ’r

| Vint of int

| Vstr of string

| Vunit

| Vcon of (string * (’p ,’r) V option)

| Vrecord of (string * (’p ,’r) V) list;

fun unpar (Vparam x)
fun unrec (Vrec x) = x;

X;

The strategy is to map arbitrary members of R into this type. We illus-
trate by using lists. An injection function from 1ist to V, and a projection
function from V to 1ist are defined as follows:

35

(* LToV : ’a list -> (a,’a list)V %)

val LToV =
(fn [1 => Vcon("[]",NONE)
| (x::x8) =>
Vcon("::",
SOME (Vrecord[("1",Vparam x),
("2" ,Vrec xs)1)));

(x VToL : (’a ,’a list)V -> ’a 1list *)

val VToL =
(fn (Vcon("[]",NONE)) => []
| (Vcon("::",
SOME (Vrecord[("1",x),
("2",xs)1))) =>

(unpar x)::(unrec xs));

These functions unroll (or rollup) the 1ist structure into (from) the univeral
type V exactly one layer of recursion.

We abstract this pattern of 1 layer rolling into the following higher order
datatype with polymorphic components:

datatype (°f : * -> %) reg =
Reg of ([’al. ’a ’f -> (’a,’a ’f)V) *
([’al.(C’a,’a "£)V -> ’a ’f);

val list = Reg(LToV,VToL);

We can use this abstraction to define “generic” rolling and unrolling func-
tions for any type constructor T such that values of type T reg exist.

(* unroll : ’T reg -> ’a ’T -> (’a, ’a 'T)V %)
val unroll = fn (Reg(toV,fromV)) => toV;

(* rollup : ’T reg -> (Pa, ’a ’T)V => ’a ’T %)
val rollup = fn (Reg(toV,fromV)) => fromV;

We now define a “map” function for the datatype V. Since it is a datatype
with two type parameters, its map function takes two function valued ar-
guments: a transformer function for parameters (pf) and a transformer for
recursions (rf):

(*V: Cd ->'¢c) >
b ->’a) ->
’d ,’b) V => (’c ,’a) V %)

36

fun V pf rf =
let fun loop (Vparam x) = Vparam(pf x)
| loop (Vrec x) = Vrec(rf x)
| loop (Vint n) = Vint n
| loop (Vstr s) = VUstr s
| loop (Vreal r) = Vreal r
| loop (Vunit) = Vunit
| loop (Vcon(s,NONE)) = Vcon(s,NONE)
| loop (Vcon(s,SOME v)) =
Vcon(s,SOME (loop v))
| loop (Vrecord zs) =
Vrecord(map (fn (s,v) =>
(s,loop v)) zs)
in loop end;

Using this machinery we can define a generic “map” function over all
datatypes T for which we can build T reg structures.

fun mp r £ =
let fun mapf x = rollup r (V f mapf (unroll r x))
in mapf end;

The local, recursive, helper function mapf works as follows: unroll x,
push the mapping function £ onto the parameter positions, mapf onto the
recursion positions, and then rollup the result. A sample use of the function
mp is:

-] mp list (fn x => x+2) [1,2,3];
val it = [3,4,5] : int list

While elegant, it is not very efficient. The rolling and unrolling consumes at
lot of resources (allocation of memory for the constructors of the V datatype),
and time (spent walking over the V data structure). Given a particular T
reg structure we would like to partially apply mp and then partially evaluate
away these inefficiencies by staging the program.

Our strategy is use pattern matching over code as the staging mechanism.
Rather than use a pair of polymorphic functions to encode type information
as we did with the reg datatype, we use three polymorphic functions. These
functions are not only polymorphic but involve functions from code to code
(meta functions). Instances of these functions will be written using pattern
matching over code.

datatype (’t1,’t2) encoding =

Enc of ([’c,’d].(<’t1> => <(’c ,’d)V >) -> <’t1> => <(’¢c,’d)V>)
* ([’c,’d,’e].(<Cc ,’d)V > -> <’%2 >) -> <(’e ,’d)V > -> <’t2>)

37

* ([’b,’c,’d].(<Cc ,’d)V > -> <’b >) —>
(<2t1> > <(’c ,’d)V >) —>
(<2t1 => ’b>));

The three functions which are given as arguments to the constructor Enc
can be thought of as an injection, projection and build function at the
meta level (i.e. they involve code to code functions). An injection function
for a recursive type (like 1ist) takes an injection function for recursive
components and builds an injection function for lists. This is reminiscent of
the one level unrolling above. Projection is similar, but goes from the variant
type rather than into the variant type at the meta level. A build function
(at a particular type) takes two meta functions as arguments and returns a

piece of code which does a case analysis for that particular datatype
We give encodings for simple integers.

fun inj _ n = <Vint "n>;

fun proj _ <Vint "n> = n;

fun build allf rf = <fn n => ~(allf <Vint n>)>;
val int = Enc(inj,proj,build);

Since integers are not recursive, the recursive component parameter func-
tions to the injection and projection functions are ignored, and the case
analysis for the build function is particularly simple (no case at all).

For parameterized types, we build a function which takes an encoding
for the parameters, and builds an encoding for a structure (like 1ist) with
that kind of parameter. As an example we give the 1ist example below.

fun list (Enc(inj,proj,build)) =
let fun injL rf <[]1> = <Vcon("[]",NONE)>
| injL rf < "x :: “xs > =
<Vcon("::",SOME(Vrecord[("1",”(inj bottom x)),
(2", (rf xs))1))>
fun projL rf <Vcon("[]",NONE)> = <[]>
| projL rf <Vcon("::",SOME(Vrecord[("1","x),("2","xs8)]))> =
< “(proj bottom x) :: ~(rf xs)>
fun inj3 allf rf =
<fn [] => ~(allf <Vcon("[]",NONE)>)
| y::ys => ~(allf <Vcon("::",
SOME(Vrecord[("1",” (inj bottom <y>)),
(2", (rf <ys>))1))>)>
in Enc(injL,projL,inj3) end;

Note how the build function returns a piece of code which does analysis of
the structure of lists. The mechanism that makes this all work is the allf

38

functional parameter to the build function. This function is a metafunction
which manipulates code of type variant. The polytypy is encoded in this
function.

For example to build a polytypic show function, we write an allf-like
function showV for showing the variant (V) datatype, and using the encoding
datatype we build an efficient specialized version. First the show-function
for variants at the meta level. It is a code to code function from code of
variant to code of string.

fun plist <[]> f sep = <"">
| plist <["x I> f sep=1x
| plist < "x :: “xs > f sep = < “(f x) ~ “sep ~ “(plist xs f sep)>;

fun showV (<Vparam “p>) = error '"no param here"

showV (KVrec “z>) = z

showV (<Vint “n>) = <toString “n>

showV (KVstr ~s>) = <"\"" =~ ~g =~ "\"">

showV (<Vunit>) = <"()">

showV (<Vcon("[]",NONE)>) = <"[]">

showV (<Vcon("::",SOME(Vrecord[("1", x),("2","y)1))>) =
< “(showV x) ~“"::"" ~(showV y) >

| showV (<Vcon (“c,™x)>) =

(case x of

<NONE> => ¢
| <SOME ~“v> => < "¢ ~" "~ ~(showV v)>)
| showV (<Vrecord “vs>) =
< II{"“

plist vs (fn <(7s,"v)> => < “s = " =" ° “(showV v)>) <",">)"
|l}|l >;

Next a polytypic function which uses this mechanism:

fun show’ (Enc(inj,proj,build)) =
<let fun show x =
~“(let fun unrec <Vrec “x> = x
fun Rec x = <Vrec (show “x)>
in build showV Rec end) x
in show end>;

By applying this function to an encoding we construct the code of a special-
ized show function for the type represented by the encoding. For example:

-| show’ int;
val it =

39

<let fun a b = %toString b in a end>
: <int -> string>

-| show’ (list int);
val it =
<let fun a b =

(case b of

[0 => 0o
[(d::c) => %toString d %~ "::" %~ a c)
in a end> : <int list -> string>

This same mechanism can be used to construct a polytypic map function.
Here, rather than taking an encoding as an argument, it takes an encoding
to encoding function, representing a parameterized type, since these are the
types for which map functions exist.

fun map’ M =

<let fun map f =

“(let fun injA _ w = <Vparam(f “w)>
fun projA _ <Vparam "x> = x
val Enc(q,proj,build) = M (Enc(injA,projA,bottom))
fun unrec <Vrec "x> = x
fun Rec x = <Vrec (map f “x)>

in build (proj unrec) Rec end)
in map end>;

Given an encoding to encoding function (M) we construct a new encoding,
we use the build function of this encoding to construct the body of the map
function. Use of this function is illustrated below:

-| map’ list;

val it =
<let funa b= (n [] => [1 | (d::c) => ::(b d,a b ¢)) in a end>
: <C1 -> 02) -> 1 1list -> ’3 list >

10 Typing staged programs

In Figure 10 the derivation rules for typing a subset of MetaML are given.
The interesting rules are Br n which addresses the typing of bracketed
expressions, Esc n+1 which addresses the typing of escaped expressions,
and Run n. Note that Br n raises the level n of the term bracketed, and
that Esc n+1 only applies at levels 1 and higher. This ensures that escaped
expressions only appear inside brackets.

40

Domains and Relations

levels

n — 0]1|n+1|n+2] ...
integers i - | =2 | —=1]0]1]2] ...
types T = int | 797 | (7) | a
terms e — i|z|ee|AxT.e|<e>| e | rune | tw
type environments A — o | Ajz = (1,a)"

where (A,z — (1)")y =
if z =y then (1,0)" else A y

n
term typing atleveln Al e: T

Static Semantics

n Az=(r)t i<n
Int n: AF i:int Var: n
Arz:T
+1 n
Anl— e:T - (1)
Br n: - Esc n+1: 1
AF<e>:(T) A F e:T
Ifel ™ —T n
n Az— ()" Fe:mn

App n: Ale:mn Abs n:

n
n AF Xz . e:m =1
AlFeie:T

Aﬁe:(r)

Run n: "
AF rune : 7

Figure 1: The Static Semantics of MetaML

41

10.1 Type questions still to be addressed

The type system presented in Figure 10 represents the type system in the
MetaML implementation. This type system has some drawbacks. In partic-
ular it types the program <fn x => ~ (run <x>)> which leads to a runtime
€rror.

-| <fn x => “(run <x>)>;

Error: The term:

X

in file ’top level’ 18 - 19

variable bound in phase 1 used too early in phase 1

This is because the rule Run n removes brackets without lowering the
level n. This is the normal course of affairs, and is the right thing to do,
except if run is applied to a piece of code with free variables which are bound
at a level higher than the level at which run is executed. This is the case
for the example above because x is bound at level 1, and run is executed at
level 0.

Designing a type system to keep track of this is quite hard. We have
designed several type systems to invalidate such programs(11, 13]. Unfortu-
nately these systems either also throw away other good programs, or require
elaborate annotations.

In the MetaML implementation we take the position that such errors are
similar to errors such as taking the head or tail of an empty list: Typeable,
but leading to a runtime error. Avoiding such errors are the responsibility
of the programmer. We have written many staged programs and always
avoided this error.

Research into improving the type system is an area of continued research.

11 Conclusion

A staged programming language gives the programmer a new paragdigm for
constructing efficient programs. We have illustrated this by building staged
programs for interpreters and polytypic programs.

We have also found that several other “advanced” features such as higher-
order type constructors, local polymorphism, and monads have many uses.

We believe that languages with these features help programmers con-
struct programs which are easier to maintain because they are generic, yet
they are still efficient.

42

12 Exercises

e Staged member function. Write a staged membership function,
where the list is known in the first stage, but the element being
searched for is not known till the second phase. Experiment with
the use of the 1ift annotation to make your generated code more
readable.

e 3 level inner product function. The inner product function can be
staged in three stages. The 1 stage innner product function is given
below.

fun inner _prod n x y =
ifn=20
then 1
else (nth n x)*(nth n y) + inner_prod (n-1) x y;

The three stage function is written to proceed as follows: In the first
stage the arrival of the size of the vectors offers an opportunity to spe-
cialize the inner product function on that size, removing the overhead
of looping over the body of the computation n times. The arrival of
the first vector affords a second opportunity for specialization. If the
inner product of that vector is to be taken many times with other vec-
tors it can be specialized by removing the overhead of looking up the
elements of the first vector each time. This is exactly the case when
computing the multiplication of 2 matrixes. For each row in the first
matrix, the dot product of that row will be taken for each column of
the second. In addition the second stage affords the opportunity for
additional optimization. Since the first vector is known multiplications
by 1 or 0 can be elminated in the third stage.

e Simple Compiler. Define a language. Write an interpreter for the
language. Stage the interpreter to construct a compiler.

e Post code generation optimization. Use the pattern matching
for code feature of MetaML to construct a simple code optimization
phase.

43

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

Charles Consel and Olivier Danvy. Tutorial notes on partial evalu-
ation. In 20thACM Symposium on Principles of Programming Lan-
guages, pages 493-501, January 1993.

Nachum Dershowitz. Computing with rewrite systems. Information
and Control, 65:122-157, 1985.

Mark P. Jones. A system of constructor classes: Overloading and im-
plicit higher-order polumorphism. In FPCA’93: Conference on Func-
tional Programming Languages and Computer Architecture, Copen-
hagen, Denmark, pages 52—61, New York, June 1993. ACM Press.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evalua-
tion and Automatic Program Generation. Series editor C. A. R. Hoare.

Prentice Hall International, International Series in Computer Science,
June 1993. ISBN number 0-13-020249-5 (pbk).

John Launchbury and Simon Peyton-Jones. Lazy functional state
threads. In PLDI’94: Programming Language Design and Implemen-
tation, Orlando, Florida, pages 24-35, New York, June 1994. ACM
Press.

Matthieu Martel and Tim Sheard. Introduction to multi-stage program-
ming using metaml. Technical report, OGI, Portland, OR, September
1997.

Martin Odersky and Konstantin Laufer. Putting type annotations to
work. In Proc. 23rd ACM Symposium on Principles of Programming
Languages, pages 5467, January 1996.

Chris Okasaki. Purely Functional Data Structures. Cambridge Univer-
sity Press, 1998.

G. D. Plotkin. Call-by-name, call-by-value- and the lambda-calculus.
Theoretical Computer Science, 1:125-159, 1975.

Amr Sabry and Philip Wadler. A reflection on a call-by-value. ACM
Transactions on Programming Languages and Systems, 19(6):916-941,
November 1997.

44

[11]

[12]

[13]

[14]

Walid Taha, Zine-el-abidine Benaissa, and Tim Sheard. The essence of
staged programming. Technical report, OGI, Portland, OR, December
1997.

Walid Taha and Tim Sheard. Multi-stage programming with explicit
annotations. In Proceedings of the ACM-SIGPLAN Symposium on Par-
tial Evaluation and semantic based program manipulations PEPM’97,
Amsterdam, pages 203-217. ACM, 1997.

Walid Taha and Tim Sheard. Metaml: Multi-stage programming with
explicit annotations. Theoretical Computer Science, To Appear.

Philip Wadler. Comprehending monads. Proceedings of the ACM Sym-
posium on Lisp and Functional Programming, Nice, France, pages 61—
78, June 1990.

45

